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230 sq. degrees







One of five fields observed in 2009, totaling 800 sq. deg.
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Keisler et al. (2011) provides a
significant improvement in our
knowledge of the damplng ta|I -
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Prior state of the art

With this advance, and with much more to come soon from Planck, it's
perhaps timely to review the physical interpretation.
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— A Transfer Function Controlled by Three
Angular Scales
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CMB as a Detector

Noise Source Transfer Function

Primordial fluctuation
generator (inflation
works well)

Depends on matter content




CMB as a Detector

Noise Source Transfer Function

Primordial fluctuation
generator (inflation
works well)

Depends on matter content

Inflation is a period of
accelerating expansion rate




Accelerating Expansion prevents quantum
fluctuation from becoming undone

density

Horizon length

Accelerating
expansion
drives the
regions apart
and out of

. causal contact.
density

>

space




Smaller-scale perturbations are
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Three Scales in the CMB Transfer
Function

req IS the comoving size of the
Hubble radius at EQuality.

sound horizon: distance
sound could travel by
the time of last
scattering. 6, controls
peak locations.

diffusion

length vr\A

d

Silk, Kaiser, Hu, White, Bashinsky, Seljak, ...




Animation credit: Damien Martin (UCD)

Evolution of Single Fourier Mode
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A Single Fourier Mode

We will be
considering how
this single Fourier
mode evolves
with time.

space

For specificity, we will be tracking the
amplitude of temperature and W at this point

In space.




Gravitational Potential, W, as a
function of time In a Matter-
Dominated Universe

(We will be using the comoving size of the
sound horizon as our time-like variable)
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Evolution Assuming Matter
Domination

Initial spatial dependence




Evolution Assuming Matter
Domination

Initial spatial dependence

50 100 S0
: ! i 1R
Sound Horizon (Mpc)

“Temperature” = ©, = 0 T/T




Evolution Assuming Matter
Domination

Initial spatial dependence
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Evolution Assuming Matter
Domination
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req = H'gg/@gg is an
Important length scale

The amplitude of the “radiation driving” effect is controlled
by the ratio of matter to radiation when oscillations begin
(when A = H-"/a) and therefore by 0/8zq = Mrgq.
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Oeq = 1(Qm)/+/1+ zeq where I(2y,) is a very
slowly-varying function of €2,,

e —
: ACT+WMAP .
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The Sound Horizon

sound horizon: distance
sound could travel by
the time of last
scattering.

©, + W ~ cos(kr,(n)) so krg(n-) = krg controls oscillation phase
at last scattering and therefore whether k corresponds to a
peak or a trough. Or if you want to swap | for k:

kr, = kD, (r/Dp) =106, 164 controls oscillation phase of mode
that projects to multipole moment |.




Effect of extra v on r,

100 65 = 1.04 +/- 0.0016 sound horizon: distance
Keisler et al. (2011) sound could travel by

the time of last
scattering. 6, controls

peak locations.

r. = [2c. da/(a?H) Extra v ==> higher p ==> higher H ==> takes
s 0 less time to cool to T, ==> r, is smaller

H2 = 8xGp/3 If we knew D, we could find r, = 6, D, and
determine H




Effect of extra v on r,

Random-walk so goes as sq. root of time ==>r,~ 1/H%>

(Remember r, ~ 1/H)
04/05 = ryfrg ~ HO

Dependence on D, has
dropped out!

Modes with A <r, are
suppressed

diffusion vlr\A

d

length
Silk damping
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Increasing N« Increases 0,

reducing small-scale power
Hou, Keisler, LK, Millea & Reichardt (2011)

98.4%
confidence
that N ¢ >
standard
model value

(Hou et al.
2011)
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Neff is increased here from 2 to 5 with fixed 64 and 6.

To fix Oz We increase pq,,- T0 fix 0, we adjust p, to change D,.
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Summary of Three Scales

req controls radiation driving

sound horizon: distance
sound could travel by
the time of last
scattering. 0/6, controls
oscillation phase at last
scattering.

Modes with A <r, are
suppressed

diffusion vlr\A

d

length
Silk damping
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« CMB Theory for CMB Experimentalists

— A Transfer Function Controlled by Three
Angular Scales

* What we can learn from the damping
tail
* Non-CMB evidence for neutrinos




SPT error bars are small
and over large range in ell

SPT
This work




SPT provides modest improvement on
6 “vanilla” cosmo parameters




Six-parameter Model

Assumptions

Input spectrum Transfer function

parameters parameters
1) Standard

radiation content
(TY from FIRAS,
Pp 3 SM neutrinos)

Pm Yp = f(Ngs,pp)
Pa dn./dink = 0

Dark energy = A
and Q, =0

T




Six-parameter Model

Assumptions

Input spectrum Transfer function 1) Standard
parameters parameters radiation content

(TY from FIRAS,
T 3 SM neutrinos)

Pp 2) Yp = f(Ne.0p)
Pm  (Ogq) 3) dng/dink =0
Pa  (6) 4) Dark energy = A

For WMAP?7, effects that lead to and &, =0
constraints on , P, and p,, are gone at

higher ell.




SPT provides modest improvement on
6 “vanilla” cosmo parameters




Six-parameter Model

Assumptions

Input spectrum Transfer function 1) Standard
parameters parameters radiation content

(T, from FIRAS,
T 3 SM neutrinos)

Op 2) Yp=0.24
Pm (Bgq) 3) dn/dink =0

Pr  (8y) 4) Dark energy = A
and Q, =0
High ell data ==> sensitive to 0,4, which can be predicted
from p,, pm, P Which are already determined from low ell.




SPT provides a strong test of
the 6-parameter model rather
than great refinement of the
parameter values

04 predicted

How does the prediction compare with measurement?




Mild preference (~ 1.7c) for models with less power in
damping tail than for the best-fit 6-parameter model

Constraints on Extensions

WMAP7+SPT

WMAP7+SPT
+BAO+H,

3.85 +/-0.62

3.86 +/-0.42

0.296 +/-0.030

0.30 +/- 0.030

dn./dink -0.024 +/- 0.013
((1-n,)2 = 0)

-0.020 +/- 0.012

r <0.21 @ 95%
confidence

<0.17 @ 95%
confidence
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Low z cluster abundances

break degeneracies

N

—dn./dInk

0.00

0.7 0.8 0.9 1.0 1.1 0.7 WS R
0g(0y,/0.25)% og(0,,/0.25)% 04(Q,/0.25)%

FiG. 14.—— The two-dimensional marginalized constraint on spectral running, primordial helium, or the effective number of relativistic
species versus the combination og(£257/0.25)%47, which is well constrained by the cluster abundance measurement of Vikhlinin et al. (2009).
“CMB” corresponds to SPT4+WMAP7. The constraint on os(€2,7/0.25)%47 from the clusters and the corresponding 1o uncertainties are
shown by the vertical lines. The standard values of the spectral running, primordial helium, and the effective number of relativistic species

are shown by the dotted horizontal lines. Adding the cluster abundance information moves the constraints on these parameters closer to
their standard values.

Keisler et al. (2011)
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so little?

What we can learn from the damping
tail

Non-CMB evidence for extra neutrinos

Strigari story
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Neutrino Fever

6. arXiv:1006.5276 [pdf, ps, other]

Cosmology seeking friendship with sterile neutrinos
Jan Hamann, Steen Hannestad, Georg G. Raffelt, Irene Tamborra, Yvonne Y.Y. Wong

Comments: 4 pages, 1 figure, matches version published in PRL

Journal-ref: Phys.Rev.Lett.105:181301,2010
Subjects: High Energy Physics - Phenomenology (hep-ph); Cosmology and Extragalactic Astrophysics (astro-ph.CO)
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Extra Cosmological Neutrinos?
Arguments For

Mild preference for lower damping tail power
than in standard cosmological model.

Measurements of Y have increased Iin
magnitude and uncertainty allowing Neff = 4

to be consistent with BBN and perhaps
preferred (Izotov & Thuan 2010, Aver, Olive &
Skillman 2010, 2011)

Oscillation evidence for sterile neutrinos from
mini-Boone / LSND / Minos

Oscillation to sterile neutrinos can explain
reactor anomalies too.
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Decade-old evidence for an m ~

eV sterile neutrino

!
LEP proved that there are only

three light neutrinos coupling to
the Z°.

N%\ r

~ | LSND
& |

<l

Therefore there can be at most
two neutrino mass difference

10 Atmospheric . scales.
vV, Vx
1072 | But the oscillation results from
atmospheric and solar neutrinos
10" Solar MSW are well established.

V,oVy ‘
-5

10 ‘ (JUSth)

1 O-IO

10> 1072 10" |
sin?289 '

November 20-22, 2001 Jonathan Link, Columbia KEK Topical Conference



Extra Cosmological Neutrinos?
Arguments For

Mild preference for lower damping tail power than
iIn standard cosmological model.

Measurements of Y have increased in magnitude
and uncertainty allowing Neff = 4 to be consistent

with BBN and perhaps preferred (Izotov & Thuan
2010, Aver, Olive & Skillman 2010, 2011)

Oscillation evidence for sterile neutrinos from
mini-Boone / LSND / Minos

Oscillation to sterile neutrinos can explain reactor
anomalies too.
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Mild preference for lower damping
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Extra Cosmological Neutrinos?
Arguments For and Against

Mild preference for lower damping
tail power than in standard
cosmological model.

Measurements of Y have

Increased in magnitude and .

uncertainty allowing N = 4 to be Uncertainties large, Neg = 3
consistent with BBN and perhaps allowed

preferred (lIzotov & Thuan 2010,

Aver, Olive & Skillman 2010, 2011)

Oscillation evidence for sterile
neutrinos from mini-Boone / LSND
/ Minos

Oscillation to sterile neutrinos can
explain reactor anomalies too.

< 20, tension with og

< 30 (except for LSND),
large CP violation?

only 20




Plus: we don’t want a thermal background of 1eV mass sterile

neutrinos!

Present status...

WMAP7 only*

- - Komatsu et al. 2010
QO o : S .
H,_ 95% C.L. upper limit
5 : U e e e e e g ‘ WMAP7+SDSS_H PS *

X Hannestad, Mirizzi, Raffelt
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7 . T nnmm i
" [ !
: WMAP5+SDSS-HPS
O +SN+HST
= Reid et al. 2009
2 o1 (extended models)
c
B 0.05
g | —Normal WMAPS5+Weak lensing*
2 —Inverted Tereno et al. 2008

o 0 10 e Ichiki et al. 2008

Lightest neutrino mass, m, [eV]
, _ _ * ACDM+m_
From Yvette Wong's Avignon presentation



The Future
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Lnore sensitive
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M. Millea

The Future

Planck
Planck+HII

With better data we can
relax assumption that
NeffBBN = NeffCMB (so
far assumed implicitly
throughout this talk).

Forecast for Planck

Forecast for Planck + Y
measurement with error
same size as reported by
|zotov & Thuan (2010).

With luck, these will

disagree! (e.g. Fischler & Myers
(2010)




Summary and Conclusions

SPT collaboration has measured CMB power
spectrum at high resolution from 800 sq. deg.

Results are consistent with the (very tight)
predictions of the standard cosmological model.

High-resolution observations allow us to probe the
third angular scale in the CMB transfer function,
which gives us sensitivity to the expansion rate
leading up to recombination,as well as Yp.

Current data (including lab and reactor) do not
paint a compelling picture for additional neutrinos.

We are hopeful for surprises from Planck.




