Probing backreaction effects with supernova data

Marina Seikel

Universität Bielefeld

in collaboration with Nan Li and Dominik J. Schwarz

June 17, 2010

Outline

2 Averaging

3 Fluctuation of the Hubble rate

4 Supernova type la data

Outline

2 Averaging

3 Fluctuation of the Hubble rate

4 Supernova type la data

Standard model of cosmology

Assuming a homogeneity and isotropy, observations indicate:

- universe is approximately flat $(\Omega_k \simeq 0)$
- $\bullet\,$ only $\sim 4\%$ baryonic matter
- universe dominated by dark energy with $w \simeq -1$

from WMAP

These results are obtained by a combination of observations at high (CMB) and low redshifts (SNe, BAO and H_0).

When giving up the assumption of homogeneity (e.g. LTB models), no dark energy is needed to explain the observations.

Importance of low redshift observations

from Komatsu et al. (2008)

- low redshift observations are crucial for proving the existence of dark energy
- $\bullet\,$ homogeneity scale is $\sim 100\,$ Mpc
- largest structure \sim 400 Mpc (Sloan Great Wall)
- assumption of homogeneity and isotropy might not be justified for low redshift observations

Evidence for acceleration using supernovae

Again, we assume homogeneity and isotropy.

• Null hypothesis: the universe has never expanded accelerated

$$\Rightarrow \quad d_L(z) \leq d_{L,q=0}(z) = \frac{c}{H_0}(1+z)\ln(1+z)$$

or with $\mu(z) = m(z) - M = 5 \log(d_L(z)) + 25$:

$$\Delta \mu(z) = \mu_{\sf obs}(z) - \mu_{q=0}(z) \le 0$$

- If $\Delta \mu$ is significantly positive, the null hypothesis can be rejected \Rightarrow evidence for accelerated expansion
- In order to make the test calibration-independent, we consider $\Delta \mu \Delta \mu_{nearby}$ instead of $\Delta \mu$.

Evidence for acceleration using supernovae

- Using the Union data set, we find a 7σ evidence for acceleration in the case of a flat or closed universe and 4σ for an open universe.
- Evidence depends strongly on nearby supernovae with z < 0.1.

Outline

2 Averaging

3 Fluctuation of the Hubble rate

④ Supernova type la data

Backreaction

- Universe can only be *statistically* homogeneous and isotropic.
- Einstein's equations are not linear in the metric $g_{\mu\nu}$.

$$G_{\mu
u}(\langle g_{\mu
u} \rangle)
eq \langle G_{\mu
u}(g_{\mu
u})
angle$$

• Local inhomogeneities and anisotropies affect the background universe via the backreaction mechanism.

Averaging and time evolution do not commute

taken from the talk given by J. Larena on the 2nd Kosmologietag

Averaging

- Most observables are averages.
- It is highly controversial how big the backreaction effects are.
- Unsolved problems:
 - tensor averaging
 - averages over the past lightcone
- We use:
 - scalar averages
 - \blacktriangleright spatial averages \rightarrow we are limited to small redshifts

Spatial averaging

• Volume of a domain *D*:

$$V_D(t) \equiv \int W_D(\mathbf{x}) \sqrt{\det g_{ij}} \mathrm{d}\mathbf{x} \; ,$$

where $W_D(\mathbf{x})$ is the window function specifying the domain. • Spatial average of an observable $O(t, \mathbf{x})$ at time t:

$$\langle O
angle_D \equiv rac{1}{V_D(t)} \int W_D(\mathbf{x}) O(t,\mathbf{x}) \sqrt{\mathrm{det}g_{ij}} \mathrm{d}\mathbf{x}$$

• Effective scale factor *a*_D:

$$\frac{a_D}{a_{D_0}} \equiv \left(\frac{V_D}{V_{D_0}}\right)^{1/3}$$

• Effective Hubble rate:

$$H_D = \frac{\dot{a}_D}{a_D}$$

Effective Friedmann equations

Following Buchert's formalism the effective Friedmann equations for a dust universe are obtained by averaging Einstein's equations:

$$egin{array}{rcl} \left(rac{\dot{a}_D}{a_D}
ight)^2 &=& rac{8\pi G}{3}
ho_{
m eff} \ -rac{\ddot{a}_D}{a_D} &=& rac{4\pi G}{3}(
ho_{
m eff}+3
ho_{
m eff}) \end{array}$$

 $\rho_{\rm eff}$ and $p_{\rm eff}$ are the energy density and pressure of an effective fluid:

$$\begin{array}{ll} \rho_{\mathrm{eff}} & \equiv & \langle \rho \rangle_D - \frac{1}{16\pi G} \left(\langle Q \rangle_D + \langle \mathcal{R} \rangle_D \right) \\ p_{\mathrm{eff}} & \equiv & -\frac{1}{16\pi G} \left(\langle Q \rangle_D - \frac{1}{3} \langle \mathcal{R} \rangle_D \right) \end{array}$$

 $\langle Q\rangle_D$: kinematical backreaction, $\langle \mathcal{R}\rangle_D$: averaged spatial curvature

Effective Friedmann equations

• $\langle Q \rangle_D$ and $\langle \mathcal{R} \rangle_D$ are related by an integrability condition:

$$\partial_t \left(a_D^6 \langle Q \rangle_D \right) + a_D^4 \, \partial_t \left(a_D^2 \langle \mathcal{R} \rangle_D \right) = 0$$

- The Friedmann equations and the integrability equation are not closed: There are four unknown variables $\langle Q \rangle_D$, $\langle \mathcal{R} \rangle_D$, $\langle \rho \rangle_D$ and a_D constrained by only three equations.
- The equations can be closed by using cosmological perturbation theory (up to second order).
- The calculations are done in the comoving synchronous gauge as this matches the situation of a real observer.

Outline

2 Averaging

3 Fluctuation of the Hubble rate

4 Supernova type la data

5 Results

Fluctuation of the Hubble rate

• Fluctuation of the Hubble rate:

$$\delta_H \equiv \frac{H_D - H_0}{H_0}$$

• Without backreaction effects:

•
$$\overline{\delta_H} = 0$$

- variance only due to empirical variance
- With backreaction effects:
 - $\overline{\delta_H}$ becomes negative
 - backreaction increases the variance of δ_H
 - size of the effect depends on the window function specifying the domain

Backreaction effects

Ensemble mean:

$$\overline{\delta_H} = -\frac{41}{162} \frac{1}{(1+z)^2} \frac{R_H^4}{V_D^2} \int d\mathbf{x}_1 d\mathbf{x}_2 \frac{d\mathbf{k}}{32\pi^4} k \mathcal{P}_{\varphi}(k) \mathcal{W}_D(\mathbf{x}_1) \mathcal{W}_D(\mathbf{x}_2) e^{i\mathbf{k} \cdot (\mathbf{x}_1 + \mathbf{x}_2)}$$

Variance:

$$\mathsf{Var}(\delta_{\mathcal{H}}) = \frac{25}{81} \frac{1}{(1+z)^2} \frac{R_{\mathcal{H}}^4}{V_D^2} \int \mathsf{d}\mathbf{x}_1 \mathsf{d}\mathbf{x}_2 \frac{\mathsf{d}\mathbf{k}}{32\pi^4} k \mathcal{P}_{\varphi}(k) W_D(\mathbf{x}_1) W_D(\mathbf{x}_2) e^{i\mathbf{k} \cdot (\mathbf{x}_1 + \mathbf{x}_2)}$$

where $\mathcal{P}_{\varphi}(k) = \mathcal{P}_{\varphi}\left(\frac{k}{k_0}\right)^{n_s-1}$ is the dimensionless power spectrum. The values for \mathcal{P}_{φ} , k_0 and n_s are obtained from WMAP measurements.

We consider the following spherically symmetric window functions:

• Tophat:
$$W_D(r) = \Theta(r - R_D) \Theta\left(\frac{5}{3}R_D - r\right)$$

• Gaussian:
$$\frac{1}{\sqrt{2\pi}R_D} \exp\left(-\frac{r^2}{2R_D^2}\right)$$

Tophat vs. Gaussian

• *r* is the average distance corresponding to the window function:

$$r = \frac{1}{V_D(t)} \int_0^\infty r' W_D(r') 4\pi r'^2 dr'$$

• Effects are much larger for the tophat window function

Outline

- 2 Averaging
- 3 Fluctuation of the Hubble rate
- 4 Supernova type la data

Supernova data

Supernovae type Ia:

- considered to be good standard candles → they have approximately the same absolute magnitude M
- distance modulus:

$$\mu_i = m_i - M$$

Calibration

There is a controversy about the correct calibration of M:

- Riess calibration
- Sandage calibration
- Problem: H_i depends on the calibration of M.
- The obtained *H_i* cannot be compared to a global *H*₀ determined by other measurements (e.g. WMAP).

Supernova data

Fitting method

There are different methods to fit the light-curves of the supernovae in order to determine the distance modulus:

- SALT II
- MLCS2k2

- MLCS2k2: assumption that dust in the universe has the same properties as dust in the Milky Way
- SALT II: no assumptions about dust properties

Data set: Constitution set (SALT II) with 178 SNe up to z = 0.1

Determining the Hubble rate

• Determine luminosity distance for each supernova:

$$d_{L,i} = 10^{(\mu_i - 25)/5}\,{
m Mpc}$$

 Hubble rate for a theory without backreaction effects assuming ACDM:

$$H_i = (1+z_i)\frac{c}{d_{L,i}}\int_0^{z_i}\sqrt{\Omega_m(1+z')^3 + \Omega_\Lambda}\,dz'$$

• Hubble rate for a theory with backreaction effects assuming CDM:

$$H_i = (1 + z_i) \frac{c}{d_{L,i}} \int_0^{z_i} \sqrt{(1 + z')^3} \, dz'$$

Comoving distance:

$$r_i = \frac{d_{L,i}}{1+z_i}$$

Averaging the Hubble rate

- Tophat window function: $W_D(r) = \Theta(r R_D) \Theta(\frac{5}{3}R_D r)$
- Distribution of supernovae:

- Use all SNe within a bin to calculate the weighted averages of $H_D(\Lambda \text{CDM})$, $H_D(\text{CDM})$ and r_D for the corresponding domain.
- $\delta_H = (H_D H_0)/H_0$ depends on the choice of H_0 .

Outline

1 Motivation

2 Averaging

3 Fluctuation of the Hubble rate

4 Supernova type la data

5 Results

Results for tophat window function

Global Hubble rate H_0 in km/(s Mpc):

	Riess	Sandage
backreaction (CDM)	68.7	62.7
no backreaction (ΛCDM)	70.1	64.0

Likelihoods

Likelihoods for the theories with and without backreaction effects for the following tophat window functions:

- window 1: $W_D(r) = \Theta(r R_D) \Theta\left(\frac{5}{3}R_D r\right)$
- window 2: $W_D(r) = \Theta(r R_D) \Theta\left(\frac{3}{2}R_D r\right)$
- window 3: $W_D(r) = \Theta(r R_D) \Theta(2R_D r)$

		Riess	Sandage
window 1	backreaction (CDM)	13.2%	61.1%
	no backreaction (ΛCDM)	86.8%	38.9%
window 2	backreaction (CDM)	25.7%	43.2%
	no backreaction (ΛCDM)	74.3%	56.8%
window 3	backreaction (CDM)	28.1%	17.7%
	no backreaction (ΛCDM)	71.9%	82.2%

Different light-curve fitters

• SALT II:

	Riess	Sandage
backreaction (CDM)	13.2%	61.1%
no backreaction (ΛCDM)	86.8%	38.9%

• MLCS2k2:

	Riess	Sandage
backreaction (CDM)	3.6%	4.7%
no backreaction (ACDM)	96.4%	95.3%

Gaussian window function

- Number density of supernovae needs to be constant within the considered domain
- Number of SNe in the distance interval [r, r+dr] must be proportional to r²W_D(r)dr
- As the five domains overlap, the assignment of supernovae to the five subsets representing the domains is not unique
- Therefore, we consider different realisations, i.e. different assignments of supernovae to the subsets
- Within *one* realisation all five subsets are statistically independent.

Results for the Gaussian window function

- Riess calibration: in 24 out of 100 realisations the model with backreaction effects is slightly favoured
- Sandage calibration: in 17 out of 100 realisations the model with backreaction effects is slightly favoured

To do . . .

Until now we have only

- used spherically symmetric domains
- considered the radial but not the angular distribution of the supernovae

We need to adjust the theory to the actual distribution of supernovae.

- non-spherically symmetric domains
- more data points at a certain distance
- \bullet large spread in δ_{H} at small distances would indicate backreaction effects

Conclusions

- Backreaction influences the measurement of the Hubble rate by decreasing its mean value for small domain sizes and by increasing its variance
- But our local measurements could by chance be consistent with a model that does not include backreaction effects
- The test can potentially prove the existence of backreaction effects, but it cannot prove that there are no such effects
- We have not found any evidence for backreaction (yet).
- There is a chance to find evidence by using
 - non-spherically symmetric domains
 - larger data sets that will be available in the future