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Want to extract fundamental physics 
from this:

But... how well do we trust our 
calculations?
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What IR Issues?

Light fields in DS have long been known to 
have IR problems. 

Secular growth in time of the two point 
function (time dependent logs)

Box-size dependent logs

These long-distance issues impair our ability 
to trust perturbative corrections to the 
power spectrum, bi-spectrum etc.
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IR divergences are the signal that 
we’re not describing the long 

distance physics sufficiently well:

ex: Scattering of charged particles: missing 
physics is due to radiating soft photons and 
choosing states of definite photon number

ex: Finite T divergences tell us about the 
breakdown of the loop expansion. Missing 
physics comes from the resummation of all 

higher loops
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DRG Resummation of 
super-Hubble Fluctuations

Monday, January 31, 2011



DRG Resummation of Secular Growth

Two types of secular logs coming from 
quantum corrections

ln
τ0

τ
= ln

a(τ)
a(τ0)

DeS inv. broken by a 
beginning of inflation

ln(−kτ) = ln
a(τk)
a(τ)

, a(τk) =
k

H

These show up in 
higher order 

corrections even in 
De S
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In-In formalism

In cosmology we 
need to calculate 
time dependent

expectation values 

�O(t)� ≡ Tr(ρ(t)O(t)) =

Tr(ρ(t0)U
†(t, t0)O(t)U(t, t0))

This corresponds to a 
path integral defined 

on a
closed time contour

τ τ

‘+ contour’

‘– contour’
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Field content
doubled

Times on - contour 
are later than those 

on + contour

3 Green’s functions

Φ → {Φ+,Φ−} ΦC =
1

2

�
Φ+ + Φ−�

Φ∆ = Φ+ − Φ−

�ΦC(x)ΦC(y)� = −iGC(x, y)

�ΦC(x)Φ∆(y)� = GR(x, y),

�Φ∆(x)ΦC(y)� = GA(x, y)

τ τ

‘+ contour’

‘– contour’
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L =
√
−g

�
1

2
gµν∂µΦ∂νΦ− 1

2

�
m2 + ξRΦ2

�
− λ

4!
Φ4

�

L(Φc,Φ∆) =
√
−g

�
gµν∂µΦC∂νΦ∆ − λ

4!

�
4Φ3

CΦ∆ + ΦCΦ
3
∆ + c.t.

��

G
0
C(k, τ1, τ2) �

H
2

2k3
�
1 +O((kτ)2)

�

G
0
R(k, τ1, τ2) � Θ(τ1 − τ2)

H
2

3
(τ31 − τ32 )

�
1 +O((kτ)2)

�
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The vertices are
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Let’s go to the tadpole 
graph

τ
1

τ
2

τ
1

τ
2

+

IR cutoff is unphysical; should be replaced by physical 
scale L due to missing physics

Loop Corrections and Secular behavior
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For logs, IR cutoff from UV calculation can give us 
full dependence on L

In our case, the choice 
is whether L depends on 

time or not. 

mass term: L is time indep

Pre-inflationary 
physics: L time dep
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Now use this to 
correct propagator

GC(k, τ) =
H

2

2k3

�
1 +

λ

3(2π)2
ln

�
µ

ΛIR

�
ln (−kτ) + · · ·

�

⇒ H
2

2k3

�
1 +

λ

3(2π)2
ln (µL) ln (−kτ) + · · ·

�

How to resum the 
secular terms? How can we fix L?

Monday, January 31, 2011



Let’s recall how the RG works:

1. Compute 1-loop 
corrected coupling

α(µ) = α(µ0) + b α2(µ0) ln
�

µ

µ0

�

valid for α(µ0)� 1, α(µ0) ln(µ/µ0)� 1

2. Differentiate then 
integrate wrt 

subtraction point

1
α(µ)

=
1

α(µ0)
− b ln

�
µ

µ0

�
, valid for α� 1

Domain of validity has been extended

What is the time dependent
analog?
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Exact 
solution:

y(t) = y0 e−
�
2 t cos

�
t

�
1− �2

4
+ δ

�

Perturbative solution

y(t) = y0 eit
�
1− �

2
t+

�2

8
t2 + i

�2

8
t

�
+ c.c.+ non− secular

Another (Easier) Secular problem: 
Damped SHO in PT

ÿ + y = −� ẏ, � � 1
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DRG Resummation

y0 = A(τ)Z(τ)

Z(τ) = 1 + �z1(τ) + �2z2(τ) + · · ·

z1(τ) =
τ

2
, z2(τ) =

τ2

8
− i

τ

8

Coefficients chosen to cancel secular behavior at a time tau

y(t, τ) = A(τ) eit
�
1− �

2
(t− τ) +

�2

8
(t− τ)2 + i

�2

8
(t− τ)

�
+

+c.c.+ non− secular

Now demand tau independence: DE for A(tau)

Monday, January 31, 2011



dy(t, τ)

dτ
= 0 ⇒

A(τ) = A(0) exp(− �

2
τ + i

�2

8
τ)

Finally use arbitrariness of 
tau to set tau=t

Monday, January 31, 2011



Suppose approximation 
scheme generates 
secular growth

y(t) = y0(t) + ε y1(t) + c0 +O
�
ε2

�

= y0(c, t) + ε y1(c, t) + c0 +O
�
ε2

�
,

with c the integration constant for y0(t).

1. Introduce an 
arbitrary time scale

y(t) = y0(t) + ε [y1(t)− y1(ϑ) + y1(ϑ)] +O
�
ε2

�
⇒

y(t) = y0[c(ϑ), t] + ε [y1(t)− y1(ϑ)] +O
�
ε2

�

with y0[c(ϑ), t] ≡ y0(c, t) + ε y1(ϑ)

2. Use independence 
from new time scale to 

get DRG eqn

3. Set new scale equal to 
t. Solution has greater 

domain of validity

�
∂y0

∂c

�
dc

dϑ
− ε

∂y1(c, ϑ)
∂ϑ

⇒ c = c̃(ϑ).

y(t) = y0[c̃(ϑ), t] + ε [y1(t)− y1(ϑ)] +O
�
ε2

�

= y0[c̃(t), t] +O
�
ε2

�
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Example: If y(t) = c
�
1 + ε f(t) +O

�
ε2

��

the DRG 
improvement is y(t) = c eεf(t)

�
1 +O

�
ε2

��

Now let’s work this on the two 
point function:

GC(k, τ) =
H

2

2k3

�
1 +

λ

3(2π)2
ln (µL) ln (−kτ) + · · ·

�
⇒

GC(k, τ) =
H

2

2k3
exp

�
+

λ

3(2π)2
ln (µL) ln (−kτ)

�
(1 + · · · )

=
H

2

2k3

�
k

aH

�δ �
1 + O(δ2)

�

δ =
λ

3(2π)2
ln (µL)
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We can do this for other situations

Massive (but light) field G
0
C(k, τ1, τ2) �

H
2

2k3
(k2τ1τ2)�

G
0
R(k, τ1, τ2) � θ(τ1 − τ2)

H
2

3
(τ3−�

1 τ �
2 − τ �

1τ3−�
2 )

� =
m

2

3H2

GC(k, τ) � H
2

2k3
(−kτ)2�

�
1 +

λ

6(2π)2�

�
µ

H

�2�
ln(−kτ) + · · ·

�

Identify ln(µL)→ 1
2�

�
µ

H

�2�
=

3H
2

2M2

�
µ

H

�2M
2
/3H

2
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What does the DRG say? GC(k, τ) � H
2

2k3
(−kτ)2�+δm

δm =
λ

6(2π)2�

�
µ

H

�2�

Coupling dominates mass if λ

(4π)2
> 3�2

�
H

µ

�2�

=
M

4

3H4

�
H

µ

�2M
2
/3H

2

M
2
eff =

3H
2

2
δm =

λH
2

(4π)2�

�
µ

H

�2�
� 3λH

4

(4π)2M2Equivalent mass

Same result as for 
mean field! Also

M
2
mf =

1
2
λ�φ2� ⇒

�φ2� =
3H

4

8π2M2
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Finally, try a cubic theory. Does the 
IR regulating physics look like a 

mass?

GC(k, τ, τ) = G
0
C(k, τ, τ) exp

�
h

2

9H2

�
1

(2π)2
ln3(−kτ) +

4Λ
H2

ln2(−kτ) + . . .

��

Not a mass; no surprise since potential 
is ill behaved.
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Conclusions

DRG resums secular terms in two point function

DRG automatically resums leading logs; actual diagrams 
need not be singled out

For quartic potential, missing IR physics is the generation 
of a dynamical mass. 

This is the same mass found in gap equations in stochastic 
program. 

DRG can distinguish different types of IR physics: quartic 
vs cubic potential.
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