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Introduction

What happens at the Planck length?

The Planck length is a combination of fundamental constants

Lp =

√
~G
c3
' 1.616 10−35 m

but what’s so special about it?
To probe short distances we need high energies. To see below the Planck length we need
a particle with Compton length λC such that

λC =
~

Mc
≤ Lp , → M ≥

~
Lpc

' 1019GeV

According to General Relativity

RS =
2GM

c2
= 2Lp

By probing the Planck length we create a black hole larger than it!

M. Rinaldi (DPT U. Genève) Living in rough (space) times April 19, 2010 4 / 32



Introduction

When Gravity Faces Quantum Mechanics...

Fundamental theories
String Theory
Loop Quantum Gravity
Causal Dynamical Triangulations
Deformed Lorentz Groups
Path Integral Duality
Star-Product Non-Commutativity
Coherent States Non-Commutativity
Hořava-Lifschitz

Phenomenology
Modified Gravity
Minimal Lengths
Modified Dispersion Relations

Einstein-Aether theory
Analogue Models of Gravity
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Modified Dispersion Relations
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Modified Dispersion Relations

Modified Dispersion Relations

Preferred frame encoded by a unit and dynamical timelike vector field uµ (Jacobson and
Mattingly, 2004)

S = −
1

16πG

∫
d4x
√
−g
[
R + Kab

mn∇aum∇bun + λ(gabuaub − 1)
]

Kab
mn = b1gabgmn + b2δa

mδ
b
n + b3δa

nδ
b
m + b4uaubgmn

General covariance is preserved. The unit constraint avoid negative-energy solutions.
Cosmological and black hole solutions; b1...4 are constrained by PPN analysis.
When matter is coupled to uµ we have modified dispersion relations(

� + m2 +
∑

n

α2n∇2n

)
φ = 0, ω2 = m2 + k2 +

∑
n

α2n |~k|2n

Unruh 1981: phonons propagate in superfluids as photons on a curved geometry.
Sub-supersonic configuration forms an acoustic black hole.
In Bose-Einstein condensates, the “healing length” sets a scale for Lorentz symmetry
violation ω2 = m2 + |~k|2 + |

~k|4

k2
0
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Modified Dispersion Relations

MDR in the Lab

I. Carusotto et. al, New J. Phys. 10:103001, 2008

R. Balbinot, S. Fabbri, C. Mayoral, M. Rinaldi, in

progress

• Hawking radiation is robust in black holes (Unruh, Jacobson et. al.) and in analogue
models

• Unruh effect is robust M. Rinaldi, Phys. Rev. D 77 124029 (2008).

• Transplanckian problem in cosmology still open (Starobinski vs Brandenberger).
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Modified Dispersion Relations

Phenomenological Implications of MDR

Are MDR realistic? October 2009, LAT collaboration

LETTERS

A limit on the variation of the speed of light arising
from quantum gravity effects
A list of authors and their affiliations appears at the end of the paper

A cornerstone of Einstein’s special relativity is Lorentz invariance—
the postulate that all observers measure exactly the same speed of
light in vacuum, independent of photon-energy.While special relati-
vity assumes that there is no fundamental length-scale associated
with such invariance, there is a fundamental scale (the Planck scale,
lPlanck< 1.623 10233 cm or EPlanck5MPlanckc

2< 1.223 1019GeV),
at which quantum effects are expected to strongly affect the nature
of space–time. There is great interest in the (not yet validated) idea
that Lorentz invariancemight break near the Planck scale. A key test
of such violation of Lorentz invariance is a possible variation of
photon speed with energy1–7. Even a tiny variation in photon speed,
when accumulated over cosmological light-travel times, may be
revealed by observing sharp features in c-ray burst (GRB) light-
curves2. Here we report the detection of emission up to 31GeV
from the distant and short GRB090510. We find no evidence for
the violation of Lorentz invariance, and place a lower limit of
1.2EPlanck on the scale of a linear energy dependence (or an inverse
wavelength dependence), subject to reasonable assumptions about
the emission (equivalentlywehave anupper limit of lPlanck/1.2on the
length scale of the effect). Our results disfavour quantum-gravity
theories3,6,7 in which the quantum nature of space–time on a very
small scale linearly alters the speed of light.

On 10May 2009, atT05 00:22:59.97 UT, both theGamma-ray Burst
Monitor (GBM)8 and the Large Area Telescope (LAT)9 onboard the
Fermi Gamma-ray Space Telescope triggered on the very bright short
GRB090510 (hereafter all times are measured relative to T0). Ground-
based optical spectroscopy data, taken 3.5 days later10, exhibited
prominent emission lines at a common redshift of z5 0.9036 0.003,
corresponding to a luminosity distance of dL5 1.83 1028 cm (for a
standard cosmology of [VL, VM, h]5 [0.73, 0.27, 0.71]). The GBM
light curve (Fig. 1b, c; 8 keV–40MeV) consists of seven main pulses.
After the first dim short spike near trigger-time, the flux returns to
background level; the main GBM emission starts at 0.53 s and lasts
,0.5 s. The main LAT emission above 100MeV starts at,0.63 s and
lasts,1 s with a decaying tail that extends to,200 s.

A single 31-GeV photon was detected at 0.829 s, which coincides in
time with the last of the seven GBMpulses (Fig. 1b, c, f). The nature of
this Fermi/LAT event as a photon (rather than a background cosmic
ray) was confirmed with very thorough analysis (see Supplementary
Information section 1). We find the directional and temporal coincid-
ence of this photon with GRB090510 to be very significant, at .5s
confidence, and find the 1s confidence interval for its energy to be
27.97–36.32GeV.

The known distance10 (z5 0.9036 0.003) of GRB090510 and the
detection of.1GeV photons less than a second from its onset allow us
to constrain the possible variation of the speed of light with photon-
energy (known as photon dispersion: one form of the Lorentz
InvarianceViolation, LIV). Some quantum-gravity theories2,4,5 are con-
sistent with the photon-propagation speed vph varying with photon-
energy Eph, and becoming considerably different from the ordinary (or
low-energy limit of) speed of light, c; vph(EphR0), near the Planck

scale (when Eph becomes comparable to EPlanck5MPlanckc
2). For

Eph=EPlanck, the leading term in a Taylor series expansion of the
classical dispersion relation is jvph/c2 1j< (Eph/MQG,nc

2)n, where
MQG,n is the quantum gravity mass for order n and n5 1 or 2 is usually
assumed. The linear case (n5 1) gives a difference Dt56(DE/
MQG,1c

2)D/c in the arrival time of photons emitted together at a
distanceD fromus, and differing byDE5Ehigh2Elow. At cosmological
distances this simple expression is somewhat modified (see Sup-
plementary Information section 4).

Because of their short duration (typically with short substructure
consisting of pulses or narrow spikes) and cosmological distances,
GRBs are well-suited for constraining LIV2,11,12. Individual spikes in
long13 (of duration .2 s) GRB light-curves (10–1,000 keV) usually
show14 intrinsic lags: the peak of a spike occurs earlier at higher
photon-energies. However, there are either no lags or very short lags
of either sign for short GRBs15. Thus far, intrinsic lags have been seen
only on timescales of up to the width of individual spikes in a light
curve, which for GRB 090510 are,1022 s. Intrinsic lags have not yet
been measured at high energies; if they are also present there, it is
reasonable to assume that their behaviour is similar to that at low-
energies (at least approximately).

When allowing for LIV-induced time-delays, the measured arrival
time, th, of the high-energy photons might not directly reflect their
emission time, tem (which would have been their arrival time if
vph5 c). Therefore, we make reasonable and conservative assump-
tions on tem, constraining it using the observed lower-energy emis-
sion (for which LIV-induced time-delays are relatively negligible).

Using the DisCan method12, we have searched for time delays
within the LAT data (actual energy range of the photons used:
35MeV–31GeV) in the burst interval with themost intense emission
(0.50–1.45 s). This approach extracts dispersion information from all
detected LAT photons, and does not involve binning in either time or
energy. It moves each photon to the time at which it would have been
detected in the absence of any LIV-induced lag, given a trial value of
the energy-lag coefficient. The value of this coefficient that maxi-
mizes a measure of the sharpness of the resulting light curve is an
estimate of the apparent dispersion. Bootstrap error analysis16 shows
that this is not a detection, just an upper limit. For reasons similar to
those advanced above (improbability of inherent lags or fortuitous
cancellation of quantum gravity and intrinsic dispersion) we take this
as an upper limit on LIV-induced dispersion. A similar method was
described in ref. 17. We obtain a robust upper limit of jDt/
DEj, 30msGeV21 (at the 99% confidence level) on possible linear
energy dispersion of either sign, or j1;MQG,1/MPlanck. 1.22 (limit
a in Table 1).

Using a different approach, we derive additional limits. To con-
strain a positive time delay (vph, c, implying th. tem) we do not
attempt to associate the relevant high-energy photon with a particu-
lar spike in the low-energy light-curve. Instead, we simply assume
that it was emitted sometime during the relevant lower-energy emis-
sion episode, that is, after its starting time tstart (tem. tstart; see Fig. 1).

doi:10.1038/nature08574

1
 Macmillan Publishers Limited. All rights reserved©2009
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Coherent State Approach to NC An alternative model of non-commutativity

Coherent State Non-Commutativity
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Coherent State Approach to NC An alternative model of non-commutativity

An alternative model of NC - Smailagic and Spallucci, 2003

2-dimensional space: coordinate operators such that [x̂1, x̂2] = iL2

Define

Â =
1
√
2L

(x̂1 + ix̂2), Â† =
1
√
2L

(x̂1 − ix̂2), [Â, Â†] = 1

Coherent states are defined by Â|α〉 = α|α〉
Define the ordinary commuting coordinates as the expectation values:
〈α|x̂1|α〉 =

√
2LRe(α) ≡ y1 , 〈α|x̂2|α〉 =

√
2L Im(α) ≡ y2

The vector ~y = (y1, y2) describes the mean position of the particle.

Momenta ~p = (p1, p2) are commuting and the new “plane-wave function” of a free point
particle on the NC plane is [p± = (p1 ± ip2)/2]

ei~p·~x → 〈α|eip1 x̂1+ip2 x̂2 |α〉 = 〈α|eip+Â†eip−Âe−θp+p− |α〉 = e−
L2
4 (p2

1+p2
2)+i~p·~y

Note the relative sign between p21 and p22: it is independent of the metric signature.
The Fourier transform is modified:

F(y) = (2π)−2
∫

d2p F̃(p)e−
L2
4 (p2

1+p2
2)+i~p·~y
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Coherent State Approach to NC An alternative model of non-commutativity

NC Quantum Field Theory - M. Rinaldi - ArXiv:1003.2408

Scalar field of mass m satisfies the usual Klein-Gordon equation in Minkowski space
with (mean) coordinates (t, x) (� + m2)φ(t, x) = 0 but the mode normalization is
modified according to

up(t, x) =
e−L2(ω2+p2)
√
4πω

e−iωt+i~p·~x , ω2 = m2 + p2

The Klein-Gordon product reflects the non-orthogonality of the coherent states:

(up, u′p) = e−2L2(ω2+p2)δ(p − p′)

A scalar field can be represented as the usual mode sum:

φ(t, x) =
∫

d~p
√
4πω

[
âpup(t, x) + â†pu∗p (t, x)

]
, [âp, â†p′ ] = 4πωδ(p − p′)

The equal-time commutator reads

[φ(t, x), φ̇(t, x′)]=
i

4
√
πL

e−2L2m2− (x−x′)2

16L2 .

In the limit L→ 0 we recover the strandard iδ(x − x′).
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Coherent State Approach to NC An alternative model of non-commutativity

NC Quantum Field Theory - M. Rinaldi - ArXiv:1003.2408

The Wightman functions are

G+(xµ, x′µ) ≡ 〈0|φ(xµ)φ(x′µ)|0〉 =
∫

d~p
4πω

e−2L2(ω2+p2)−ipµ(xµ−x′µ)

The Feynman propagator reads

GF = −i
∫

d~p
4πω

e−2L2(ω2+p2)
[
θ(t − t′) e−ipµ(xµ−x′µ) + θ(t′ − t) eipµ(xµ−x′µ)

]
This propagator satisfies the equation

(� + m2)GF(xµ, x′µ) = −
i

8πL2 e−
(∆t2+∆x2)

8L2

The Feynman propagator can also be written as

GF(xµ, x′µ) = i
∫

d2p
(2π)2

e−2L2(ω2+p2)−ipµ(xµ−x′µ)

ω2 − p2 −m2 ,

from which we can easily read off the momentum space propagator

G̃F(ω, p) =
e−2L2(ω2+p2)

ω2 − p2 −m2
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Coherent State Approach to NC An alternative model of non-commutativity

NC Quantum Field Theory - M. Rinaldi - ArXiv:1003.2408

In (mean) coordinate space we find:

G(t, x; t′, x′)m=0 = −
1− e−

(t−t′)2+(x−x′)2

2L2

4π2[(t − t′)2 − (x − x′)2]

G(t, x; t′, x′)m→0 = −
1

8π2L2 + m2e
m2L2

2 Ei
(

m2L2

2

)
+ . . .

In the coincident limit (x, t)→ (x′, t′) the propagator is UV finite.
The Hamiltonian operator becomes

Ĥ =
1
2

∫
d2x
[
φ̇2 + (~∇φ)2 + m2φ2

]
=

1
2

∫
d~p e−2L2(p2+ω2)ω

(
âpâ†p + â†p âp

)
Normal ordering is no longer necessary as

〈0|Ĥ |0〉m 6=0 = e−2L2m2
∫ ∞
0

dp e−4L2p2√
p2 + m2 <∞

〈0|Ĥ |0〉m=0 =
1

8L2
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Coherent State Approach to NC An alternative model of non-commutativity

NC Quantum Field Theory - M. Rinaldi - ArXiv:1003.2408

In curved space no global killing vectors and positive and negative frequency mixing so
φ(x) =

∑
i

( âiui + h.c.) =
∑

j

( b̂jvj + h.c.)

The relations between u and v mode sets are non-trivial vj =
∑

i

(αĳui + βĳu∗i ).

αĳ , βĳ are the Bogolubov coefficients. When βĳ = (vj , u∗i ) 6= 0 we have particle
creation. The vacuum state with respect to u is seen as a populated state by v.

In NC the situation apparently does not change. We write the damped modes as

Ui = guui , Vi = gvvi , gu,v ∼ e−L2(ω2
u,v+p2)

The βĳ coefficient is unchanged as βjl = − 1
gugv

(Vj ,U∗l ) ≡ (vj , u∗l ). Thus

〈Ni〉 =
∑

j

|βĳ |2 is unchanged.

However, the energy density Ĥi = 1
2

∫
d~p e−2L2(p2+ω2)ω

(
1
2 + N̂i

)
is damped. High

frequency modes do not contribute to the energy density!
Solution to the trans-Planckian problem?
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Coherent State Approach to NC An alternative model of non-commutativity

NC Quantum Field Theory in Higher Dimensions

We can extend the above construction to higher dimensions.
Assume that 2n coordinates do not commute [x̂µ, x̂ν ] = iΘµν , where Θµν is an
anti-symmetric, constant Lorentz tensor.
Use Lorentz transformation to write, in D-dimensions

Θµν = diag(Θ1,Θ2, . . . ,ΘD/2) , Θi = θi

(
0 1
−1 0

)
We define D

2 planes, on each of which we repeat the construction above.
The momentum space propagator is

G(~p1, . . . ,~pD/2) =
1(

~p21 + ~p22 + . . .+ ~p2D/2 + m2
) exp(−1

2

D/2∑
j=1

θj~p2j

)
It can be shown that if θi = θ for all i the propagator is covariant (Smailagic and
Spallucci, 2004).
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Coherent State Approach to NC An alternative model of non-commutativity

“Conventional” NC Field Theory

On Rd , coordinates are operators [x̂µ, x̂ν ] = iΘµν , antysimmetric and constant matrix.
Based on the ?-product:

(f ? g)(x) = e
i
2 Θµν∂y

µ∂
z
ν f (y)g(z)

∣∣∣
y=z=x

Actions for fields are unchanged S =
∫

ddxL[φ]
However: ∫

ddx (φ ? φ) =
∫

ddx φ2 ,
∫

ddx (∂φ ? ∂φ) =
∫

ddx (∂φ)2

therefore free theories are unchanged. NC is visible only when interactions are present,
through a phase factor in the vertex of the Feynman rules. For a φn theory:

V (k1 · · · kn) = exp

[
−

i
2

∑
i<j

kiµΘµνkjν

]

For practical calculations, usually one truncates exp
[

i
2Θµν∂y

µ∂
z
ν

]
loosing non-locality.
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Coherent State Approach to NC An alternative model of non-commutativity

Comparison with ?-product NC

What are the advantages of the coherent state approach?

• Simplicity:
Based on well known QM.
No ?-product: also free fields feel NC.
Minimal modification of QFT.
Unitary, no IR/UV mixing, UV-finite.

• The field theory is completely known
In theories where G ∼ (∆x2 + `2p)−1 (Parker, Padmanabhan) we do not know the KG
equation.
Dispersion relations are not modified.
In four-dimension the theory is covariant.
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Coherent State Approach to NC Unruh Effect

Unruh Effect - Nicolini and Rinaldi, ArXiv: 0910.2860

Detector moving in flat spacetime, on accelerated trajectory.
First order amplitude

dΓ = i〈E, ψ|
∫ +∞

−∞
dτLint |0M; E0〉, Lint = γ µ(τ)φ[x(τ)]

Transition probability at leading order µ(τ) ' eiH0τµ(0) e−iH0τ :

Γ ' γ2
∑

E

∣∣〈E|µ(0)|E0〉
∣∣2F(∆E)

Detector’s response rate function

F(∆E) =
∫ +∞

−∞
dτ
∫ +∞

−∞
dτ ′ e−i∆τ∆EG+(x(τ), x(τ ′))

On a trajectory parameterized by τ , G+ depends on ∆τ → response rate

Ḟ(∆E) =
∫ +∞

−∞
d∆τ e−i∆τ∆EG+(∆τ)
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Coherent State Approach to NC Unruh Effect

Unruh Effect - Nicolini and Rinaldi, ArXiv: 0910.2860

Hyperbolic trajectory z = y = 0, x =
√

t2 + a−2, a = acceleration

G+(∆x) = −
a2

16π2 sinh2
[ a(τ−τ ′−2iε)

2

] , t =
sinh(τa)

a

The response rate is

Ḟ(∆E) ∼
1

e2π∆E/a − 1

i.e a thermal spectrum with temperature T = a/(2πkB) ∝ acceleration
In Euclidean NC theory

GE(t , x ; t′, x′) = −
1− e−

(t−t′)2+(x−x′)2

2L2

4π2[(t − t′)2 + (x − x′)2]
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Coherent State Approach to NC Unruh Effect

Unruh Effect - Nicolini and Rinaldi, ArXiv: 0910.2860

Modified response rate for a trajectory f (∆τ) on the Euclidean plane:

Ḟ =
1

4π2

∫ −i∞

i∞
d∆τ e−∆E∆τ

[
1− e−

f(∆τ)
2L2

f (∆τ)

]

If f (∆τ) is smooth enough, there are no poles.
For a Rindler’s trajectory: f (∆τ) = 4a−2 sin2(a∆τ/2) (periodic on the Euclidean
plane) so:

Ḟ '
1
16

[
−

9
2
√
θ

+ a2
√
θ

]
e−∆E2θ +O(θ1/2∆E2) +O(a2θ3/2∆E2)

The leading term is negative and does not depend on the acceleration.
It diverges for θ → 0: the integral in τ and the limit θ = 0 do not commute!
The next-to-leading order term depends on a but it is not thermal.
One needs calibration in order to measure this higher order effect (see Parker et. al.).
The leading term can be interpreted as a dissipation effect.
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Coherent State Approach to NC Inflationary Universe

Inflationary Universe
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Coherent State Approach to NC Inflationary Universe

Inflationary Universe

One-loop effective action: massive scalar field

Leff = −
i
2

∫ ∞
iθ/2

ds
s

e−im2s e
θ
2 �x KDS(x, x′; s), L2 ∝ θ

Coincident points → KDS(x, x; s) = −
i

16π2s2

∞∑
n=0

an(x, x)(is)n

a0(x, x) = 1 , a1(x, x) =
R
6
, a2(x, x) =

R2

72
+ · · ·

We can integrate: Leff = L0 + L1a1(x, x) + L2ã2(x, x) + . . .

L0 =
m4

64π2

[
(4 + 2θm2)e

θ
2 m2

m4θ2
+ Ei

(
1,−

θm2

2

)]
,L1 = −

m2

32π2

[
2e

θ
2 m2

m2θ
+ Ei

(
1,−

θm2

2

)]
If L = (16πGbare)−1(R − 2Λbare) + Leff then

Λeff = Λbare

(1− 8πL1Geff
3

)
+ 8πGeffL0 , Geff =

3Gbare
3 + 8πL1Gbare

In the massless case L0 = (16π2θ2)−1 and L1 = (16π2θ)−1
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Coherent State Approach to NC Inflationary Universe

Semiclassical approach - M. Rinaldi - ArXiv: 0908.1949

According to the semiclassical picture: Rµν − 1
2Rgµν = 8πG〈Tµν〉

In general 〈Tµν〉 diverges. With point-splitting

〈Tµν(x, x′)〉E =
1
2
(

gα
′
µ∇α′∇ν + gα

′
ν∇µ∇α′

)
GE(x, x′) +

−
1
2

gµν
(

gα
′β∇α′∇β + m2

)
GE(x, x′) ,

In NC theory:

GE(x, x) =
∫ ∞
0

dsK(x, x; s) , K(x; s) =
e−m2s

16π2(s + θ)2

[
1 + e[sθ/(s+θ)]�

∞∑
n=1

snan(x)
]

by expanding 16π2GE(x, x) = a0
θ
− F1(θm2)a1(x) + · · ·

also (�x + m2)GE(x, y) = − eθ�x

[
1√g δ

(4)(x, y)
]

Therefore

〈Tµν〉 = ∇ν∇µGE(x) +
1
2

gµν lim
y→x

eθ�x

[
δ(4)(x, y)
√g

]
=

gµν
32π2θ2

+ curvature corrections

Maximum and constant energy density ρNC ∝ θ−2 ∝ H2: inflationary solution?
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Coherent State Approach to NC Inflationary Universe

Inflationary Universe - Thermodynamics

NC modifies the bosonic mean occupation number:

〈nω〉 =
1

exp
(

~ω
kT + θ

2ω
2
)
− 1

Stephan-Boltzman law:

ρ =
(kT)4

π2c3~3

∫ ∞
0

x3dx
ex+Ax2 − 1

, A =
θ

2

( kT
~

)2
When T is large∫ ∞

0

x3dx
ex+Ax2 − 1

'
π2~4

3θ2k4T4 +O(T−5) =⇒ ρ '
~

3c3θ2
+O(T−1)

Also, ω = ω(T). In the early Universe

H2 '
~

9M2
p c3θ2

=⇒ de Sitter phase? =⇒ Bounce?
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Coherent State Approach to NC Inflationary Universe

Inflationary Universe - Speculations

NC replaces δ(x) with Gaussian functions. For black hole, the point mass M becomes

ρ(r) = M
(4πθ)3/2 e−

r2
4θ . This is justified with the "Voros" product

Can we say the same for the energy density near a singularity? Namely:

ρ(t ∼ 0) =
ρ0

θ2
e−t2/θ

If so, the Friedmann equation H2 ∝ ρ gives

Qualitative behaviour of a (solid black line), ä (dotted line), H (dashed line), and
(aH)−1 (dot-dashed line) as functions of time (M. Rinaldi, ArXiv: 0908.1949)
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Coherent State Approach to NC Inflationary Universe

Black Holes
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Coherent State Approach to NC Black Holes

Black Holes

From P. Nicolini, A. Smailagic, E. Spallucci, Phys. Lett. B632 547, 2006:

Smeared pointlike source ρ(r) = M
(4πθ)3/2 e−

r2
4θ , L2 ∝ θ

Effective stress tensor

Tµ
ν = −diag

(
ρ, ρ, ρ+

r
2
∂ρ

∂r
, ρ+

r
2
∂ρ

∂r

)
, Tµν

;µ = 0

Metric ds2 = −gttdt2 + grr dr2 + r2dΩ2 with

gtt = −grr = −
[
1−

2M
r
γ

(
3
2
,

r2

4θ

)]
There can be zero, one or two horizons. The 2-horizon solution evolves towards the
1-horizon (extremal) configuration.

Near the origin, geometry is de Sitter. Negative pressure plays the role of a positive
cosmological constant.
Large black holes, T ∼ (4πrH )−1. For small ones, the temperature reaches a maximum
and then drops to zero.
The Hawking radiation is the same for large black holes but it stops at the extremal
configuration. There are stable remnants: dark matter?
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Coherent State Approach to NC Black Holes

Black Holes
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Courtesy of P. Nicolini, A. Smailagic, E. Spallucci, Phys. Lett. B632 547, 2006.
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Conclusions

Conclusions

We have seen that

observations seem to rule out short distance modifications of dispersion relations

we can introduce a minimal length in a covariant way, e.g. NC on coherent states

this can lead to important effects in QFT, black holes and inflationary cosmology.

What we intend to do is to look at

cosmological perturbation and possible signatures in CMB (in progress)

to study the transplanckian problem in the Hawking effect (in progress)

black hole thermodynamics, early cosmological solutions...
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Conclusions

Path Integral Duality
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Conclusions

Path Integral Duality (Padmanabhan PRL 78, 1854)

Can we introduce a minimal length in a covariant way?

Modified euclidean Feynman propagator for (Ĥ + m2)Φ = 0

GF(x, x′) =
∫ ∞
0

ds e−m2s e−L2
p/s K(x, x′; s), K(x, x′; s) = 〈x|e−iĤs|x′〉

Invariant under ds → L2
p/ds: G̃F(p) ∼


1

p2+m2 LP � 1

exp(
√

p2+m2)
p2+m2 LP � 1

In coordinate space: G(x, x′) ∼ 1
(x−x′)2+L2

p
→ relativistic propagator.

Links with string T-duality: same propagator as for the CoM of a bosonic string.

Small corrections to the Unruh and Casimir effects.
No visible effects on cosmological spectra.
In curved space → deWitt-Schwinger expansion → Rescaled GN and Λ
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