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Outline

 Naked singularities and the Cosmic Censorship 
Conjecture (CCC)
    

 Creating naked singularities by shooting                 
test-bodies into a BH: is the CCC violated?   
(Jacobson & Sotiriou 2009)
       

 Is the JS process still valid beyond the test-body 
approximation? 
 Part 1: GW fluxes (radiation reaction, aka dissipative 

self-force)
 Part 2: conservative self-force



What is a curvature singularity?

 Curvature invariants diverge (GR loses predictive 
power)
    

 Near singularities quantum effects must be important

Same as in QED: if               is large, Schwinger pair 
production, but the curvature invariant                        
is the analog of 
    

 Near singularities there may be closed timelike 
curves (time machines)

but singularities are cloaked by an event horizon in 
BH spacetimes
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What if the singularity is not 
cloaked by event horizon?

 ”Naked” singularity
 Unpleasant properties (breakdown of GR eqs, 

quantum effects, time machines) exposed to 
outside observers

 Kerr with a>1 contains naked singularity, but is 
classically unstable 
(Dotti, Gleiser, Ranea-Sandoval, Vucetich 2008; Cardoso, 
Pani, Cadoni, Cavaglia 2008, Pani, EB, Berti, Cardoso 2010)

Irrespective of stability, can naked sings even be 
formed under reasonable initial conditions?



Cosmic Censorship Conjecture 
(Penrose 1969)

 Postulates classical GR eqs in 4D contain 
mechanism preventing naked singularities from 
forming under regular initial conditions

 Counterexamples involve unphysical eqs of state 
(eg pressureless matter) or higher dimensional 
spacetimes (Lehner & Pretorius 2010)



Can we form naked singularities 
by shooting at BHs?

 Conceivably possible because bullets carry 
angular momentum which can spin BH up to 
a>1, but...   

 .... naked sings do not form in relativistic 
collisions of comparable mass BHs              
(Sperhake et al 2009, Shibata et al 2008)      

 … and if you shoot test particles into a BH with 
a=1, you end up with a=1 (Wald 1974)

 But if we shoot test particles into almost 
extremal BH, we can spin it up to a>1 
(Jacobson & Sotiriou 2009)



On what orbit do we shoot?



 Bullet cannot have too much ang mom otherwise it 
is just scattered: L < Lmax

 Final spin of the BH needs to be >1:                         
                                                  L > Lmin

 Lmin < Lmax for orbit to exist
 Orbit needs to go from spatial infinity to horizon       

(if not, body created at finite radius                           
need to check if size << distance to horizon and if 
destroyed by tidal forces)

            E/m, L/m >>1 (almost a photon) 

a=1−22

a fin=aL /1E 21



On what orbit do we shoot the 
particle?

 Combining all constraints, allowed range is

 
  

                          is the impact parameter of the 
circular photon orbit (light ring)                            
if                        particle orbits the LR many 
times, and emission of GWs (radiation reaction) 
must be important

b=L/E=2 , 2 223
2−22E222 

b ph=22 3

b~223



The effective potential for a 
photon in Kerr



Effect of radiation reaction

a fin=18
2
1− x x y2 E rad−LradO

3

E=Eminx E max−E min , L=Lmin y Lmax−Lmin 

Radiation reaction might prevent overspinning!



How do the fluxes scale?

 Erad, Lrad propotional to Ncycles at LR: 

Erad = Ncycles ∆E,   Lrad = Ncycles ∆L

 Using geodesics eqs

 From FD analysis

where E1 is flux in one orbit at the LR at leading 
order in ε

b=b ph1−k  ,N cycles≈[AB log k ]833
2  ,

E / L≈ph≈1/2−3/2 

E rad=N cyclesE=N cycles E11e 2

L rad=N cycles L=2N cycles E1 [1e23]

k≪



How does E1  scale?
 Normally scale with body's mass E1 ~ m E2 
 But here we have a relativistic, so m → E

E1 ~ E3 ~ ε3 because E ~ ε
 Using 

 

E rad=N cyclesE=N cycles E11e 2~
2 log 

Lrad=N cycles L=2N cycles E1 [1e23]~
2 log 

N cycles≈[AB log k ]833
2 ~ log k 



O3 log k 

a fin=18
2 1− x x y2 E rad−Lrad

=1821−x  x y−23 N cycles E1



Do the fluxes spin the BH up or down?

 E1 > 0 because Ωph > Ωhor  (i.e. no superradiance) 

               spin-down

 Subtlety: analysis valid both both ingoing and 
outgoing fluxes. But fluxes down the horizon 
might spin BH up before body is captured

a fin=18
2 1− x x y−23 N cycles E1

abefore capture=1−2
223 N cycles E 1



Do GW fluxes affect JS's analysis?

 If k < exp(-1/ε), no naked sings form by particle 
capture, but might be formed by ingoing fluxes

 If k > exp(-1/ε), and fluxes cannot prevent 
formation of naked singularities

For fixed k, fluxes unimportant for a ~ 1

a fin=18
2 1− x x y−O 3 log k 



How do we test this picture?

 Calculate GW fluxes for JS orbits numerically

 Time domain code solving Teukolsky eqs 
describing GW perturbations for extreme mass-
ratio binaries

Code tested in previous publications (Burko & 
Khanna 2007, Sundararajan, Khanna & Hughes 
2007, 2008, 2010), but calculation of JS fluxes 
challenging

∇∇
h =16T 



Source of Teuk eqs

 JS geodesics around BHs with a = 0.99, 0.992, 0.994, 
0.996, 0.998, 0.999, 0.9998

 E=(Emax+Emin)/2=2ε, L=bphE(1-k) with k=1.e-5, and m=1.e-5<< E

 Extract A, B appearing in 

∇∇
h =16T 

N cycles≈[AB log k ]833
2 



Numerical challenges

 Relativistic plunging orbits: little time to dissipate junk 
radiation → need to create particle gradually and add 
artificial cycles 

 Almost extremal BHs: junk is long-lived, LR and horizon 
freqs are very close (need accuracy to avoid spurious 
super-radiance effects) → use tortoise coords, check 
convergence (with particle's size, grid size and extraction 
radius)

 All multipole moments important. Higher moments damped 
by finite grid resolution, but can be recostructed because 
they are in geometric progression (Finn & Thorne 2000)



Numerical fluxes Erad and Lrad

 Converge with extraction radius, grid resolution 
and particle's size

 Check high multipole moments are in geometric 
progression (Finn & Thorne 2000)

                                             to within 1% 
 Fit with

gives n=2.91 
 Data fit with n=3 to within 2-5% (~ numerical errors 

due to extrapolation to high multipoles)   

E rad /Lrad≈ph≈1/2−3/2 

L rad=E1[1e 23 ] ,
E rad=N cycles E11e2 , E1=C n



Numerical fluxes Erad and Lrad

Fluxes alone cannot prevent formation of 
naked singularities when a~1 

a 0.99 0.992 0.994 0.996 0.998 0.999 0.9998

afin
J S 1.0043 1.0035 1.0026 1.0018 1.0009 1.00045 1.00009

afin 0.882 0.928 0.961 0.984 0.997 0.9996 1.00006



The gravitational self-force

Motion of small BH with mass m in a curved 
spacetime with curvature radius L 

 Near BH, g=gBH+O(r/L)+O(r/L)2 

 Far away, g=gbkgd+O(Rg/L)+O(Rg/L)2, Rg=2 G m/c2

 Matching in a buffer region where both pictures 
are valid, one finds the BH's eqs of motion

                                   are the SF

u∇ u= f cons
  f diss



f cons
 , f diss


=O Rg/ L

Derived for BH, but result valid also for 
classical ”particle” (any body with size Rg<<L)



Physical meaning of the SF

 Can be written in terms of derivatives of         
(perturbation produced by particle, but regularized 
to avoid divergence at particle's position)                
            SF = interaction of particle with itself  

 
 



 

 

Particle moves on geodesic of ”perturbed” metric

hreg

u
∇ u

= f cons


 f diss
 ,

u
 ∇  u


=0, g=ghreg , hreg

=O Rg /L

f cons
 , f diss


=O Rg/ L



Effect of the SF

 Dissipative SF = radiation reaction

 From                                               the 
conservative self force changes effective 
potential by O(Rg/L)

 For a non-relativistic particle Rg  ~  G m/c2

u
∇ u

= f cons


 f diss
 , E=−mu t

dE /d =−m f t
diss=ORg /L

2

u
 ∇  u


=0,

 ISCO ,ph ,b ph~O Rg /L

hreg=O Rg /L



What if the particle is relativistic?

 Expect Rg ~ E because in GR energy gravitates

e.g. BH boosted to relativistic energy E 
(Aichelburg-Sexl metric) has ”size” ~ 2 G E/c2

 Energy flux for JS orbits:

because                                       

 TD code gives E1 ~ ε3 

 Numerical results confirm that Rg ~ E ~ ε  for a 
relativistic particle

dt / d ~1/ r−rH ~1/

dE /dt=−m f t
diss d /dt~ORg /L 

2




Use Rg  ~ E ~ ε  to calculate  
conservative self-force

 For relativistic orbits we expect 

but in what direction are the changes?

 Barack & Sago (2009): for non-relativistic orbits 
in Schwarzschild

We might expect                  for relativistic orbits 
in Kerr 

 For nearly extremal BHs,

  

 ISCO0

b ph≈1/ph

ph0

b ph0ph0

ph ,b ph~O Rg /L~O

would imply 



∆bph <0 : BH shrinks and dodges bullet!

                     may be enough to prevent JS 
orbits from plunging, because 
b ph~O

b JS=b ph−O 

b ph

O

without conservative SF



Conservative self-force (1)

 Has right magnitude and sign to prevent JS 
orbits from falling into BH by raising potential 
barrier 

 Effective radial potential for radial motion ~ 
effective potential for gravitational waves

(eikonal approximation, but valid also for l~2)
      

           conservative SF has right magnitude 
and sign to prevent ingoing fluxes from forming 
naked sings



Conservative self-force (2)

JS also proposed creating naked singularity by 
dropping spinning particle with L=0 and

from very close to BH horizon
   

Conservative SF changes background metric 
by O(ε): important also in spinning case but 
sign unclear

2−22E222 

S / E=2 , 2 223



Conclusions

 Radiation reaction prevents formation of naked 
sings in some cases, but less and less effective 
when a~1

 BH cross section decreases due to conservative 
SF: BH shrinks and dodges the bullet!

The self-force is the cosmic censor!

 Numerical tests of this picture:

- Done for radiation reaction

- Few yrs away for conservative SF
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