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Main result:

No-boundary wave function can be viewed as a
Euclidean ADS wave function

→precise AdS/CFT dual formulation of no-boundary
state



Intro

Alternative viewpoints on results:

• a step towards placing no-boundary state on firm
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Intro

Alternative viewpoints on results:

• a step towards placing no-boundary state on firm
footing

→ precise ‘holographic’ measure in eternal inflation?

• a novel application of AdS/CFT to cosmology

• a realization of dS/CFT

In more general terms:

”The universe’s quantum state provides a natural
connection between Euclidean (asymptotic) AdS and
Lorentzian inflationary cosmologies.”



Outline

• No-Boundary measure: review

• its ADS form and holographic representation

• Application to eternal inflation



No-Boundary Wave Function

Ψ[b, h, χ] =
∫
C
δgδφ exp(−I[g, φ])

”The amplitude of configurations (b, h, χ) on a three-
surface Σ is given by the integral over all regular
metrics g and matter fields φ that match (b, h, χ) on
their only boundary.” [Hartle & Hawking ’83]

Low energy toy models:

I[g, φ] = −1
2

∫ √
g(R− 2Λ) +

∫ √
g
[
(∇φ)2 + V (φ)

]



No-Boundary Wave Function

Ψ[b, h, χ] =
∫
C
δgδφ exp(−I[g, φ])

”The amplitude of configurations (b, h, χ) on a three-
surface Σ is given by the integral over all regular
metrics g and matter fields φ that match (b, h, χ) on
their only boundary.” [Hartle & Hawking ’83]

Low energy toy models:

I[g, φ] = −1
2

∫ √
g(R− 2Λ) +

∫ √
g
[
(∇φ)2 + V (φ)

]
Motivated by analogy with ground state wave function
in QM and QFT, e.g. SHO:

Euclidean PI: ψ(x0) =
∫
δx exp{−I[x(τ)]/~}

with I[x(τ)] = 1
2

∫
dτ [ẋ2 + ω2x2]

Saddle pt appr: ψ(x0) ∝ exp{−ωx20/2}

(no tunneling involved)



Semiclassical Approximation

In some regions of (mini)superspace the wave
function can be evaluated in the steepest descents
approximation.

To leading order in ~ the NBWF will then have the
semiclassical form,

Ψ(b, h, χ) ≈ exp{[−IR(b, h, χ) + iS(b, h, χ)]/~}

In general the extremal geometries will be complex:



Classical Universes in Quantum
Cosmology

Ψ(b, h, χ) ≈ exp{[−IR(b, h, χ) + iS(b, h, χ)]/~}

Classical predictions → via WKB interpretation

The semiclassical wave function predicts Lorentzian,
classical evolution in regions of superspace where
[Hawking ’84, Grischuk & Rozhansky ’90]

|∇AIR| � |∇AS|

The predicted classical histories of the universe are the
integral curves of SL:

pA = ∇AS

and have probabilities

Phistory ∝ exp[−2IR/~]

→ no-boundary measure: probabilities for an ensemble
of cosmological backgrounds and their fluctuations.



Classical histories

The Lorentzian histories of the universe that are
predicted by the NBWF are distinct from the complex
extrema that provide the semiclassical approximation
to the wave function.

pA = ∇AS

The complex extrema assign a relative probability
to different coarse-grained four dimensional histories,
including for local observations like the CMB.



Complex Saddle points

Saddle points:

ds2 = N2(λ)dλ2 + gij(λ, x)dxidxj, φ(λ, x)

In terms of complex τ(λ) =
∫ λ
0
dλ′N(λ′),

REGULARITY

SP

yH

Hx

SP: gij(0)→ 0, φ̇(0)→ 0

Boundary: gij(υ) = b2hij, φ(υ) = χ



Complex Saddle points

ds2 = N2(λ)dλ2 + gij(λ, x)dxidxj, φ(λ, x)

TUNING  AND

SP

REGULARITY

CLASSICAL

HISTORY

Hy

Hx

SP: gij(0)→ 0, φ̇(0)→ 0

Boundary: gij(υ) = b2hij, φ(υ) = χ

Tuning at SP: φ(0) = φ0e
iγ, ...

→ classical history!



Example

Homogeneous/isotropic ensemble:

ds2 = dτ2 + a2(τ)dΩ3, φ(τ)

V (φ) = Λ + 1
2m

2φ2

Classical spacetime at late times requires:

→ a 1-parameter set of FLRW universes



Inflation

Lorentzian histories:

pA = ∇AS

Lorentzian evolution backwards in time:

→ NBWF predicts ensemble of inflating universes.

Nefolds ≈ φ20



Part II: Its AdS representation
and AdS/CFT dual



Complex Saddle points

Lorentzian histories lie on asymptotically vertical curves
in complex τ -plane:

rSP

Hy

HxHx

with Hxr → π/2 for φ0 → 0

horizontal part: ds2 ≈ dτ2 + 1
H2 sin2(Hτ)dΩ2

3

vertical part: ds2 ≈ −dy2 + 1
H2 cosh2(Hy)dΩ2

3

when no matter: complete solution a(τ) = 1
H sin(Hτ)



Complex Saddle points

Lorentzian histories lie on asymptotically vertical curves
in complex τ -plane:

rSP

Hy

HxHx

Embedding of saddle point:



Saddle point Action

Ψ(b, χ) ≈ exp{[−IR(χ) + iS(b, χ)]/~}

rSP

Hy

HxHx

I(υ) = 3π
2

∫
C(0,υ)

dτa[a2(H2 + 2V (φ))− 1]

→ IR tends to constant along vertical part

→ probability measure on classical histories.



Representations of Saddle points

Different representation of the same saddle point:

a Hx

2

HxSP

Hy

rHx



Representations of Saddle points

Different representation of the same saddle point:

a Hx

2

HxSP

Hy

rHx

No matter: xa → 0, a(τ) = 1
H sin(Hτ)

→ Euclidean ADS along vertical part contour!

ds2 = −dy2 − 1
H2 sinh2(Hy)dΩ2

3



Representations of Saddle points

With homogeneous matter:

ds2 = dτ2 + a2(τ)dΩ3, φ(τ)

a Hx

2

HxSP

Hy

rHx

Vertical part: ds2 ≈ −dy2 − 1
H2 sinh2(Hy)dΩ2

3

→ Euclidean ADS domain wall of −(V +Λ) theory.

At x = xr: ds2 ≈ −dy2 + 1
H2 cosh2(Hy)dΩ2

3

Along horizontal branch?



Representations of Saddle points

With homogeneous matter:

ds2 = dτ2 + a2(τ)dΩ3, φ(τ)

a Hx

2

HxSP

Hy

rHx

Vertical part: ds2 ≈ −dy2 − 1
H2 sinh2(Hy)dΩ2

3

→ Euclidean ADS domain wall of −(V +Λ) theory.

At x = xr: ds2 ≈ −dy2 + 1
H2 cosh2(Hy)dΩ2

3

Along horizontal branch? → complex metric



Action integral along AdS contour

General Saddle Points:

ds2 = dτ2 + gij(τ,Ω)dΩ

Asymptotic expansion in small u ≡ eiτ = e−y+ix

Asymptotic metric and field [Skenderis,...]:

gij(u,Ω) = −1
4u2

[hij(Ω) + h
(2)
ij (Ω)u2

+h
(−)
ij (Ω)uλ− + h

(3)
ij (Ω)u3 + · · ·]

φ(u,Ω) = uλ−(α(Ω) + α1(Ω)u+ · · ·)

+uλ+(β(Ω) + β1(Ω)u+ · · ·)

with λ± ≡ 3
2[1±

√
1− (2m/3)2]

and arbitrary ‘boundary values’ (hij, α)



Action integral along AdS contour

• Action integral along vertical part:

Iv =
∫
v
I[g, φ] = −IRAdS(h, χ)− Sct(b, h, χ)

where IRAdS is finite when a→∞.

• Surface terms:

Sct = a0
∫ √

h+ a1
∫ √

hR(3) + a2
∫ √

hφ2

• Action integral along horizontal part:

Ih =
∫
h
I[g, φ] = +Sct(b, h, χ)− iSct(b, h, χ)

and no finite contribution.

Classicality automatically regularizes volume
divergences of the AdS regime

→ probabilities from Iυ; surface terms etc from Ih.



A holographic dual?

Ψ(b, h, χ) ≈ exp{[+IRAdS(h, χ) + iSct(b, h, χ)]/~}



A holographic dual?

Ψ(b, h, χ) ≈ exp{[+IRAdS(h, χ) + iSct(b, h, χ)]/~}

AdS/CFT [Maldacena,Witten,...]:

exp(−IRADS[h, χ]/~) = ZQFT [h, χ] = 〈exp
∫
d3x
√
hαO〉

→ ‘dS/CFT dual’ formulation of NBWF:

Ψ(b, h, χ) ≈ 1
ZQFT [h,χ,ε]

exp{[iSct(b, h, χ)]/~}



Remarks

Ψ(b, h, χ) ≈ 1
ZQFT [h,χ,ε]

exp{[iSct(b, h, χ)]/~}

• Dual partition function provides measure on
configurations (h, χ).

• Physical interpretation of counterterms

• Duality involves coarse-graining over UV modes on
both sides

• Result can also be viewed simply as application of
Euclidean AdS/CFT to cosmology

• Eucl AdS/CFT is in line with notion of unique wave
function of the universe

• Regularity at origin implemented in AdS/CFT

Conjecture: duality valid beyond leading order



Part III: Eternal Inflation



Probabilities of histories

Why worry about eternal inflation?



Probabilities of histories

Why worry about eternal inflation?

The value of the real part of the Euclidean action of
the saddle points is conserved along each Lorentzian
history and determines its bottom-up probability.

p(φ0) ∝ exp[−2IR/~], IR ≈ −π2
1

V (φ0)

Φ0
c Φ0

p Φ0

�2IR

→ NBWF seemingly predicts few efolds of inflation.



Probabilities of Observations

State gives the probability of an entire universe.

But our observations are limited to a small patch...

Probabilities for local observations therefore involve
a sum – a coarse graining – over the unobserved
three-metrics and fields on Σ, which is weighted by
the volume of the surface to take into account our
different possible locations. [Hartle & TH, 2009]

p(O) ∼ 1
Vm

∫ Vm
O dhijdχ|Ψ(hij, χ)|2Vol(hij)

Volume weighting has a significant effect on the
distribution in models of eternal inflation.



Eternal Inflation

|Ψ|2Vol(h) ∼ Nh(φ0) p(φ0) ∝ exp
[
3φ20
4 + 2π

m2φ20

]

→ Dominant contribution comes from
histories with many efolds.



Eternal Inflation

|Ψ|2Vol(h) ∼ Nh(φ0) p(φ0) ∝ exp
[
3φ20
4 + 2π

m2φ20

]

→ Dominant contribution comes from
histories with many efolds.

Landscape models: p(O) involves relative probability
of different regions of eternal inflation,

p(O) ∼ p(O|EI1)p(EI1) + p(O|EI2)p(EI2) + · · ·



Eternal Inflation

The usual treatment of the NBWF becomes challenging
in eternal inflation, since there is no clean separation
between backgrounds and fluctuations.

→ no unique classical background...



Eternal Inflation

The usual treatment of the NBWF becomes challenging
in eternal inflation, since there is no clean separation
between backgrounds and fluctuations.

→ no unique classical background...

Apply AdS/CFT dual formulation of no-boundary
state to regime of eternal inflation.

→ dual automatically sums backreaction effects during
eternal inflation, given a boundary configuration on a
surface at the threshold.



Euclidean Eternal Inflation

Ψ(b, h, χ) ≈ exp{[+IRAdS(h, χ) + iSct(b, h, χ)]/~}

AdS with finite radius/dual CFT with cutoff

→ replace only inner region of eternal inflation:

a Hx

2

HxSP

Hy

rHx

i

HxHx

Hy

rHxa

2

→ inner boundary at threshold of eternal inflation



Euclidean Eternal Inflation

Ψ(b, h, χ) ≈ exp{[+IRAdS(h, χ) + iSct(b, h, χ)]/~}

AdS with finite radius/dual CFT with cutoff

→ replace only inner region of eternal inflation:

ei

r

Dual description of eternal inflation:

• IR CFT with deformation given by φ = φEI.

• < O > on inner boundary replaces regularity at SP.



Euclidean Eternal Inflation

Improved no-boundary measure in eternal inflation:

|Ψ(b, ĥ, χ)|2 ≈ 1
|ZQFT [φEI,h]|2

exp{[+2ĨRAdS(h, φEI, χ)/~}

with ĨRAdS is the action of the ”remaining” saddle
point interpolating between the inner boundary at the
threshold of eternal inflation and the final boundary.



Conclusion

• In the no-boundary quantum state, the action of
Euclidean AdS domain walls gives the probabilities
of different inflationary cosmologies.

• This naturally leads to a dual description of the no-
boundary measure in terms of the partition function
of relevant deformations of the CFTs that occur in
AdS/CFT.

• The duality at finite scale factor involves a coarse-
graining over UV modes on both sides.

• The duality can be used to reinterpret the regime of
eternal inflation in terms of a dual field theory on an
inner boundary at the threshold of eternal inflation.

• If the duality extends beyond leading order the dual
at finite N would yield a more secure way to define
and to calculate the no-boundary measure.


