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Introduction

WHAT HAPPENS AT THE PLANCK LENGTH?

The Planck length is a combination of fundamental constants

| hG
Ly =\ — = 1.616 10735 m

but what’s so special about it?
o To probe short distances we need high energies. To see below the Planck length we need
a particle with Compton length Ao such that

h h
Ao=—<1Lp, — M > — ~10¥GeV
Mc Lyc

o According to General Relativity

Rs =~ =2I,

o By probing the Planck length we create a black hole larger than it!
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Introduction

HEN GRAVITY FACES QUANTUM MECHANICS...

Fundamental theories
o String Theory
o Loop Quantum Gravity
o Causal Dynamical Triangulations
o Deformed Lorentz Groups
o Path Integral Duality
o Star-Product Non-Commutativity
o Coherent States Non-Commutativity

Horava-Lifschitz

Phenomenology
o Modified Gravity
o Minimal Lengths
e Modified Dispersion Relations

o Einstein-Aether theory
e Analogue Models of Gravity
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MODIFIED DISPERSION RELATIONS
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Modified Dispersion Relations

MODIFIED DISPERSION RELATIONS

o Preferred frame encoded by a unit and dynamical timelike vector field u# (Jacobson and
Mattingly, 2004)

1
& = = e /d4z\ /—g [R + K% Vau™Vpu® + A(gapu®ub — 1)]
Kabmn = h gabgmn aF b26am6bn + bg(san(sbm aF b4uaubgmn

o General covariance is preserved. The unit constraint avoid negative-energy solutions.
o Cosmological and black hole solutions; by 4 are constrained by PPN analysis.

o When matter is coupled to u# we have modified dispersion relations

D+m2+2a2nvzn ¢ =0, w2:m2+k2+2a2n\l§|2”
n

n

o Unruh 1981: phonons propagate in superfluids as photons on a curved geometry.
Sub-supersonic configuration forms an acoustic black hole.

o In Bose-Einstein condensates, the “healing length” sets a scale for Lorentz symmetry

- 4
violation w? = m?2 + |k|% + \/}:\2
0
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Modified Dispersion Relations

MDR IN THE LAB

R. Balbinot, S. Fabbri, C. Mayoral, M. Rinaldi, in
I. Carusotto et. al, New J. Phys. 10:103001, 2008 progress
v

e Hawking radiation is robust in black holes (Unruh, Jacobson et. al.) and in analogue

models J
e Unruh effect is robust M. Rinaldi, Phys. Rev. D 77 124029 (2008). )
e Transplanckian problem in cosmology still open (Starobinski vs Brandenberger). J
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Modified Dispersion Relations

PHENOMENOLOGICAL IMPLICATIONS OF MDR

doi:10.1038/nature08574.

Are MDR realistic? October 2009, LAT collaboration

nature

LETTERS

A limit on the variation of the speed of light arising
from quantum gravity effects

A list of authors and their affiliations appears at the end of the paper

A cornerstone of Einstein’s special relativity is Lorentz invariance—
the postulate thatall observers measure exactly the same speed of
lightin

vity assumes that there is no f\mdam:nu.l e e
with such invariance, there is a fundamental scale (the Planck scale,
Iptanac =162 X 107> cm 0r Epjanck = Mptanci = 1.22 X 10'° GeV),
at which quantum effects are expected to strongly affect the nature
of space—time. There is great interest in the (not yet validated) idea
that Lorent; break near the Akey test

scale (when E,, becomes comparable to Eplanck = Mpiana®)- For
Egn << Epuncio the leading term in a Taylor series expansion of the
classical dispersion relation is v,/ — 1| = (Ey/Mog,c”)", where
Mg, is the quantum gravity mass for order niand n = 1 or 2 is usually
assumed. The linear case (n=1) gives a difference Ar==(AE/
Mg, @)Dlc in the arrival time of photons emitted together at a
distance Dfrom us,and differing by AE = Eyg, — By At cosmological
distances this simple expression i somewhat modified (see Sup-
plementary section 4).

of such violation of Lorentz invariance is a possible variation of
photon speed with energy'”. Even a tiny variation in photon speed,
when accumulated over cosmological light-travel times, may be
revealed by observing sharp features in y-ray burst (GRB) light-
curves®. Here we up to ~31 GeV
it and short GRB090510. We find no

the violation of Lorentz invariance, and place a lower limit of
1.2Epizna on the scale of a linear energy dependence (or an inverse
welength dependence), subject to reasonable assumptions abo
the
length scale of the cffect). Our results disfavour quantum-gravity
theories**” in which the quantum nature of space-time on a very
‘small scale linearly alters the speed of light.

Because of their short duration (typically with short substructure
consisting of pulses or narrow :pxkes) dnd cosmological distances,
‘GRBs are well-suited for constraining LIV"**2, Individual spikes in
long” (of duration >25) GRB light-curves (10-1,000keV) usually
show'* intrinsic lags: the peak of a spike occurs earlier at higher
photon-energies. However, there are cither no lags or very short lags
ither sign for short GRBs' . Thus far, intrinsic lags have been scen
on timescales of up to the width of individual spikes in a light
frve, which for GRB 090510 are ~102s. Intrinsic lags have not yet
been measured at high energies; if they are also present there, it is
reasonable to assume that their behaviour is similar to that at low-
energies (at least approximately).

‘When allowing for LIV-induced time-delays, the measured arrival
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Coherent State Approach to NC An alternative model of non-commutativity

COHERENT STATE NON-COMMUTATIVITY
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Coherent State Approach to NC | An alternative model of non-commutativitv

AN ALTERNATIVE MODEL OF NC - SMAILAGIC AND SPALLUCCI, 2(

o 2-dimensional space: coordinate operators such that [i1, 2] = iL?
o Define

1 5 %
—— (&1 —idp), [A,AT]=1
o Coherent states are defined by A|a) = a|a)

o Define the ordinary commuting coordinates as the expectation values:
(a|z1|e) = V2LRe() = v1 , ({aliz|a) = V2LIm(a) = yo
o The vector § = (y1,y2) describes the mean position of the particle.

o Momenta p = (p1, p2) are commuting and the new “plane-wave function” of a free point
particle on the NC plane is [p+ = (p1 £ ip2)/2]

eFE  (afePri1Hip2iz|g) = <a|eip+AT piP—A ,—0pyp_ la) = e*%(ﬁfﬂ%)ﬂﬁﬂ

o Note the relative sign between p% and p%: it is independent of the metric signature.

o The Fourier transform is modified:

F(y) = (2m)~2 / d2p F(p)e ' P13 +i7 7
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Coherent State Approach to NC | An alternative model of non-commutativitv

NC QUANTUM FIELD THEORY - M. RINALDI - ArRXI1vV:1003.2408

o Scalar field of mass m satisfies the usual Klein-Gordon equation in Minkowski space
with (mean) coordinates (¢,z) ([J+ m2)¢(t,z) =0 but the mode normalization is
modified according to

67L2(w2+[12)
’le(t, CE) = T e

71wt+zp-m’ W2 — m2 + p2

o The Klein-Gordon product reflects the non-orthogonality of the coherent states:

2, 2, 2
(up, up) = e~ 27T 5(p — )

A scalar field can be represented as the usual mode sum:

o(t,z) :/\/% [apup(t, 2) + fup (1,2)] , [ap, &),] = 4mwd(p — p')

o The equal-time commutator reads
7

47 L

In the limit L — 0 we recover the strandard ié(z — z’).

X
—2r2m2_(E=2)"
@ 16L

[6(t, z), (¢, )]
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Coherent State Approach to NC | An alternative model of non-commutativitv

NC QUANTUM FIELD THEORY - M. RINALDI - ArRX1V:1003.2408

QL

o The Wightman functions are

G (o, o) = (0lg(a")(z")|0) = / I a2 Pt

o The Feynman propagator reads

Gr = —z'/ 9P 212w 4p?) [6(t — ¢/) emPu (=2 4 g(t! — t) eipu (e —a'")]
dTw

o This propagator satisfies the equation

i 5 (At2 +A12)
8L2

O+ m*) Gr(at o) = ——e

o The Feynman propagator can also be written as

G ( m ’H) . d2p e*QLQ(w2+p2)—ipu(z“_z’#)
o,z =4 7
g (2m)?2 w2 — p2 — m2

from which we can easily read off the momentum space propagator

~ e—2L% (W’ +p%)
GF(UJ,p) = w2 7p2 -
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Coherent State Approach to NC | An alternative model of non-commutativitv

NC QUANTUM FIELD THEORY - M. RINALDI - ArRXI1vV:1003.2408

o In (mean) coordinate space we find:

_ (=tH24(@—a’)?

G(t,z;t, 2" )m l_c -
y Ly U, T = —
0 Am2[(t — )2 — (z — 2/)?]
1 m2r2 m? L2
Sl _ 2 :
Gtz t', 2" Yym—o = 78W2L2+me 2 E1< 5 >+

In the coincident limit (z,t) — (2/, t') the propagator is UV finite.

o The Hamiltonian operator becomes
7 _1 2, [i2 > 112 2,2 _l = —2L2(p24w?), (s At | ata
H—2 dm[¢ + (Vo) +m¢]—2 dpe w(apaerapap)
o Normal ordering is no longer necessary as

o0
(0| H|O)mzo = 672L2m2/ dp e P \/p? £ m? < oo
0

1

(0|H[0)m=0 = 32
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Coherent State Approach to NC | An alternative model of non-commutativitv

NC QUANTUM FIELD THEORY - M. RINALDI - ArRXI1vV:1003.2408

o In curved space no global killing vectors and positive and negative frequency mixing so
d)(l‘) = Z( a;u; + h.C.) = Z( ?)j’Uj -+ h.C.)
i J
o The relations between u and v mode sets are non-trivial v; = Z(aij ui + Biyuy).

i
ouj , By are the Bogolubov coefficients. When 8j = (v, uf) # 0 we have particle
creation. The vacuum state with respect to u is seen as a populated state by v.

o In NC the situation apparently does not change. We write the damped modes as

12002 2
Ui = guui , Vi=gyvi , Gu,v ~ € (@0 +P)

The Bj; coefficient is unchanged as B; = _ﬁ(vj7 U?) = (vj, uf). Thus
(Ni) = Z |84] is unchanged.
J

o However, the energy density H; = %f dp e 202 (0 +w?) (% + Nl-) is damped. High
frequency modes do not contribute to the energy density!

o Solution to the trans-Planckian problem?
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Coherent State Approach to NC | An alternative model of non-commutativitv

NC QUANTUM FIELD THEORY IN HIGHER DIMENSIONS

o We can extend the above construction to higher dimensions.

o Assume that 2n coordinates do not commute [2/, 27| = iO"”, where OM” is an
anti-symmetric, constant Lorentz tensor.

o Use Lorentz transformation to write, in D-dimensions

. 0 1
O = ding(©1,62,...0p2) , =0 ( )

o We define g planes, on each of which we repeat the construction above.

o The momentum space propagator is

1 1 D/2
G(P1,---,Ppy2) = exp | —= 0,77
e (R+FB+. + 5%, +m?2) 2; J

o It can be shown that if §; = 6 for all 7 the propagator is covariant (Smailagic and
Spallucci, 2004).
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Coherent State Approach to NC | An alternative model of non-commutativitv

“CONVENTIONAL” NC FIELD THEORY

On R¢?, coordinates are operators [z#,2Y] = i{©H", antysimmetric and constant matrix.

o Based on the x-product:

(F % 9)(x) = 7" 2L f(y)g(2)

N=2=1

o Actions for fields are unchanged S = f d%zL]p]

o However:

/ddm(¢*¢):/ddz¢2, /ddx(8¢*8¢):/ddm(8¢)2

therefore free theories are unchanged. NC is visible only when interactions are present,
through a phase factor in the vertex of the Feynman rules. For a ¢™ theory:

i
V(b --ka) = exp | =2 Z ki OM kg,
1<jJ

o For practical calculations, usually one truncates exp [%6’“’ 8}{85] loosing non-locality.
v
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Coherent State Approach to NC An alternative model of non-commutativitv

COMPARISON WITH *-PRODUCT NC

What are the advantages of the coherent state approach? J

e Simplicity:
o Based on well known QM.
o No x-product: also free fields feel NC.
o Minimal modification of QFT.
o Unitary, no IR/UV mixing, UV-finite.

e The field theory is completely known

o In theories where G ~ (Az? + Eg)*l (Parker, Padmanabhan) we do not know the KG
equation.

o Dispersion relations are not modified.

o In four-dimension the theory is covariant.
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Coherent State Approach to NC | Unruh Effect

UNRUH EFFECT - NICOLINI AND RINALDI, ARXIV: 0910.2860

o Detector moving in flat spacetime, on accelerated trajectory.

o First order amplitude
“+oo
ar = i(B, vl / dr Lint 003 Bo)y  Lins = u(r) $1a(7)]
— 00
o Transition probability at leading order  u(7) =~ 07 14(0) e=H07:
2
T =92 [(Blu(0) | Bo)|*F(AE)
E
o Detector’s response rate function
“+oo “+oo
F(AB) = / dT/ dr' e ATAE G (a(7), a(r"))
— o0 — o0

o On a trajectory parameterized by 7, G* depends on AT — response rate

+oo
F(AE) = / dAT e " ATAEGT(Ar)

oo
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Coherent State Approach to NC Unruh Effect

UNRUH EFFECT - NICOLINI AND RINALDI, ARXIV: 0910.2860

e Hyperbolic trajectory z =y =0, z = Vt2 + a2, a = acceleration

G*(Az) = — a2 R sinh(7a)
1672 sinh2 [w] a
The response rate is
. 1
F(AE) ~

eQTrAE/a —1

i.e a thermal spectrum with temperature 7' = a/(27kp) x acceleration
o In Euclidean NC theory

_ (=t)2+(@@=a")?2
1—e 212

C4m?[(t— )2 + (z — 7')?]

GE(t,I, t/’zl) =
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Coherent State Approach to NC | Unruh Effect

UNRUH EFFECT - NICOLINI AND RINALDI, ARXIV: 0910.2860

Modified response rate for a trajectory f(A7) on the Euclidean plane:

_f(AT)
1—e 212

. 1 —100
F=_— dA —AEAT | 2T %
472 /ioo re f(AT)

o If f(A7) is smooth enough, there are no poles.

o For a Rindler’s trajectory:  f(A7) = 4a~?sin?(aA7/2) (periodic on the Euclidean
plane) so:

. 1 9 2
Fo— [f— + a2\/§] eTAE0 L 002 AE?) + O(a?0*/2 AE?
16 L 2v0 ( ) ( )

o The leading term is negative and does not depend on the acceleration.

o It diverges for 8 — 0: the integral in 7 and the limit § = 0 do not commute!

o The next-to-leading order term depends on a but it is not thermal.

o One needs calibration in order to measure this higher order effect (see Parker et. al.).

o The leading term can be interpreted as a dissipation effect.
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Coherent State Approach to NC Inflationary Universe

INFLATIONARY UNIVERSE
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Coherent State Approach to NC | Inflationarv Universe

INFLATIONARY UNIVERSE

o One-loop effective action: massive scalar field

i [ ds 2. 6
Leg = ——/ = g eiDzKDS(z, 7' s), L? < 6
2 Sy 8
. oo
o ) N i \n
Coincident points —  Kpg(z,z;s) = RET ) Z an(z, z)(is)
n=0
R R?
ao(z,z) = 1, al(z,x):g 9 az(z7x):5+...

o We can integrate: Log = Lo + Liai(z,z) + Loaz(z,z) + ...

m* (4+29m2)egm2 Om? m2 [2¢8m om? " |
Lo = Ei(1,-22 )|, = -2 |22 w1, -
0 ban2 m02 T 2 1= "%02 | Tm2g 2

o If L = (16mGpare) (R — 2Apare) + Leg then

1 —87L1 Gegr
3

_ 3Gbare
3 4 8mL1 Ghare

Aest = Apare ( ) + 87 Ger Lo Gt

o In the massless case Lo = (167202)~! and L; = (16726)~!
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Coherent State Approach to NC | Inflationarv Universe

SEMICLASSICAL APPROACH - M. RINALDI - ARXIV: 0908.1949

o According to the semiclassical picture: Ry, — lRg,“, =87 G(Tuv)

In general (T),,) diverges. With point-splitting

1
2

1 /
= Eg,w (go‘ 'GVQ/VB + m2) Gg(z,2') ,

(T (z,2")) 5 (9% Var Vo + 4% VuVar) Ga(z,3) +

o In NC theory:

2
e~ m"s

= Terwy ] R RG]
T=(S

n=1

Gg(z, ) :/ dsK(z,z;s) , K(z;s)=
0

by expanding 1672 Gg(z,z) = 2 — Fy(Om2)ay(z) + -

also (O, + m2)Gp(a,y) = — e"D” [«%6(%, y)}

o Therefore

~+ curvature corrections

(4)
(T;u/> _ Vuv# GE(CE) + %g/“’ T eODz |:6 (I’ y):| _ G
y—x

Vg | 32m262

o Maximum and constant energy density pyc o 0~2 < H?: inflationary solution?
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Coherent State Approach to NC | Inflationarv Universe

INFLATIONARY UNIVERSE - THERMODYNAMICS

o NC modifies the bosonic mean occupation number:

1

exp (2—; + gw2) -1

(nw) =

o Stephan-Boltzman law:

(kD) [T 2Pde Ao O (kTN
P=23p o, etAT 1’ "2\ n

o When 7T is large

oo 3 244
z°dx TRk _5
/ Az 1 = sgegaqa T O =

o Also, w = w(T). In the early Universe

H? h

= OME 502 —> de Sitter phase? = Bounce?
c
P
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Coherent State Approach to NC | Inflationarv Universe

INFLATIONARY UNIVERSE - SPECULATIONS

o NC replaces §(z) with Gaussian functions. For black hole, the point mass M becomes
2
o M _r PP . . " n
p(r) = @n0)372 © 40 . This is justified with the "Voros" product
o Can we say the same for the energy density near a singularity? Namely:

PO 42
P(t~0)=0—2€ /e

If so, the Friedmann equation H?  p gives

Qualitative behaviour of a (solid black line), & (dotted line), H (dashed line), and
(all)~ ! (dot-dashed line) as functions of time (M. Rinaldi, ArXiv: 0908.1949)
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Coherent State Approach to NC Inflationary Universe

BrLAck HOLES
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Coherent State Approach to NC | Black Holes
Brack HOLEs

From P. Nicolini, A. Smailagic, E. Spallucci, Phys. Lett. B632 547, 2006:

12
o Smeared pointlike source  p(r) = (4“9% e 1, I[?2x6
o Effective stress tensor
r Op r Op
T, = —di . P, == T =0
v 1ag(ppp+28 +26T> "

o Metric ds? = —gttdt2 + gwdrr‘) + r2dQ? with

e 1_2M 382
gr="9 "\ 2w

o There can be zero, one or two horizons. The 2-horizon solution evolves towards the
1-horizon (extremal) configuration.

o Near the origin, geometry is de Sitter. Negative pressure plays the role of a positive
cosmological constant.

o Large black holes, T~ (47ry)~!. For small ones, the temperature reaches a maximum
and then drops to zero.

o The Hawking radiation is the same for large black holes but it stops at the extremal
configuration. There are stable remnants: dark matter?
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Coherent State Approach to NC | Black Holes
Brack HOLEs

_1 6p=-6p,
goo:lfgrr 0.07p
0.06
0.7\ o 08
051\ 0.04 \
Do Y 0.03 \
T T e V0 002
-0.25 \ /////// 0. 01
-0.5 \\\ =

Ty
6pe 7 0.03
/6
1 2 3 4 5 6°
0.02 0.025
-0.04 0.02
‘g'g: y 0.015
0.1 / 0.01
/

-0.121 //// 0.005
-0.14 \\\\w

Tn

Courtesy of P. Nicolini, A. Smailagic, E. Spallucci, Phys. Lett. B632 547, 2006.
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Conclusions

CONCLUSIONS

We have seen that
o observations seem to rule out short distance modifications of dispersion relations
o we can introduce a minimal length in a covariant way, e.g. NC on coherent states

o this can lead to important effects in QFT, black holes and inflationary cosmology.

What we intend to do is to look at
o cosmological perturbation and possible signatures in CMB (in progress)
o to study the transplanckian problem in the Hawking effect (in progress)

@ black hole thermodynamics, early cosmological solutions...
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Conclusions

PATH INTEGRAL DUALITY
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Conclusions

PATH INTEGRAL DUALITY (PADMANABHAN PRL 7¢

Can we introduce a minimal length in a covariant way? )

Modified euclidean Feynman propagator for (H + m2)® = 0

oo
2 .
Gp(z,a') = / dse ™% e i/  K(z,a55), K(z,25s) = (aleH*|a!)
0

e Lp <1

exp(\/p +m?2) Lp>1

p2+m?

o Invariant under ds — L2 /ds: Gr(p) ~

o In coordinate space: G(z,z') ~ w — relativistic propagator.

(

o Links with string T-duality: same propagator as for the CoM of a bosonic string.

o Small corrections to the Unruh and Casimir effects.
o No visible effects on cosmological spectra.

o In curved space — deWitt-Schwinger expansion — Rescaled G and A
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