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€ Introduction
o

« Seeds of large scale structure of the universe

The primordial fluctuations generated from Inflation are
one of the most interesting prediction of quantum theory of
fundamental physics.

However, we have iInformation about Inflation

0 More accurate observations give more
iInformation about primordial fluctuations - PLANCK (2009-)

€ Non-Gaussianity from Inflation  wil detect

3 Komatsu & primordial perturbations
C(x) = ¢a(x) + o /NLCE()  spergel (01




I Bispect P t
‘ Introduct|on ISPEC rum\ ower spectrum

Br Qk?
Non-Gaussianity from inflation vzt = pggkga

Mainly two types of bispectrum B WMAP 7-year
B Local type <(@)=¢a(@) + f'oca'cg(a:) —10 < f9° < 74

——  ...Multi-field, Curvaton

equil _ 10 -ANL
M Equilateral type /vt (F1.k2.k3) = ?z@ ks 214 < Jyi" < 266

VANGE Al
Z Hig with K =k + ko + ks,

- = Non-canonical kinetic term

Cf) Orthogonal type: generated by higher derivative terms (Senatore etal 2010)




€ Introduction

If we detect non-Gaussianity, what we can know about Inflation ?

@® Slow-rolling ? @ Single field or multi-field ?
@ Canonical kinetic term ? @ Bunch-Davies vacuum ?

 Theoretical side 5
Standard single slow-roll scalar fnL = O(1077)
Many models predicting Large Non-Gaussianity

(Multi-fields, DBI inflation and Curvaton) fue > O(1)
» Observational side 5 ANCK 2009- *
Can detect within “f NL|Z5‘ B

Non-Gaussianity (nonlinearity) will be one of powerful tool to
discriminate many possible inflationary models with the current
- and future precision observations




€ Three stages for generating Non-Gaussianity

R ", —]{’

Classical gravity effect

5 Classical
Quantum nonlinear e
onlinear effect

Before horizon crossmg

I+ -

At the end of or after
inflation

o o o e ————

® O N-formalism
(Starobinsky 85, Sasaki & Stewart 96)




@ Nonlinear perturbations on superhorizon scales

Spatial gradient approach :fe = 1/(H L) Salopek & Bond (90)

> Spatial derivatives are small compared to time derivative
» Expand Einstein egs in terms of small parameter ¢, and
can solve them for nonlinear perturbations iteratively

(Starobinsky 85,

’ é\ N f ormalism (Separated universe ) Sasaki & Stewart 96)

X = IN=N(Lx) = Ng(l] P2

ﬁ ﬂ 1 .. .
SN = Nidgpl + E‘ij()(bi(’;k] 4+

Curvature perturbation = Fluctuations of
the local e-folding number

o Powertful tool for the estimation of
A2




® Temporary violating of slow—-roll condition

> e.g. Double inflation, false vacuum inflation

@ ON formalism | (0(<°)

» Adiabatic (Single field) curvature perturbations on superhorizon
are Constant |C(t,x) = const
» Independent of Gravitational theory (Lyth, Malik & Sasaki 05)

» lgnore the decaying mode of curvature perturbation

® Beyond O N formalism || (62 )‘

> 0(62) is known to play a crucial role in this case
» This order correction leads to a time dependence on superhorizon
» Decaying modes cannot be neglected in this case

» Enhancement of curvature perturbation in the linear theory
[Seto et al (01), Leach et al (01) ]




€ Example

@ Starobinsky’ s model (92)

» There is a stage at which slow-roll

conditions are violated
> Enhancement of the curvature

perturbation near superhorizon

mitial: U — VUV << U mW) Final: Y,

Growing mode decaying mode

* The In the expansion

@ Leach, Sasaki, Wands & Liddle (01) [ Linear theory

. Decaying made---Growing-mede

at n = 0 (Final) [at 7« (initial) aLm ~ 1 —P\: )}:—\ F(n*)\’

/
‘4

Enhancement of curvature perturbation near




@ Nonlinear perturbations on superhorizon
scales up to Next-leading order in the expansion

. =Full nonlinear ‘O (571 )‘

J NN
O(Gm) : »=Our study

Nonlinear theory In
1 2! )2
RNLT 4 oZ gNL 4 ZSK(Q)[RQ'L] = O(e%)

2
4} Linear theory

- , - -
RLIN" 4 o>% pLin® 4 p2.2pLin — g
z




R
|l — 4 — Y.T and S. Mukohyama
System :|f = /d T\ —g 167G x + P(X, )|, JCAPOL (2009)

X =-¢"9,00,¢ ~ Single scalar field with general potential & kinetic term
Including K- inflation & DBI etc

€ Scalar field in a perfect fluid form

T;u,/ — QPXau(bau¢ + Pg;u/ — (p —+ P)U,u,uz/ + Pg;w?

O
X, ) =2PyvX — P, u, =——_,
p( é) X I \/y

The difference between a perfect fluid and a scalar field

0P = ¢Z9 [ ) 2 = T Py —c2p,) .
S0pt plod. (=, O N 2ps)

For a perfect fluid (adiabatic) The propagation speed of
OP = C§5p cf = P/p perturbation (speed of sound)




n* (normal)

@® ADM decomposition

2 _ 2 ky 1.2 ' 19
ds® = (—a“ + fi,p")dt” + 20;dz' dt + y;;de’ do?
Gauge degree of freedom
EOM: Two constraint equations (DHamiltonian & Momentum constraint eqgs

EOM for Y45 : dynamical equations

In order to express as a set of first-order diff egs,
Introduce the extrinsic curvature

1 - N
Ky = ——(0rvi; — Difj — Djﬁz')® Evolution egs for KZ]’ Yij
2ce

Conservation law 7*Y. = 0 @ Energy momentur] conservation eqgs

1L

Further decompose, 4 2 Four Evolution egs

 Spatial metric Vi 1] — a '2/) "fY”&jj’ det(%]) =

\_I

\

* Extrinsic curvature K K -+ ¢4a @]«r Traceless part

\__/




@ Gradient expansion

Small parameter:

Background is the flat 2
FLRW universe

e=1/(HL) L~0Q/e) dip=1px0(e)

# 2
2 3 : i _
12 =" po. 30 (¢ Poxdido) — Pog = 0.
Pox = Px(Xo.00). Fog = Py(Xo. ¢0) X = (9rp)°

0_ Basic assum_ptions
B =0(e), v =0(e), Tij = O0(e)

Since the flat FLRW background is recovered in the limite — O

Oryi; = O(¢)

E> @ Assume a stronger condition
~ 2
0t¥i; = O(€7)

» It can simplify our analysis
» Absence of any decaying at leading order
» Can be justified in most inflationary model with N, 60

/‘
(Hamazaki 08)

1
5 x =+ O(e?)
a

Under general cond Otyij = O(dc) = O0(®) 5, : Amplitude of decayina

mode
. decaying mode of density perturbation




@ Basic assumptions

}8?’ — O(e)7 T O(E)? 815;?7,"7' — 0(62)

y=a-1=0(A),
* Input

Einstein equation after
ADM decomposition o, = n:

@ Orders of magnitude
_P—ho _
£0

3= 0(1) +0(),

First—order equations

0(€%), p=d—do=0(c?), p= P~ Py=0(¢?)

 Output

0.5 = O(¢°) part,

+ time-orthogonal

5= 0(3)




General solution RO = [(1(©))4 £(O)] : Ricci scalar of 0%

@® Density_ pertquar fluctuation spatial metric

(R(O)‘ 4
o = 5 5 3 + O(€*), » Density perturb is determined by 0th Ricci scalar
Pok=a -

_ 3 © (2) 4
R ey (R /a(t)dt —ILC 1+ 0(M),

‘N__f,

Scalar decaying mode

@® Curvature perturbation
0= (L0 +1@) (143 [ HOWO ) + 0

Constant (N ) _bzpols 200+ Fom) )
" _fo roatgbq"é(gq

X = -
6(pg + Po)x%a?

> Its time evolution is affected by the effect of p (speed of sound etc),
through solution of X




General solution

©) | (2 (2) [t dt’

— %(F@%” ta(tf)dtfjuci(j?) + 0(e%), <« Gravitational wave
a to

1

(2) (kY —
Fi @) = Lone

@ The number of degrees of freedom

*

Rij [(LO)* @] = 1O R [(1©)45 )

Growing GW (Even if spacetime is flat , 2"
order of GW is generated by scalar modes )

The "constant™ of integration L<o>7f?go>,c<2> and C@.(j?

depend only on the spatial coordinates and satisfy constraint eq

(L(O))6aic(2) — 6f€£)D§O)

(L)),

Scalar 1(G) + 1(D) & Tensor 1(G) + 1(D)=(6-1)+(6-1)-3- 3 g_auge remain

under 8' = O(e3)

b — 7 = () = O(1).




€ Nonlinear curvature perturbation

Focus on only Scalar-type mode

Complete gauge fixing Yij = 5ij (t = 00) (e.g. curvature perturbation)

Define nonlinear curvature perturbation w4 — €2C

Uniform Hubble & Gauge Comoving & time-
time-orthogonal gauge transformation  ©rthogonal gauge
K=-3H(t),f'(ta) =0 By  eclta)=/pita')=0

Cc:CH—EgoH—I-O(e?’) In this case, the same as IlnearI

¢ o = 0(e%)
@ Comoving curvature

perturbation

/
=0 472 4 fe(t) K@ + fc(t) ¢ 4 o(e*

"(2) — 2L(2)/L(O)

Time dependence

¢(0) —2|nL(0> Ricci scalar of O
: Ricci scalar of Ot
@0y = g [(L(O))4f( )l = 202000 ¢ 5@%(0)8]@(0))8—2@(0) spatial metric




€ Nonlinear curvature perturbation

vij = a®(n)(6i; + 2HE"Y 65 + 2HF"Y;)

Linear theory

HLin
I \y

Correspondence to
our notation

H Y =¢

Pamimb
N
/ \

(CFH

AY
4
\N——'

Tlraceless
(A + 1)V, =0 Yy =h"2[0,0; = S0,8]Y

ENY {Fij = 0y + 2HF"Y;

Sa”

Constraint eq

08,02 = 657 (w%ﬁ?)

=)

3 . .
HrY =E= —ZA_l 0"y %07y°(In7) 4]

- )
iy =10+ 1 - 2FP A@) — 202 B(t) + 0 @S
Without non-local operators
K@) e
B0 400 257 B + 0,
4 w 4 «

So\\e integnﬁs

RM = ¢+

E.=3H2 1

i
3




€ Nonlinear second-order differential equation
1

ohlas L — O [(PT P2 __dt

Variable: z = = (6—2) dn o (1)

RN-(n) = 6@ +02) 4 5@ 4 [k () — R]K® + [D(n) - D] 0O

IED

Integrals: D(n) :3H*/o Zi((n""))dnl Fn )_/0 2d(77 : /’7' 222"y dn"

satisfies ’RN'—" + 2— RN'—' + JLK(Q)j\NL] = O(e*)

I_I \-_—
Lin// Lin’ 2 Liny
Re 2 RC — Cg A[Rc ]=0 spatial metric

Z - - -
@ Natural extension of well-known linear ver5|on

Ricci scalar of Oth

Decaying D" + QZ—’D, —0 GI’OWlng ) + 2 F’ + (12 — 0
s

mode z m mode z m




Our nonlinear sol

@ Matching conditions | =Pt o(s") [ 4 | ©r5)
: L n-th order w

In order to determine the initial cond. perturb. sol RN'—, 0(62)

REAL(n) = R () + 05" )= R (n) + O(e*)
Interest k after Horizon crossing following

() = (k) =

2-order pm»>  Value & derivative can determine that uniquely

diff. eq ’RCNL = chert|n_77 —|—O(€4,5n+1),

(RCNL)/ = (Rgert)/‘n:n* 4+ 0(647(5n+1) '

@ Final resul
(at late times 7 =0 )

RNL(0) = RPH () + ——




€ Matched Nonlinear sol to linear sol

Approximate Linear sol around horizon crossing @ 7 = 7=
RE () = REM(ne) . REE () — RE™ (1)
@ Final result

K (2)[,(0)]

RCNL(O) = 4(0) _ = a"in)u(o) — F

+ O() .
t 4

gl\l] Enhancement in _
Linear theory Nonlinear effect

K (2)[4,(0)]
. =
@ In Fourier space, calculate Bispectrum as

A w0 + —2 (5ij8iu(0)8ju(o) — 4u(O)Au(O)) + O((u(o))3)

5
fni(ki ko k3) = 3 >, G (k) G(ky) H(kk){5(k@2 + k%) - k%)}kg’] .
OLiky i) ihhsti

Gk)=a""=1- D+ EI(n*) — k°F., H(k) = Fy/2
3L R




g &

3 \We develop a theory of non-linear cosmological perturbations on
superhorizon scales for a scalar field with a general potential & kinetic terms

3 We employ the and the spatial gradient expansion approach to
obtain general solutions valid up through second-order 0(62)

3 This Formulation can be applied to k-inflation and DBI inflation to
investigate superhorizon evolution of non-Gaussianity beyond 6N-formalism

3 Show the simple 2"d order diff eq for nonlinear variable:

E
NL —
RV =t ]

1 We formulate a general method to match a n-th order perturbative sol

1 Calculate the bispectrum using the solution including the nonlinear teri

1 Can applied to Non-Gaussianity In temporary violating of slow-roll cont

3 Extension to the models of multi-scalar field




‘ App| ication > There is a stage at which slow-roll

conditions are violated

® Linear analysis
(Starobinsky’ s model)

[Vot+Ap(d—do) for ¢ > dy at m« (initial)--crossing
| Vot+A_(¢—0g) for¢<gy Re(ne) = au(ng) + Po(ns) = u(n«)

m) Rc(0) = au(0) ~ aRe(ns) 1= 0 (Final) lim v(y) =0
a~1 D(ﬁ*)—F(n*)
Can be amplified if

Vig) =

¥ { fhis mode is

2K zx = Dy, Fsx > 1 _ i/ the most

. : ) _ ; £ enhanced
¢ ~ —3H¢ (fastrolling) Poaearanssmg gy

T  Violation of
$Iow—ro|l Econd
00 1ol 102

@ go up to nonlinear 0 /52,
analysis ! Leach, Sasaki, Wands & Liddle (01)
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