Infrared Issues in Inflation

IAP, January 31 2011

C.P.Burgess, R.H, L. Leblond, S. Shandera arXiv: 0912.1608, 1005.3551

Outline

What IR issues?
Dynamical RG resummation of secular terms
Conclusions

Want to extract fundamental physics from this:

But... how well do we trust our calculations?

What IR Issues?

Light fields in DS have long been known to have IR problems.

Secular growth in time of the two point function (time dependent logs)

Box-size dependent logs

These long-distance issues impair our ability to trust perturbative corrections to the power spectrum, bi-spectrum etc. IR divergences are the signal that we're not describing the long distance physics sufficiently well:

ex: Scattering of charged particles: missing physics is due to radiating soft photons and choosing states of definite photon number

ex: Finite T divergences tell us about the breakdown of the loop expansion. Missing physics comes from the resummation of all higher loops

DRG Resummation of super-Hubble Fluctuations

DRG Resummation of Secular Growth

Two types of secular logs coming from quantum corrections

DeS inv. broken by a beginning of inflation

$$\ln(-k\tau) = \ln \frac{a(\tau_k)}{a(\tau)}, \ a(\tau_k) = \frac{k}{H}$$

These show up in higher order corrections even in De S

In-In formalism

In cosmology we need to calculate time dependent expectation values

 $\langle \mathcal{O}(t) \rangle \equiv \operatorname{Tr}(\rho(t)\mathcal{O}(t)) =$ $\operatorname{Tr}(\rho(t_0)U^{\dagger}(t,t_0)\mathcal{O}(t)U(t,t_0))$

This corresponds to a path integral defined on a closed time contour

Field content doubled

$$\Phi \to \{\Phi^+, \Phi^-\} \qquad \Phi_C = \frac{1}{2} \left(\Phi^+ + \Phi^-\right)$$
$$\Phi_\Delta = \Phi^+ - \Phi^-$$

Times on - contour are later than those on + contour

3 Green's functions

 $\langle \Phi_C(x) \Phi_C(y) \rangle = -iG_C(x,y)$ $\langle \Phi_C(x) \Phi_\Delta(y) \rangle = G_R(x,y),$ $\langle \Phi_\Delta(x) \Phi_C(y) \rangle = G_A(x,y)$

$$\mathcal{L} = \sqrt{-g} \left(\frac{1}{2} g^{\mu\nu} \partial_{\mu} \Phi \partial_{\nu} \Phi - \frac{1}{2} \left(m^2 + \xi R \Phi^2 \right) - \frac{\lambda}{4!} \Phi^4 \right)$$

$$\mathcal{L}(\Phi_c, \Phi_\Delta) = \sqrt{-g} \left(g^{\mu\nu} \partial_\mu \Phi_C \partial_\nu \Phi_\Delta - \frac{\lambda}{4!} \left(4\Phi_C^3 \Phi_\Delta + \Phi_C \Phi_\Delta^3 + \text{c.t.} \right) \right)$$

$$G_C^0(k,\tau_1,\tau_2) \simeq \frac{H^2}{2k^3} \left\{ 1 + \mathcal{O}((k\tau)^2) \right\}$$
$$G_R^0(k,\tau_1,\tau_2) \simeq \Theta(\tau_1 - \tau_2) \frac{H^2}{3} (\tau_1^3 - \tau_2^3) \left\{ 1 + \mathcal{O}((k\tau)^2) \right\}$$

The vertices are

Loop Corrections and Secular behavior

Let's go to the tadpole graph

$$\begin{split} \Lambda(\tau) &\equiv \langle \phi^2(x) \rangle = -iG^{-+}(x,x) = G_C^0(x,x) = \int \frac{d^3k}{(2\pi)^3} \, G_C^0(k,\tau,\tau) + \text{c.t.} \\ &= \frac{1}{(2\pi)^2} \left[\int_{a\Lambda_{IR}}^{a\,\mu} \frac{dk}{k} \left\{ H^2 \left[1 + \left(\frac{k}{aH} \right)^2 \right] \right\} \right] \\ &\simeq \frac{1}{(2\pi)^2} \left[H^2 \ln \left(\frac{\mu}{\Lambda_{IR}} \right) + \frac{1}{2} \left(\mu^2 - \Lambda_{IR}^2 \right) \right] \end{split}$$

IR cutoff is unphysical; should be replaced by physical scale L due to missing physics

$$G_C(k,L) = G_C^{UV}(\mu/\Lambda_{IR}) + G_C^{IR}(\Lambda_{IR}L)$$

= $\left[A + B \ln\left(\frac{\mu}{\Lambda_{IR}}\right) + \cdots\right] + \left[C + B \ln\left(\Lambda_{IR}L\right) + \cdots\right]$
= $(A + C) + B \ln(\mu L) + \cdots$

For logs, IR cutoff from UV calculation can give us full dependence on L

In our case, the choice is whether L depends on time or not. mass term: L is time indep Pre-inflationary physics: L time dep

Now use this to correct propagator

$$G_C(k,\tau) = \frac{H^2}{2k^3} \left[1 + \frac{\lambda}{3(2\pi)^2} \ln\left(\frac{\mu}{\Lambda_{IR}}\right) \ln\left(-k\tau\right) + \cdots \right]$$
$$\Rightarrow \frac{H^2}{2k^3} \left[1 + \frac{\lambda}{3(2\pi)^2} \ln\left(\mu L\right) \ln\left(-k\tau\right) + \cdots \right]$$

How to resum the secular terms? How can we fix L?

Let's recall how the RG works:

1. Compute 1-loop corrected coupling

$$\alpha(\mu) = \alpha(\mu_0) + b \,\alpha^2(\mu_0) \,\ln\left(\frac{\mu}{\mu_0}\right)$$

valid for $\alpha(\mu_0) \ll 1, \, \alpha(\mu_0) \ln(\mu/\mu_0) \ll 1$

2. Differentiate then integrate wrt subtraction point

$$\frac{1}{\alpha(\mu)} = \frac{1}{\alpha(\mu_0)} - b \ln\left(\frac{\mu}{\mu_0}\right), \text{ valid for } \alpha \ll 1$$

Domain of validity has been extended What is the time dependent analog?

Another (Easier) Secular problem: Damped SHO in PT

$\ddot{y} + y = -\epsilon \ \dot{y}, \ \epsilon \ll 1$

Exact solution:

$$y(t) = y_0 \ e^{-\frac{\epsilon}{2}t} \cos\left(t\sqrt{1-\frac{\epsilon^2}{4}}+\delta\right)$$

Perturbative solution

$$y(t) = y_0 \ e^{it} \left(1 - \frac{\epsilon}{2}t + \frac{\epsilon^2}{8}t^2 + i\frac{\epsilon^2}{8}t \right) + \text{c.c.} + \text{non} - \text{secular}$$

DRG Resummation

$$y_0 = A(\tau)Z(\tau)$$
$$Z(\tau) = 1 + \epsilon z_1(\tau) + \epsilon^2 z_2(\tau) + \cdots$$
$$z_1(\tau) = \frac{\tau}{2}, \ z_2(\tau) = \frac{\tau^2}{8} - i\frac{\tau}{8}$$

Coefficients chosen to cancel secular behavior at a time tau

$$y(t,\tau) = A(\tau) \ e^{it} \left(1 - \frac{\epsilon}{2}(t-\tau) + \frac{\epsilon^2}{8}(t-\tau)^2 + i\frac{\epsilon^2}{8}(t-\tau)\right) +$$

+c.c. + non - secular

Now demand tau independence: DE for A(tau)

$$\frac{dy(t,\tau)}{d\tau} = 0 \Rightarrow$$
$$A(\tau) = A(0) \exp(-\frac{\epsilon}{2}\tau + i\frac{\epsilon^2}{8}\tau)$$

Finally use arbitrariness of tau to set tau=t

$$y(t) = A(0)e^{it}\exp(-\frac{\epsilon}{2}t + i\frac{\epsilon^2}{8}t) + \text{c.c}$$

Suppose approximation scheme generates secular growth $y(t) = y_0(t) + \varepsilon y_1(t) + c_0 + \mathcal{O}(\varepsilon^2)$ = $y_0(c, t) + \varepsilon y_1(c, t) + c_0 + \mathcal{O}(\varepsilon^2)$, with c the integration constant for $y_0(t)$.

1. Introduce an arbitrary time scale

 $y(t) = y_0(t) + \varepsilon \left[y_1(t) - y_1(\vartheta) + y_1(\vartheta) \right] + \mathcal{O}\left(\varepsilon^2\right) \Rightarrow$ $y(t) = y_0[c(\vartheta), t] + \varepsilon \left[y_1(t) - y_1(\vartheta) \right] + \mathcal{O}\left(\varepsilon^2\right)$ with $y_0[c(\vartheta), t] \equiv y_0(c, t) + \varepsilon y_1(\vartheta)$

2. Use independence from new time scale to get DRG eqn

$$\left(\frac{\partial y_0}{\partial c}\right) \, \frac{dc}{d\vartheta} - \varepsilon \, \frac{\partial y_1(c,\vartheta)}{\partial \vartheta} \Rightarrow c = \tilde{c}(\vartheta).$$

3. Set new scale equal to
t. Solution has greater
domain of validity

 $y(t) = y_0[\tilde{c}(\vartheta), t] + \varepsilon [y_1(t) - y_1(\vartheta)] + \mathcal{O}(\varepsilon^2)$ = $y_0[\tilde{c}(t), t] + \mathcal{O}(\varepsilon^2)$ Example: If

 $y(t) = c \left[1 + \varepsilon f(t) + \mathcal{O}(\varepsilon^2) \right]$

the DRG improvement is

$$y(t) = c e^{\varepsilon f(t)} \left[1 + \mathcal{O}\left(\varepsilon^2\right)\right]$$

Now let's work this on the two point function:

$$\begin{split} G_C(k,\tau) &= \frac{H^2}{2k^3} \left[1 + \frac{\lambda}{3(2\pi)^2} \ln\left(\mu L\right) \ln\left(-k\tau\right) + \cdots \right] \Rightarrow \\ G_C(k,\tau) &= \frac{H^2}{2k^3} \exp\left[+ \frac{\lambda}{3(2\pi)^2} \ln\left(\mu L\right) \ln\left(-k\tau\right) \right] (1+\cdots) \\ &= \frac{H^2}{2k^3} \left(\frac{k}{aH} \right)^{\delta} \left(1 + \mathcal{O}(\delta^2) \right) \\ \delta &= \frac{\lambda}{3(2\pi)^2} \ln\left(\mu L\right) \end{split}$$

We can do this for other situations

Massive (but light) field

$$G_{C}^{0}(k,\tau_{1},\tau_{2}) \simeq \frac{H^{2}}{2k^{3}}(k^{2}\tau_{1}\tau_{2})^{\epsilon}$$
$$G_{R}^{0}(k,\tau_{1},\tau_{2}) \simeq \theta(\tau_{1}-\tau_{2})\frac{H^{2}}{3}(\tau_{1}^{3-\epsilon}\tau_{2}^{\epsilon}-\tau_{1}^{\epsilon}\tau_{2}^{3-\epsilon})$$
$$\epsilon = \frac{m^{2}}{3H^{2}}$$

$$G_C(k,\tau) \simeq \frac{H^2}{2k^3} (-k\tau)^{2\epsilon} \left[1 + \frac{\lambda}{6(2\pi)^2\epsilon} \left(\frac{\mu}{H}\right)^{2\epsilon} \ln(-k\tau) + \cdots \right]$$

Identify
$$\ln(\mu L) \rightarrow \frac{1}{2\epsilon} \left(\frac{\mu}{H}\right)^{2\epsilon} = \frac{3H^2}{2M^2} \left(\frac{\mu}{H}\right)^{2M^2/3H^2}$$

What does the DRG say?

$$G_C(k,\tau) \simeq \frac{H^2}{2k^3} (-k\tau)^{2\epsilon+\delta_m}$$
$$\delta_m = \frac{\lambda}{6(2\pi)^2\epsilon} \left(\frac{\mu}{H}\right)^{2\epsilon}$$

Coupling dominates mass if

$$\frac{\lambda}{(4\pi)^2} > 3\epsilon^2 \left(\frac{H}{\mu}\right)^{2\epsilon} = \frac{M^4}{3H^4} \left(\frac{H}{\mu}\right)^{2M^2/3H^2}$$

Equivalent mass

$$M_{\rm eff}^2 = \frac{3H^2}{2} \ \delta_m = \frac{\lambda H^2}{(4\pi)^2 \epsilon} \left(\frac{\mu}{H}\right)^{2\epsilon} \simeq \frac{3\lambda H^4}{(4\pi)^2 M^2}$$

Same result as for mean field! Also

$$M_{\rm mf}^2 = \frac{1}{2} \lambda \langle \phi^2 \rangle \Rightarrow$$
$$\langle \phi^2 \rangle = \frac{3H^4}{8\pi^2 M^2}$$

Finally, try a cubic theory. Does the IR regulating physics look like a mass?

$$G_C(k,\tau,\tau) = G_C^0(k,\tau,\tau) \exp\left\{\frac{h^2}{9H^2} \left[\frac{1}{(2\pi)^2}\ln^3(-k\tau) + \frac{4\Lambda}{H^2}\ln^2(-k\tau) + \dots\right]\right\}$$

Not a mass; no surprise since potential is ill behaved.

Conclusions

- DRG resums secular terms in two point function
- ORG automatically resums leading logs; actual diagrams need not be singled out
- For quartic potential, missing IR physics is the generation of a dynamical mass.
- This is the same mass found in gap equations in stochastic program.
- ORG can distinguish different types of IR physics: quartic vs cubic potential.