
Separating expansion from
collapse and generalizing TOV

condition in spherically symmetric
models with pressure, with

Λ-CDM examples
Morgan Le Delliou, IFT

CSIC/IFT Postdoc with
Collaboration with

Juan Garcia-Bellido, IFT, Madrid
J.P. Mimoso, U. Lisboa, Portugal
F. Mena, U. Minho, Braga, Portugal

Mass/curvature perturbation in a flat background

E < 0

r

E = −2M
r

E = 0
E > 0

E = 0

[Le Delliou & Mimoso 2009]: AIP Conf.Proc.1122 (2009) 316 arXiv:0903.4651,
to appear in [Le Delliou, Mena & Mimoso 2010] Proceedings of ’Invisible Universe’, arXiv:0911.0241,
[Mimoso, Le Delliou & Mena 2010] submitted to Phys. Rev. D, arXiv:0910.5755.



Introduction-a

Context: •Structure formation in a Cosmology of Dark Energy (DE)
and Dark Matter (DM) → spherical collapse with pressure and outer
expansion •Press-Schechter Structure formation

In the Press-Schechter scheme,
relativistic spherical collapse −→ get the non-linear collapse time

for the simple minimally coupled homogeneous DE
top hat model Einstein’s Equations - with “Birkhoff’s Theorem”

FLRW model with “Top hat” model

ρmi,b(1 + ∆i)

ρmi,b

R

t

background expansion

overdensity

Surface tension not treated!



Introduction-b

Context:
•Possibility of an analog/extension to Birkhoff’s theorem in
non-vacuum background
•trapped surfaces [Penrose, Hawking 1969; Cattoen 2005; Grundlach, Joshi 2007]

Birkhoff’s theorem invoked in the Press-Schechter scheme
in the spherical collapse

to justify ignoring the backreactions of background vs
overdensity

However,
the theorem is proved in the case of asymptotic flatness (vacuum at infinity),

not in cosmological expanding background.

An analog/extension would introduce some weaker sort of causal separation
than the so-called trapped surfaces that capture all causal links.



Introduction-c

Goal: Does the expansion of the universe affect collapsing fluctuations?
In spherical symmetry, can an analog/extension to Birkhoff’s theorem
be developed for cosmological boundary conditions?
Can we define locally/globally matter-trapped surfaces separating cos-
mological expansion from collapsing regions?

Plan

I. ADM approach to LTB models in GPG system and GLTB: General
Description

II. Definition of a separating shell: Non-linear collapse model with P
and expansion

III. Initial fluctuation(s) with homogeneous pressure: the perturbed ΛCDM



I-a ADM in GPG:

• metric: with ADM 3+1 splitted along flow na, defined with
a lapse function α

a spherically symmetric shift vector
−→
β =

(
β 0 0

)
a curvature/energy function E

in Generalised Painlevé-Gullstrand coordinates [Laski & Lun 2006]

ds2 = −α(t, r)2dt2 +
1

1 + E(t, r)
(β(t, r)dt+ dr)2 + r2dΩ2.

−→
β dt

αêb
tdt

t + dt

t

t− dt

xb

na(xb)dt



I-a ADM in GPG:

• metric: with ADM 3+1 splitted along flow na, defined with

a lapse function α

a spherically symmetric shift vector
−→
β =

(
β 0 0

)
a curvature/energy function E

−→
β dt

αêb
tdt

t + dt

t

t− dt

xb

na(xb)dt

in Generalised Painlevé-Gullstrand coordinates
[Laski & Lun 2006]

ds2 = −α(t, r)2dt2 +
1

1 + E(t, r)
(β(t, r)dt+ dr)2 + r2dΩ2.

• Perfect fluid−→projected Bianchi identities:
along the flow, orthogonal to it,

energy density conservation, the Euler equation:
nbT ab;a = −Lnρ− (ρ+ P ) 3Θ = 0, h baT

c
b;c = 0⇒ P ′ = − (ρ+ P ) α

′
α .



I-a ADM in GPG:

• metric: with ADM 3+1 split, spherically symmetric, in GPG coordi-
nates [Laski & Lun 2006]

ds2 = −α(t, r)2dt2 +
1

1 + E(t, r)
(β(t, r)dt+ dr)2 + r2dΩ2.

• Einstein Field Equations read as Lie derivatives along the flow, of
curvature E (in explicit presence of a Λ)
a Misner-Sharp Mass M ≡ r2 (1 + E) (lnα)′ − 4πPr3 + 1

3Λr3

+r2Ln
(
β
α

)
LnE =± 2

√
2
M

r
+

1

3
Λr2 + E

1 + E

ρ+ P
P ′ = 2

β

α

1 + E

ρ+ P
P ′,

LnM =± 4πPr2

√
2
M

r
+

1

3
Λr2 + E = 4πPr2β

α
.

with the radial evolution E + 2
M

r
+

1

3
Λr2 =

(
β

α

)2
.



I-a ADM in GPG:

• metric: with ADM 3+1 split, spherically symmetric, in GPG coordi-
nates [Laski & Lun 2006]

ds2 = −α(t, r)2dt2 +
1

1 + E(t, r)
(β(t, r)dt+ dr)2 + r2dΩ2.

• Einstein Field Equations read as Lie derivatives along the flow, of
curvature E (in explicit presence of a Λ)
a Misner-Sharp Mass M ≡ r2 (1 + E) (lnα)′ − 4πPr3 + 1
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.

with the radial evolution E + 2
M

r
+

1

3
Λr2 =

(
β

α

)2
.

We also isolated a gTOV parameter (generalised Tolman-Oppenheimer-Volkoff)

gTOV =

[
1 + E

ρ+ P
P ′+ 4πPr +

M
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−

1

3
Λr

]
= Ln

(
β

α

)
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I-a ADM in GPG:

• metric: with ADM 3+1 split, spherically symmetric, in GPG coordi-
nates [Laski & Lun 2006]

ds2 = −α(t, r)2dt2 +
1

1 + E(t, r)
(β(t, r)dt+ dr)2 + r2dΩ2.

• EFEs read as Lie along the flow

LnE =± 2
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with radial evolution E + 2
M
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+

1

3
Λr2 =

(
β
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)2
.

• Perfect fluid−→projected Bianchi identities:
along the flow, orthogonal to it,

energy density conservation, the Euler equation:
nbT ab;a = −Lnρ− (ρ+ P ) 3Θ = 0, h baT

c
b;c = 0⇒ P ′ = − (ρ+ P ) α

′
α .

System is closed with equation of state f(ρ, P ) = 0.



I-a ADM in GPG:

• metric: with ADM 3+1 split, spherically symmetric, in GPG coordi-
nates [Laski & Lun 2006]

ds2 = −α(t, r)2dt2 +
1

1 + E(t, r)
(β(t, r)dt+ dr)2 + r2dΩ2.

• EFEs: In terms of GPG time derivatives it reads

Ṁ =± α
√

2
M

r
+

1

3
Λr2 + E

(
M ′+ 4πPr2

)
= β

(
M ′+ 4πPr2

)
,

Ė =± α
√
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M

r
+

1

3
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(
E′+ 2
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ρ+ P
P ′
)

= β

(
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)
.

with radial evolution E + 2
M

r
+
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3
Λr2 =

(
β

α

)2
.



I-b ADM in GLTB:

• metric: Generalised Lemaître-Tolman-Bondi: choosing β = −ṙ in
GPG, we can get almost Lemaître-Tolman-Bondi coordinates [Laski &
Lun 2006]

ds2 = −α(T,R)2 (∂T t)
2 dT2 +

(∂Rr)
2

1 + E(T,R)
dR2 + r2dΩ2,



I-b ADM in GLTB:

• metric: Generalised LTB: choosing β = −ṙ we can get almost LTB
coordinates [Laski & Lun 2006]

ds2 = −α(T,R)2 (∂T t)
2 dT2 +

(∂Rr)
2

1 + E(T,R)
dR2 + r2dΩ2,

• EFEs: the Lie derivatives in GPG become time derivatives in GLTB

Ṁ =β4πPr2 = ±α
√

2
M

r
+

1

3
Λr2 + E4πPr2,

Ėr′ =2β
1 + E

ρ+ P
P ′ = ±2

1 + E

ρ+ P
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√
2
M

r
+

1

3
Λr2 + E

with the radial evolution E + 2
M

r
+

1

3
Λr2 =

(
−
ṙ
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I-b ADM in GLTB:

• metric: Generalised LTB: choosing β = −ṙ we can get almost LTB
coordinates [Laski & Lun 2006]

ds2 = −α(T,R)2 (∂T t)
2 dT2 +

(∂Rr)
2

1 + E(T,R)
dR2 + r2dΩ2,

• EFEs: the Lie becomes time derivatives

Ṁ =β4πPr2 = ±α
√

2
M

r
+

1

3
Λr2 + E4πPr2,

Ėr′ =2β
1 + E

ρ+ P
P ′ = ±2

1 + E

ρ+ P
P ′α

√
2
M

r
+

1

3
Λr2 + E

with radial evolution E + 2
M

r
+

1

3
Λr2 =

(
−
ṙ

α

)2
.

• Many fluids mass equation (absorbs Λ term): each component i uses
the β

α term from the overal sum of the masses.

Ṁi =β4πPir
2 = ±α

√
2
M

r
+ E4πPir

2, where M =
∑

Mi.



II Definitions of a separating shell

Equations of motion and behaviour of dust suggest to focus on shells
with dust-like null mass/energy flow, that is:
∀t, LnM(t, r?(t)) =0 ⇔ ∀t, E =− 2

M

r?
< 0!!

Mass/curvature perturbation in a flat background

E < 0

r

E = −2M
r

E = 0
E > 0

E = 0



II Definitions of a separating shell

Equations of motion and behaviour of dust suggest shells with dust-like
null mass/energy flow:
∀t, LnM(t, r?(t)) =0 ⇔ ∀t, E =− 2

M

r?
< 0!!

Radial behaviour of that shell is then similar to a turnaround shell

r? =−
2M?

E?
, ṙ? =0, r̈? =− α2

[
gTOV? − r2

?
gTOV2

?

M?

]
.

The only difference in LTB coordinates is acceleration:
r̈LTB,? =− α2gTOV?.



II Definitions of a separating shell

Equations of motion and behaviour of dust suggest shells with dust-like
null mass/energy flow:
∀t, LnM(t, r?(t)) =0 ⇔ ∀t, E =− 2

M

r?
< 0!!

Radial behaviour of that shell is then similar to turnaround shell

r? =−
2M?

E?
, ṙ? =0, r̈? =− α2

[
gTOV? − r2

?
gTOV2

?

M?

]
; r̈LTB,? =− α2gTOV?.

Locally, gTOV=0 gives the TOV equation
⇔ static condition

on the limit shell

gTOV? =0 ⇔ −
1

ρ+ P
P ′ =

4πPr + M
r2

1− 2M
r


?

.

Note that

Lnr =−
β

α
⇔ L2

nr = −gTOV.



II Definitions of a separating shell

Equations of motion and behaviour of dust suggest shells with dust-like
null mass/energy flow:
∀t, LnM(t, r?(t)) =0 ⇔ ∀t, E =− 2

M

r?
< 0!!

Alternate approach: turnaround shell? (null expansion Θ),
gauge invariant definition (Θ linked with shear a)

Θ =− 3
(
a+

β

α

1

r

)
, Θ? + 3a? =0.



II Definitions of a separating shell

Equations of motion and behaviour of dust suggest shells with dust-like
null mass/energy flow:
∀t, LnM(t, r?(t)) =0 ⇔ ∀t, E =− 2

M

r?
< 0!!

Alternate approach: gauge invariant definition (expansion Θ linked with
shear a)

Θ =− 3
(
a+

β

α

1

r

)
, Θ? + 3a? =0.

Non Zero Shear in spherical symmetry due to non-flatness:

aa

ṙdt 1/Θ

a 6= 0 in spherical symmetry



II Definitions of a separating shell

Equations of motion and behaviour of dust suggest shells with dust-like
null mass/energy flow:
∀t, LnM(t, r?(t)) =0 ⇔ ∀t, E =− 2

M

r?
< 0!!

Alternate approach: gauge invariant definition (expansion Θ linked with
shear a)

Θ =− 3
(
a+

β

α

1

r

)
, Θ? + 3a? =0.

Constant Areal radius doesn’t imply global staticity:

r, t2, E(r, t2)

r, t1, E(r, t1)

ṙ⋆ = 0



II Definitions of a separating shell

Equations of motion and behaviour of dust suggest shells with dust-like
null mass/energy flow:
∀t, LnM(t, r?(t)) =0 ⇔ ∀t, E =− 2

M

r?
< 0!!

Alternate approach: gauge invariant definition (expansion Θ linked with
shear a)

Θ =− 3
(
a+

β

α

1

r

)
, Θ? + 3a? =0.

Dynamics of shells governed by the Raychaudhuri equation. Reformulated:

− LnΘ−Θ2 −
6

r

β

α

[
2Θ

3
+

1

r

β

α

]
= 4π (ρ+ 3P )

FLRW Friedmann source

−
P ′

2 (ρ+ P )
E′

+
(
gTOV − 4π

3 r (〈ρ〉+ 3P )
)′

FLRW-like source

+

(
2

r
−

P ′

ρ+ P

) (
gTOV − 4π

3 r (〈ρ〉+ 3P )
)

FLRW-like source

,



II Definitions of a separating shell

Equations of motion and behaviour of dust suggest shells with dust-like
null mass/energy flow:
∀t, LnM(t, r?(t)) =0 ⇔ ∀t, E =− 2

M

r?
< 0!!

Alternate approach: gauge invariant definition (expansion Θ linked with
shear a)

Θ =− 3
(
a+

β

α

1

r

)
, Θ? + 3a? =0.

Examples= Dynamics: Raychaudhuri equation, shear free
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3
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FLRW Friedmann source
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+

(
2

r
−

P ′

ρ+ P

) (
gTOV − 4π
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,



II Definitions of a separating shell

Equations of motion and behaviour of dust suggest shells with dust-like
null mass/energy flow:
∀t, LnM(t, r?(t)) =0 ⇔ ∀t, E =− 2

M

r?
< 0!!

Alternate approach: gauge invariant definition (expansion Θ linked with
shear a)

Θ =− 3
(
a+

β

α

1

r

)
, Θ? + 3a? =0.

Ex.=Dynamics: Raychaudhuri equation, homogeneous pressure (P ′ = 0)

−LnΘ−Θ2 −
6

r

β

α

[
2Θ

3
+

1

r

β

α

]
= 4π (ρ+ 3P )

FLRW Friedmann source

,

gTOV = 4π
3 r (〈ρ〉+ 3P )

FLRW-like source

gTOVr = 0⇒P = −
〈ρ〉r

3
.



II Definitions of a separating shell

Equations of motion and behaviour of dust suggest shells with dust-like
null mass/energy flow:
∀t, LnM(t, r?(t)) =0 ⇔ ∀t, E =− 2

M

r?
< 0!!

Alternate approach: gauge invariant definition (expansion Θ linked with
shear a)

Θ =− 3
(
a+

β

α

1

r

)
, Θ? + 3a? =0.

Ex.=Dynamics: Raychaudhuri equation, FLRW model (also defined with
α = 1, β = −ṙ, E = −kx2, r = ax = ∂xr.x)

−3Ln
Θ

3
− 3

(
Θ

3

)2
= −3Ḣ − 3H2 = −3

ä

a
= 4π (ρ+ 3P )

Friedmann source

〈ρ〉 = ρ⇒ − r̈ = 4π
3 r (ρ+ 3P )

FLRW source

= gTOV,

gTOV = 0⇒P = −
ρ

3
, only dark radiation



III-a Non-linearly perturbed ΛCDM
Simplest example of non-pressureless perfect fluid away from dust:
spherically symmetric non-linear perturbation in a ΛCDM background.
−→Almost dust: no P gradients ⇒ no shell crossing, α′ = 0⇒ α = 1 ,

E and M conserved:
Use radial equation in GLTB and its time derivative per shell

ṙ2 =2
M

r
+

1

3
Λr2 + E, with r̈ =−

M

r2
+

Λ

3
r,

we perform Kinematic analysis, using E = V (r) ≡ −2M
r −

Λ
3r

2.

r
3
√

3M
Λ

E>

Elim− (3M )
2
3

3
√

Λ

E<

(
−2M

r − Λ
3r2

)



III-a Non-linearly perturbed ΛCDM
Kinematic analysis per shell: for each shell of a given E and V (r),
turnaround is reached when ṙ = 0⇔ E = V (r).

Motion in effective potential V .
Possibility of a stable shell: for r̈ = 0⇒ r = rlim = 3

√
3M
Λ and

E = Elim = − (3M)
2
3 Λ

1
3

Remark that for the ΛCDM, gTOV = M
r2 − Λ

3r = −r̈ !

r
3
√

3M
Λ

E>

Elim− (3M )
2
3

3
√

Λ

E<

(
−2M

r − Λ
3r2

)



III-a Non-linearly perturbed ΛCDM
Apply this to whole system:
choose initial ρi profile sets the profile of Elims, where shells are stable,

vi sets the actual Ei.

Intersection of Elim and Ei gives the actual stable separating shell
We use cosmological or plausible cosmological initial conditions

ρi is NFW and Ei a parabola

x
0 2 4 6 8 10 12
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→ cst

ln(R)

E(R) > 0

ln(−Emax)

∝ R
4
3

E = −1

∝ R2

E > −1

ln(|E(R)|)

ρi: cuspless power law; vi: Hubble flow

log(R
r0

)

∝ R2

∝ R
2(3−ǫ)

3

∝ R2

E(R) > 0

∝ R2

∝ R(2−ǫ)

log(Emax,noC(R))

log(|EnoC(R)|)



III-a Non-linearly perturbed ΛCDM
Intersection of Elim and Ei gives the actual stable separating shell

We use cosmological or plausible cosmological initial conditions
ρi is NFW and Ei a parabola

ρi(R) =
ρ0

R
R0

(
1 + R

R0

)2
+ ρb

E(R) = Ei =− 4Emin

(
R

r1

)(
R

r1
− 1
)

ρi: cuspless power law; vi: Hubble flow

ρi(R) =ρ0

(
1 +

R

R0

)−ε
+ ρb

E(R) =
(
H2
i −

Λ

3

)
R2 −

2M

R
, from vi =Hi.R
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III-b Non-linearly perturbed ΛCDM
More general initial conditions: Local Elim and Ei → stable shells, w shell crossing, +
intersection part local futures; Global in. cond. w cosmological settings at ∞ set global future

Elim
E

Elim → − (4πρb)
2
3 Λ

1
3R2

innermost R⋆ = R⋆in

R⋆2

outermost R⋆ = R⋆out

R < R⋆out never influenced
by outer shells

R

E → −K.R2

R⋆3...

Rfree∞

Efree∞
Emax(R ≤ R⋆out) = Efree∞

by inner shells
never influenced

R > Rfree∞

Elim
E

Elim → − (4πρb)
2
3 Λ

1
3R2

innermost R⋆ = R⋆in

R⋆2

outermost R⋆ = R⋆out

R < R⋆out never influenced
by outer shells

R

influenced
by inner shellsR⋆3...

R > Rfree∞ never

Efree∞

Emax(R ≤ R⋆out) = Efree∞ Rfree∞
E → 0

R

Elim
E

Emax(R ≤ R⋆out) > E∞

innermost R⋆ = R⋆in

R⋆2

outermost R⋆ = R⋆out

R < R⋆out never influenced
by outer shells

R⋆3...

Elim → − (4πρb)
2
3 Λ

1
3R2

0 < K < (4πρb)
2
3 Λ

1
3

E → E∞ = −K.R2

R

Elim
E

Emax(R ≤ R⋆out) > E∞

E → 0

Elim → − (4πρb)
2
3 Λ

1
3R2

innermost R⋆ = R⋆in

R⋆2

outermost R⋆ = R⋆out

R < R⋆out never influenced
by outer shells

E∞

R⋆3...



III-b Non-linearly perturbed ΛCDM
1. Global limit shells w shell crossing
Then Ė = 0 = Ṁ and thus Elim and Ei are conserved: each shell is
integrable from initial conditions

Local evolution: projections in time from the 2 possible local intersection
configurations of Elim and Ei

R

Elim

R⋆i

︷ ︸︸ ︷

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷E = E<(R⋆i) E = E>(R⋆i)
E = Elim(R⋆i)︸ ︷︷ ︸

ṙ

E

E

Veff.(M(R) < M(R⋆i), r)

r

r

Veff.(M(R) = M(R⋆i), r)

Veff.(M(R) > M(R⋆i), r)

E

E

r

r

r

r

ṙ

ṙ





Veff.(M(R) < M(R⋆j), r)

E r

r

ṙ



ṙ

E

Veff.(M(R) > M(R⋆j), r)

r

r



Veff.(M(R) = M(R⋆j), r)

E

r

r

ṙ

E

Elim

︷ ︸︸ ︷

︷ ︸︸ ︷︷ ︸︸ ︷E = E>(R⋆j) E = E<(R⋆j)

R⋆j

E = Elim(R⋆j)︸ ︷︷ ︸

︸ ︷︷ ︸

R



III-b Non-linearly perturbed ΛCDM

More general initial conditions: 1. Global limit shells w shell crossing

cosmological open outer limit

Elim
E

Elim → − (4πρb)
2
3 Λ

1
3R2

innermost R⋆ = R⋆in

R⋆2

outermost R⋆ = R⋆out

R < R⋆out never influenced
by outer shells

R

E → −K.R2

R⋆3...

Rfree∞

Efree∞
Emax(R ≤ R⋆out) = Efree∞

by inner shells
never influenced

R > Rfree∞

split into inner and outer boundaries



III-b Non-linearly perturbed ΛCDM

More general initial conditions: 1. Global limit shells w shell crossing

cosmological flat outer limit, case 1
Elim
E

Elim → − (4πρb)
2
3 Λ

1
3R2

innermost R⋆ = R⋆in

R⋆2

outermost R⋆ = R⋆out

R < R⋆out never influenced
by outer shells

R

influenced
by inner shellsR⋆3...

R > Rfree∞ never

Efree∞

Emax(R ≤ R⋆out) = Efree∞ Rfree∞
E → 0

still split into inner and outer boundaries



III-b Non-linearly perturbed ΛCDM

More general initial conditions: 1. Global limit shells w shell crossing

cosmological flat outer limit, case 2

R

Elim
E

Emax(R ≤ R⋆out) > E∞

E → 0

Elim → − (4πρb)
2
3 Λ

1
3R2

innermost R⋆ = R⋆in

R⋆2

outermost R⋆ = R⋆out

R < R⋆out never influenced
by outer shells

E∞

R⋆3...

only exists inner boundary



III-b Non-linearly perturbed ΛCDM

More general initial conditions: 1. Global limit shells w shell crossing

cosmological closed outer limit

R

Elim
E

Emax(R ≤ R⋆out) > E∞

innermost R⋆ = R⋆in

R⋆2

outermost R⋆ = R⋆out

R < R⋆out never influenced
by outer shells

R⋆3...

Elim → − (4πρb)
2
3 Λ

1
3R2

0 < K < (4πρb)
2
3 Λ

1
3

E → E∞ = −K.R2

only exists inner boundary



III-b Non-linearly perturbed ΛCDM
2. Global limit shells w shell crossing
Shell crossing is generic. Locally, infinitesimal shell crossing causes differential
shift: δ [E − Elim] ' 2δM

(
1
rlim
− 1

r×

)
< 0 for δM > 0 as rlim > r×.

inward δM crossing
∀R, r× < rlim

δR⋆i

R⋆i

δ[E −Elim](R)

E − 2δM
r×

Elim + δElim

Elim

E

Rin×
⋆i

R

− 2δM
r×(R) −2δM

rlim

E

Elim

Elim + δElim

δ[E −Elim](R)

outward δM crossing

2δM
r×(R)

R⋆i

2δM
rlim

E + 2δM
r×

δR⋆i

∀R, r× < rlim

Rout×
⋆i

R

Elim

E

R⋆j

−2δM
rlim

Rin×
⋆jElim + δElim

δR⋆j
δ[E − Elim](R)

∀R, r× < rlim

R

inward δM crossing

E − 2δM
r×

− 2δM
r×(R)

R

outward δM crossing

2δM
r×(R)

∀R, r× < rlim

R⋆j

E + 2δM
r×

Elim + δElim

Elim

δR⋆jδ[E −Elim](R)

E

2δM
rlim

Rout×
⋆j



III-b Non-linearly perturbed ΛCDM
2. Global in. cond. w shell crossing: example of open background
setting
Global in. cond. with cosmological settings at ∞ set global future: qualitative picture
unchanged. Qualitative integration w time of local shell crossing effect

E+δ = E−2δM

r×
, Elim+δ' Elim+2

3

δM

M
Elim,

gives modification of fate of inner and outer limit shells

Elim
E

Elim→ − (4πρb)
2
3 Λ

1
3R2

innermost R⋆ = R⋆in

R⋆2

R, r.ai/a∞

E → −K.R2

R⋆3...

E∞

Elim∞

R < R⋆out∞ never crossed
by outer shells

outermost R⋆∞ = R⋆out∞

outermost R⋆ = R⋆out

R⋆n−1
...R⋆n−2

Elim
E

Elim → − (4πρb)
2
3 Λ

1
3R2

innermost R⋆ = R⋆in

R⋆2

R

E → −K.R2

R⋆3...

max [E (R ≤ R⋆out, t =∞)] = Efree∞

R > Rfree∞
never crossed
by inner shells

Rfree∞c

Efree∞c

outermost R⋆ = R⋆out

R⋆out∞

R⋆n−1
R⋆n−2



Conclusions
Using non-singular, Generalized Painlevé-Gullstrand coordinate formulation of

the ADM spherically symmetric, perfect fluid system [Laski & Lun 2006]

allows full description without junction conditions (required in Einstein-Straus models)

we found evidence [Mimoso, Le Delliou & Mena 2010] of
possible local separating shells between inner and outer regions,
only located in elliptic (E < 0) regions,
and where expansion and shear are dependent

formulated as either
• Misner-Sharp mass flows or
• (gauge invariant) expansion/shear flows.

Moreover we have linked the conditions for staticity on these shells to the
Tolman-Oppenheimer-Volkoff equation via a

• function of Pressure and Mass we coined gTOV
and pointed out in the Raychaudhuri equation this link, together with the
FLRW source of acceleration.



Conclusions
We argue that -this local condition is global in a cosmological context (FLRW

match at radial asymptote).
-Given appropriate initial conditions, this translates into global
separations between an expanding outer region and an
eventually collapsing inner region.

We present simple but physically interesting illustrations of the results,

a model of Lemaître-Tolman dust with Λ = spherical perturbations in a ΛCDM
with two different initial sets of
cosmologically interesting conditions

→ consistent with known phenomenological
constraints [refs in Mimoso, Le Delliou & Mena 2010]

• an NFW density profile with a simple curvature profile going from
bound to unbound conditions

• a non cuspy power law fluctuation with initial Hubble flow

We show, for these models, the existence of a global separation.

We also show, for generalised but asymptotically cosmological initial
conditions that in these models, the existence of a global separation is
split into collapsed and expansion regions separation and that in closed,
and some flat, cases, only the former may survive. Shell crossing only
modifies quantitatively this picture.



Conclusions

We argue that these shells are
• trapped matter surfaces [Mimoso, Le Delliou & Mena 2010]

and that they constitute the validity locus to
• an analog to Birkhoff’s theorem.

Remark: Since, in the classic LTB and
ΛLTB models, Ṁ = 0 over all spacetime,

⇒the extended Birkhoff’s theorem valid globally on them.


