Adventures in the CMB Damping Tail La Fièvre Neutrino et Comment Je Me Suis Soigné

> Lloyd Knox (UC Davis) Zhen Hou & Marius Millea (UCD) Ryan Keisler* (UC), Christian Reichardt (UCB) SPT collaboration

Hou et al. (2011), Keisler + SPT Collaboration (2011)

WMAP

SPT

One of five fields observed in 2009, totaling 800 sq. deg.

The South Pole Telescope

- 10 meter primary mirror
- 1000 pixel camera
- 3 bands (95, 150, 220 GHz)
- 1 arcminute resolution
- Deployed February 2007, will complete **2500 deg2** survey by end of 2011.

Chicago Berkeley Case Western McGill Boulder Harvard Davis Caltech Munich Michigan Arizona

photo by Dana Hrubes

The Angular Power Spectrum at 150 GHz Extrapolated from

94 GHz

The Angular Power Spectrum at 150 GHz Extrapolated from

94 GHz

Keisler et al. (2011) provides a significant improvement in our knowledge of the damping tail

With this advance, and with much more to come soon from Planck, it's perhaps timely to review the physical interpretation.

Outline

- CMB Theory for CMB Experimentalists

 A Transfer Function Controlled by Three Angular Scales
- What can we learn from the damping tail
- Non-CMB evidence for extra neutrinos
- Conclusions

The CMB is Like a Detector of Some Noise Source

The CMB is Like a Detector of Some Noise Source

The CMB is Like a Detector of Some Noise Source

CMB as a Detector

Noise Source

Transfer Function

Primordial fluctuation generator (inflation works well)

Depends on matter content

CMB as a Detector

Noise Source

Primordial fluctuation generator (inflation works well) **Transfer Function**

Depends on matter content

Inflation is a period of accelerating expansion rate

Accelerating Expansion prevents quantum fluctuation from becoming undone

Smaller-scale perturbations are made later

Horizon length

CMB as a Detector

Noise Source

Primordial fluctuation generator (inflation works well) **Transfer Function**

Depends on matter content

Three Scales in the CMB Transfer Function

 r_{EQ} is the comoving size of the Hubble radius at EQuality.

sound horizon: distance sound could travel by the time of last scattering. θ_s controls peak locations.

Animation credit: Damien Martin (UCD)

Evolution of Single Fourier Mode

A Single Fourier Mode

We will be considering how this single Fourier mode evolves with time.

space

For specificity, we will be tracking the amplitude of temperature and Ψ at this point in space.

Gravitational Potential, Ψ, as a function of time in a Matter-Dominated Universe

(We will be using the comoving size of the sound horizon as our time-like variable)

Gravitational Potential, Ψ, as a function of time in a Matter-Dominated Universe

(We will be using the comoving size of the sound horizon as our time-like variable)

Initial spatial dependence

space

Initial spatial dependence

space

"Temperature" = $\Theta_0 = \delta T/T$

Initial spatial dependence

space

"Effective Temperature" = $\Theta_0 + \Psi$

Evolution Assuming Radiation Domination

Evolution Assuming Radiation Domination

Evolution Assuming Radiation Domination

$r_{EQ} = H^{-1}EQ}/a_{EQ}$ is an important length scale

The amplitude of the "radiation driving" effect is controlled by the ratio of matter to radiation when oscillations begin (when $\lambda = H^{-1}/a$) and therefore by $\theta/\theta_{EQ} = \lambda/r_{EQ}$.

Changing θ_{EQ} at fixed θ_s and θ_d

$\theta_{\rm EQ} = I(\Omega_m)/\sqrt{1+z_{\rm EQ}}$ where $I(\Omega_m)$ is a very slowly-varying function of Ω_m

As Neff is varied, ρ_m is increased to keep z_{EQ} (and therefore θ_{EQ}) fixed, because θ_{EQ} is robustly determined by the data.

Komatsu et al. (2010)

The Sound Horizon

 θ_{s} D_{A} r_{s}

sound horizon: distance sound could travel by the time of last scattering.

 $\Theta_0 + \Psi \sim \cos(kr_s(\eta))$ so $kr_s(\eta_*) = kr_s$ controls oscillation phase at last scattering and therefore whether k corresponds to a peak or a trough. Or if you want to swap I for k:

 $kr_s = kD_A (r_s/D_A) = I\theta_s$ $I\theta_s$ controls oscillation phase of mode that projects to multipole moment I.

Effect of extra v on r_s

 $100 \theta_{s} = 1.04 + - 0.0016$ Keisler et al. (2011)

sound horizon: distance sound could travel by the time of last scattering. θ_s controls peak locations.

 $r_s = \int_0^{a*} c_s da/(a^2 H)^2$

Extra v ==> higher $\rho ==>$ higher H ==> takes less time to cool to $T_{rec} ==> r_s$ is smaller

 $H^2 = 8\pi G \rho / 3$

If we knew D_A we could find $r_s = \theta_s D_A$ and determine H

Effect of extra v on r_d

Random-walk so goes as sq. root of time $==> r_d \sim 1/H^{0.5}$ (Remember $r_s \sim 1/H$)

 $\theta_{\rm d}/\theta_{\rm s} = r_{\rm d}/r_{\rm s} \sim {\rm H}^{0.5}$

Changing θ_d at fixed θ_{EQ} and θ_s

Increasing N_{eff} increases θ_d , reducing small-scale power

Hou, Keisler, LK, Millea & Reichardt (2011)

98.4% confidence that N_{eff} > standard model value (Hou et al. 2011)

Neff is increased here from 2 to 5 with fixed θ_{EQ} and θ_{s} .

To fix θ_{EQ} we increase ρ_{cdm} . To fix θ_s we adjust ρ_{Λ} to change D_A .

Changing N_{eff} at fixed θ_{d} , θ_{EQ} and θ_{s}

Same models but with θ_d fixed as well (by varying the Helium fraction).

The effect is indeed due to change to θ_d

Bashinsky & Seljak (2004)

Summary of Three Scales

r_{FO} controls radiation driving

sound horizon: distance sound could travel by the time of last scattering. θ/θ_s controls oscillation phase at last scattering.

Modes with $\lambda < r_d$ are

Silk damping

r_d

Outline

- CMB Theory for CMB Experimentalists

 A Transfer Function Controlled by Three Angular Scales
- What we can learn from the damping tail
- Non-CMB evidence for neutrinos

SPT provides modest improvement on 6 "vanilla" cosmo parameters

Six-parameter Model

Assumptions

Input spectrum parameters

A n_s Transfer function parameters

au ho_{b}

 ho_{m}

 ρ_{Λ}

 Standard radiation content (T_γ from FIRAS, 3 SM neutrinos)

2) $Y_P = f(N_{eff}, \rho_b)$

3) $dn_s/dlnk = 0$

4) Dark energy = Λ and $\Omega_k = 0$

Six-parameter Model

Assumptions

Transfer function Input spectrum 1) Standard parameters parameters radiation content $(T_{v} \text{ from FIRAS},$ 3 SM neutrinos) τ A 2) $Y_{P} = f(N_{eff}, \rho_{b})$ ρ_{b} ns 3) $dn_s/dlnk = 0$ (θ_{EQ}) ρ_{m} (θ_{s}) 4) Dark energy = Λ ρ_{Λ} and $\Omega_{k} = 0$ For WMAP7, effects that lead to constraints on τ , $\rho_{\rm h}$ and $\rho_{\rm m}$ are gone at higher ell.

SPT provides modest improvement on 6 "vanilla" cosmo parameters

Six-parameter Model

Assumptions Transfer function Input spectrum 1) Standard radiation content parameters parameters $(T_{v} \text{ from FIRAS},$ 3 SM neutrinos) τ A 2) $Y_{P} = 0.24$ ρ_{b} ns 3) $dn_s/dlnk = 0$ (θ_{EQ}) ρ_{m} 4) Dark energy = Λ (θ_s) ρ_{Λ} and $\Omega_{k} = 0$

High ell data ==> sensitive to θ_d , which can be predicted from ρ_b , ρ_m , ρ_Λ which are already determined from low ell.

SPT provides a strong test of the 6-parameter model rather than great refinement of the parameter values

 θ_d predicted

How does the prediction compare with measurement?

Mild preference (~ 1.7σ) for models with less power in damping tail than for the best-fit 6-parameter model **Constraints on Extensions**

ł		WMAP7+SPT	WMAP7+SPT
			+BAO+H ₀
	N _{eff} (3.046)	3.85 +/-0.62	3.86 +/-0.42
	Y _P (0.24)	0.296 +/-0.030	0.30 +/- 0.030
	$\frac{dn_s/dlnk}{((1-n_s)^2 = 0)}$	-0.024 +/- 0.013	-0.020 +/- 0.012
	r	< 0.21 @ 95% confidence	< 0.17 @ 95% confidence

 θ_{c}

N_{eff} vs Y_P

Vikhlinin et al. (2009) constraint from X-ray cluster abundanc es

Low z cluster abundances break degeneracies

FIG. 14.— The two-dimensional marginalized constraint on spectral running, primordial helium, or the effective number of relativistic species versus the combination $\sigma_8(\Omega_M/0.25)^{0.47}$, which is well constrained by the cluster abundance measurement of Vikhlinin et al. (2009). "CMB" corresponds to SPT+WMAP7. The constraint on $\sigma_8(\Omega_M/0.25)^{0.47}$ from the clusters and the corresponding 1σ uncertainties are shown by the vertical lines. The standard values of the spectral running, primordial helium, and the effective number of relativistic species are shown by the dotted horizontal lines. Adding the cluster abundance information moves the constraints on these parameters closer to their standard values.

Keisler et al. (2011)

Outline

- CMB Theory for CMB Experimentalists

 A Transfer Function Controlled by Three Angular Scales
- Why do "standard" constraints improve so little?
- What we can learn from the damping tail
- Non-CMB evidence for extra neutrinos

Strigari story

Neutrino Fever

Neutrino Fever

6. arXiv:1006.5276 [pdf, ps, other]

Cosmology seeking friendship with sterile neutrinos Jan Hamann, Steen Hannestad, Georg G. Raffelt, Irene Tamborra, Yvonne Y.Y. Wong

Comments: 4 pages, 1 figure, matches version published in PRL

Journal-ref: Phys.Rev.Lett.105:181301,2010

Subjects: High Energy Physics - Phenomenology (hep-ph); Cosmology and Extragalactic Astrophysics (astro-ph.CO)

Neutrino Fever

6. arXiv:1006.5276 [pdf, ps, other]

Cosmology seeking friendship with sterile neutrinos

Jan Hamann, Steen Hannestad, Georg G. Raffelt, Irene Tamborra, Yvonne Y.Y. Wong

Comments: 4 pages, 1 figure, matches version published in PRL

Journal-ref: Phys.Rev.Lett.105:181301,2010

Subjects: High Energy Physics - Phenomenology (hep-ph); Cosmology and Extragalactic Astrophysics (astro-ph.CO)

Phys. Rev. Lett. 105, 181301 (2010) [4 pages]

Cosmology Favoring Extra Radiation and Sub-eV Mass Sterile Neutrinos as an Option

Extra Cosmological Neutrinos? Arguments For

- Mild preference for lower damping tail power than in standard cosmological model.
- Measurements of Y have increased in magnitude and uncertainty allowing Neff = 4 to be consistent with BBN and perhaps preferred (Izotov & Thuan 2010, Aver, Olive & Skillman 2010, 2011)
- Oscillation evidence for sterile neutrinos from mini-Boone / LSND / Minos
- Oscillation to sterile neutrinos can explain reactor anomalies too.

Y_P Measurements

From extragalactic regions of ionized lowmetallicity gas

(except for WMAP points)

Decade-old evidence for an m ~ eV sterile neutrino

LEP proved that there are only three light neutrinos coupling to the Z^0 .

Therefore there can be at most two neutrino mass difference scales.

But the oscillation results from atmospheric and solar neutrinos are well established.

If LSND is right it implies new physics such as a fourth neutrino that is sterile.

November 20-22, 2001

Extra Cosmological Neutrinos? Arguments For

- Mild preference for lower damping tail power than in standard cosmological model.
- Measurements of Y have increased in magnitude and uncertainty allowing Neff = 4 to be consistent with BBN and perhaps preferred (Izotov & Thuan 2010, Aver, Olive & Skillman 2010, 2011)
- Oscillation evidence for sterile neutrinos from mini-Boone / LSND / Minos
- Oscillation to sterile neutrinos can explain reactor anomalies too.

- Mild preference for lower damping tail power than in standard cosmological model.
- Measurements of Y have increased in magnitude and uncertainty allowing N_{eff} = 4 to be consistent with BBN and perhaps preferred (Izotov & Thuan 2010, Aver, Olive & Skillman 2010, 2011)
- Oscillation evidence for sterile neutrinos from mini-Boone / LSND / Minos
- Oscillation to sterile neutrinos can explain reactor anomalies too.

< 2 σ , tension with σ_8

- Mild preference for lower damping tail power than in standard cosmological model.
- Measurements of Y have increased in magnitude and uncertainty allowing N_{eff} = 4 to be consistent with BBN and perhaps preferred (Izotov & Thuan 2010, Aver, Olive & Skillman 2010, 2011)
- Oscillation evidence for sterile neutrinos from mini-Boone / LSND / Minos
- Oscillation to sterile neutrinos can explain reactor anomalies too.

Uncertainties large, N_{eff} = 3 allowed

< 2 σ , tension with σ_8

- Mild preference for lower damping tail power than in standard cosmological model.
- Measurements of Y have increased in magnitude and uncertainty allowing N_{eff} = 4 to be consistent with BBN and perhaps preferred (Izotov & Thuan 2010, Aver, Olive & Skillman 2010, 2011)
- Oscillation evidence for sterile neutrinos from mini-Boone / LSND / Minos
- Oscillation to sterile neutrinos can explain reactor anomalies too.

Ŭ

< 2 σ , tension with σ_8

Uncertainties large, N_{eff} = 3 allowed

< 3o (except for LSND), large CP violation?

- Mild preference for lower damping tail power than in standard cosmological model.
- Measurements of Y have increased in magnitude and uncertainty allowing N_{eff} = 4 to be consistent with BBN and perhaps preferred (Izotov & Thuan 2010, Aver, Olive & Skillman 2010, 2011)
- Oscillation evidence for sterile neutrinos from mini-Boone / LSND / Minos
- Oscillation to sterile neutrinos can explain reactor anomalies too.

Uncertainties large, N_{eff} = 3 allowed

< 2 σ , tension with σ_8

< 3o (except for LSND), large CP violation?

only 2o

Plus: we don't want a thermal background of 1eV mass sterile neutrinos!

Present status...

From Yvette Wong's Avignon presentation

The Future

lay of the land

lay of the land

lay of the land

The Future

With better data we can relax assumption that NeffBBN = NeffCMB (so far assumed implicitly throughout this talk).

Forecast for Planck

Forecast for Planck + Y_P measurement with error same size as reported by Izotov & Thuan (2010). With luck, these will disagree! (e.g. Fischler & Myers (2010)
Summary and Conclusions

- SPT collaboration has measured CMB power spectrum at high resolution from 800 sq. deg.
- Results are consistent with the (very tight) predictions of the standard cosmological model.
- High-resolution observations allow us to probe the third angular scale in the CMB transfer function, which gives us sensitivity to the expansion rate leading up to recombination, as well as Y_P.
- Current data (including lab and reactor) do not paint a compelling picture for additional neutrinos.
- We are hopeful for surprises from Planck.