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 A six-parameter model can now explain (almost) all 
observations, ranging from the intergalactic neutral 
hydrogen to the Cosmic Microwave Background (CMB)
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 Cosmological parameters are now measured 
with exquisite precision 

Komatsu, et al. 2008



theoretical nightmares
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Cosmological Constant Problem:
 (what happened to rest of the vacuum energy?)

Is there any trouble in ΛCDM paradise?
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Cosmological Constant Problem:
 (what happened to rest of the vacuum energy?)

Live happily: Anthropic 
reasoning

or look for a more satisfying  
solution 

Is there any trouble in ΛCDM paradise?



Another approach:
de-Gravitation
Dvali, Hofmann, and Khoury 07

infrared-modified gravity theories, inspired by brane-world constructions 
with infinite-volume extra dimension



 Around Minkowski space:

 Aiming at solving the cosmological constant problem 
(not the coincidence problem)      

 Due to the higher-dimensional nature of these 
constructions, extracting cosmological predictions 
presents a daunting technical challenge.                                                                                                         
                                                        C. de Rham, S. Hofmann, J. Khoury and A. J. Tolley
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 The 4d graviton is no longer massless but a resonance (a continuum of 
massive states) with a tiny width rc

-1 .

 On intermediate scales less than rc
-1  existence of an extra scalar force  

should enhance gravitational attraction by order unity.

 Vainshtein conjecture: Non-linear interactions can decouple the extra scalar 
and suppress these effects near astrophysical sources. 

 The theories of interest are higher-dimensional generalizations of the 
Dvali-Gabadadze-Porrati model in which our visible universe is confined 
to a 3-brane.

 It has been shown instabilities are absent if our 3-brane lies within a 
succession of higher-dimensional branes, each with their own induced 
gravity term, and embedded in one another in a flat bulk space-time 
(Cascading Gravity). In the simplest codimension-2 case, for instance, our 
3-brane is embedded in a 4-brane within a 6-dimensional bulk.

Some features can be relevant for our model 
building  scheme



How to look for signatures of such 
theories
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General cosmological solution is non-existent,
➡Devise a phenomenological model 
➡ Least number of variables 
➡ Features known about theory 
➡ Explore the data 

The modifications to Friedmann Equation in cascading 
gravity suggest slow varying function of Hrc equation and 
in analogy with α=1/2, Dvali, Gabadadze, Porati model we 
assume:

What are the implications for Cosmological 
observations?

Expansion History Close to ΛCDM





 FRW with α  0
 indistinguishable 

from ΛCDM



Inhomogeneous Universe could be different
(Lensing and Newtonian potentials can be different)

๏  Ψ = -Φ in ΛCDM+General Relativity
๏ Non-relativistic matter follows -Ψ
๏ Photons (Lensing and ISW) see Φ- = (Φ-Ψ)/2

๏  Φ- ≠ -Ψ could signal the breakdown of General 
Relativity  

๏  Could lead to larger growth on intermediate scales:
 Gravity becomes massive  fifth force enhances 

gravitational attraction on non-relativistic matter  
(not photons )



 Structure on small scales 
 Lyman-α forest  

 Structure on large scales
 Integrated Sachs-Wolfe effect 
 Dark flow

 Cosmic Microwave Background
 CMB auto-correlation vanishes beyond 60 deg’s 

observational anomalies
 (to be taken with a grain of salt) 

Large Scale modifications provide a new possible way to explain 
large scale anomaly of CMB:

     We will fit our model so that  ISW and Sachs-Wolfe effects  
cancel on super-horizon scales

may indicate larger 
growth



 Ly-α, more clumpy than CMB predicts?

Lyman-α forest

WMAP3+ΛCDM
Seljak, Slosar, & McDonald 06

Lyman-α excess: structure at z~3



Fu, et al. 2008: Very weak lensing in the CFHTLS

But σ8 from lensing is consistent 
with ΛCDM

CFHTLS

WMAP5



 Gravitational Potential: 2.23±0.60 larger than ΛCDM 
predicts

A = Observed ISW / Predicted ISW

Ho, et al. 08

ISW effect X galaxies:
metric Pert. at z~0.1-1



 Local bulk flow within 50 Mpc is 407 ± 81 km/s 
ΛCDM predicts: vrms = 190 km/s

  Watkins, Feldman, & Hudson 08



 Local bulk flow within 300 Mpc is ~1000 ± 300 
km/s: First statistical detection of kinetic SZ effect

  Kashlinsky, et al. 08

kinetic SZ from 
ROSAT clusters

WMAP3+ΛCDM



Copi, Huterer, Schwarz, & Starkman 08
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 Use Parametrized Post-Friedmann (PPF) 
formulation (Hu & Sawicki 2007): 

(Consistent in analogy with DGP model for α =1/2)  
 g  0 

 GR: at early times or large densities
 g  -1/2 

 scalar-tensor theory: on sub-horizon scales at late times
 g  1 

 Newtonian potential vanishes on super-horizon scales 
at late times
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FIG. 2: Dependence of g(k, a) (see (21)) in our model on
k/aH in the matter-dominated era for rc = 0.3, 1, 3, and 10
Hubble radius. The number of space-time dimensions, D, is
assumed to be 6 (i.e. 2 extra dimensions). General Relativity
is recovered when rc ! H−1 as, g → 0.

servation alone imposes that ζ is conserved in the infinite-
wavelength limit [61]. Using this fact, Bertschinger [62]
derived the following consistency relation

ζ = const. =
H

H ′
[
(g − 1)Φ− − g′Φ− − (g + 1)Φ′−

]

+(g + 1)Φ− . (23)

In general, this condition must hold well outside the hori-
zon. As we will see shortly, however, here we impose that
ζ is conserved on all scales in our fiducial modified gravity
model.

While ζ is actually conserved on all scales in ΛCDM
cosmology, this is not necessarily the case for modified
gravity theories. In the PPF approach, one specifies a
parameter cΓ which, as described in Appendix A, de-
termines an effective horizon cΓ/aH above which ζ is
conserved. Our mechanism for canceling the large-scale
CMB power requires that conservation of ζ persist on a
sufficiently wide range of sub-Hubble modes, correspond-
ing to small values of cΓ. In practice, we have found that
cΓ

<∼ 10−2 is desirable. For simplicity, however, as
fiducial value we shall set

cΓ = 0 , (24)

thereby enforcing ζ conservation on all scales. The evo-
lution of super-horizon modes is therefore uniquely de-
termined through (23) by specifying g and the expan-
sion history. Note that the assumption of constant ζ was
also made by Bertschinger and Zukin [59] in what they
dubbed scale-independent modified gravity models. (A
key difference, however, is that their g was also indepen-
dent of scale.) In Appendix A, we shall describe the PPF
formalism in more generality, allowing for non-zero cΓ.

In light of the relatively large number of input func-
tions and parameters inherent to the PPF framework,
let us synthesize the essential qualitative and quantita-
tive features of our fiducial parametrization:

• The difference in metric potentials g(a, k) is cho-
sen to interpolate between the sub-horizon behav-
ior, dictated by well-understood features of mas-
sive/resonance gravity outlined in Sec. II A, and
the more model-dependent super-horizon behavior.
For the latter, the large-scale CMB anisotropy con-
strains us to choose A = 1, so that g|k#aH makes
a transition from 0 at early times to 1 at late times
— see Fig. 2. Physically, this corresponds to a
decay of the Newtonian potential Ψ relative to Φ.
Smoother interpolations are preferable.

• The curvature perturbation ζ must be nearly con-
served, which requires small values for cΓ. For sim-
plicity, we set cΓ = 0 in our fiducial model.

The remaining parameters to vary are of course α, D
and rc. Since we are interested in higher dimensional
generalizations of DGP, we shall fix

α = 0 , (25)

as discussed below (2). Since the expansion history re-
duces to ΛCDM in this case, we are free to consider val-
ues of rc that are relatively small compared to the Hubble
radius. We will find that our modified gravity theories
can explain the anomalies listed in the Introduction and
match other observations with rc ∼ 300 − 600 Mpc. Fi-
nally, the total number of space-time dimensions D sets
the strength of the extra scalar force at short distances,
as seen in (17), with larger D corresponding to stronger
gravity. To explain the CBI excess and the anomalous
Lyman-α power, it will suffice to consider two extra di-
mensions, or

D = 6 . (26)

This completes the description of our fiducial model.

V. CMB TEMPERATURE ANISOTROPY AND
LARGE-SCALE ANOMALIES

Let us step back and explain why the choice for g|k#aH

in (20) can explain the low quadrupole and the lack of
correlation on >∼ 60 ◦ scales. On large angles, the CMB
anisotropy is well approximated by the sum of the Sachs-
Wolfe and the Integrated Sachs-Wolfe (ISW) effects [63]:

δTCMB

TCMB
=

1
3
Φ− + 2

∫
dt

∂Φ−
∂t

# 1
3
Φ− + 2∆Φ− . (27)

The integral in the ISW effect is taken along the light
cone, while the partial derivative is at fixed comoving spa-
tial position. Therefore, the last approximation in (27)
is only valid when the spatial variations of Φ− are much
smaller than its time variation: |%∇Φ−|% |Φ̇−|. It is then
interesting to note that on these scales, ∆Φ− can be ob-
tained analytically as a function of g(a, k), from the fact
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 On super-horizon scales, in the matter era:

 Assuming adiabatic initial condition ς remains 
constant on large scales (Bertschinger 2006)

 If g goes from 0 to 1, ISW and Sachs-Wolfe cancel!



Text

FIG. 4: Square of the correlation function of CMB tempera-
ture anisotropy, as a function of the cosine of the separation
angle in the sky. The curves show ΛCDM (solid), rc = 300
Mpc (dotted) and rc = 600 Mpc (short-dashed). The long-
dashed curve is the Legendre transform of the WMAP5 max-
imum likelihood power spectrum [68]. The observed correla-
tion is systematically below the ΛCDM prediction for θ ! 60◦,
or cos θ < 0.5.

FIG. 5: The cumulative probability for S1/2, defined in (30),
measuring the CMB correlation on scales > 60◦. The curves
are for ΛCDM (solid), rc = 300 Mpc (dotted) and rc = 600
Mpc (dashed). The vertical lines show the observed values of
S1/2 from different estimators (see [15] for details).

!

!

!

!

!

!
!

!

!

!

!

!

! !

!
!!
!
!

!
!!

!

!
!
!

!

!CDM

r c"600 Mpc

r c"300 Mpc

5 10 50 100 500 1000

0.0

0.5

1.0

1.5

l

!l!1"C
l
T
E
#2Π!Μ

K
2
"

!CDM
r c"600 Mpc
r c"300 Mpc

5 10 50 100 500 1000

0.01

0.1

1

10

l

l!l!1"
C
l
E
E
#2Π!Μ

K
2
"

FIG. 6: Temperature-Polarization (TE) and polarization
(EE) power spectra for ΛCDM (blue, solid curve), rc = 300
Mpc (red, short-dashed curve) and rc = 600 Mpc (green,
dashed curve). The points are from the WMAP5 data re-
lease [68].

ceivable that the systematics in this bin are underesti-
mated. Therefore, we predict a significantly lower TE
cross-power spectrum at ! < 10, which should be clearly
distinguished from ΛCDM by the Planck satellite, due to
its better polarization sensitivity and foreground cleaning
capabilities [69].

Meanwhile, as shown in the bottom panel of Fig. 6, the
EE spectrum is not appreciably affected by our modifi-
cation of gravity.

We should also point out that it is possible to improve
the full χ2 (relative to ΛCDM) without extra marginal-
ization, simply by decreasing b in (21). However, this
will spoil our prediction of extra growth for small-scale
structures, which we shall discuss next.

VI. STRUCTURE FORMATION WITH
MASSIVE GRAVITY

The growth of perturbations in our model can be un-
derstood analytically by making a few simplifying ap-
proximations. The essential physics is illustrated in

9
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CMB angular power spectra  

best-fit ΛCDM (solid curve), rc = 600 Mpc (dashed curve) and r= 300 Mpc (short-dashed curve)  
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CMB angular power spectra  
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           Temperature-Polarization (TE)  power spectrum                      polarization(EE) power spectrum

predicts a significantly lower TE cross-power spectrum at l < 10, which should be 
clearly distinguished from ΛCDM by the Planck satellite, due to its better 
polarization sensitivity and foreground cleaning capabilities

Prediction for CMB Polarization power spectra



 Plenty of excess power on small scales 
 Lensing potential is much less affected

Lensing, Φ-

larger scale
(small K=10-4Mpc-1)

FIG. 8: Transfer functions for the lensing potential Φ− and the comoving density perturbations ∆m, as a function of redshift
for ΛCDM (solid), rc = 300 Mpc (dotted) and rc = 600 Mpc (dashed), all assuming D = 6. The curves show k = 10−4, 3.6×
10−4, 1.3 × 10−3, 4.6 × 10−3, 1.7 × 10−2, 6 × 10−2, 0.2, 0.8, 3, and 10 Mpc−1 from bottom to top, and are displaced for clarity.
Prior to the domination of Λ, large scale (super-horizon) modes decay, while small-scale (sub-horizon) modes grow with time.
Once Λ dominates, all modes start to decay with time.

FIG. 9: The power spectrum of the linear comoving density
∆m at z = 0.1 (solid), z = 1 (dotted), and z = 5 (dashed), for
rc = 300 Mpc. For clarity, the spectra are normalized to unity
at k = 10 Mpc−1. We see that, unlike the ΛCDM model, the
shape of the power spectrum evolves on large scales, which
will cause the galaxy bias to be generically scale-dependent.

of constant bias only holds if the shape of the linear mat-
ter power spectrum does not change with time, as is the
case in the ΛCDM model. Here, on the other hand, the
shape of the matter power spectrum does evolve in time,
as shown in Fig. 9. As pointed out in [70], we there-
fore expect a scale-dependent bias, since the shape of the
power spectrum of galaxies may depend on that of mat-
ter during the entire history of galaxy formation. We
shall postpone a full study of this effect, and only warn
that even the large scale bias in modified gravity models
cannot be captured by a single number.

A. Weak lensing power spectrum

Weak lensing is one of the few direct probes of the
large-scale gravitational potential with minimal confu-
sion from complicated astrophysical processes. While
early weak lensing measurements were plagued by ob-
servational systematics, there have been much recent im-
provement in controlling these errors. Here we will fo-
cus on the recent measurement of large-angle weak lens-
ing correlations with Canadian France Hawaii Telescope
(CFHT) observations [71], which finds:

σ8

(
Ωm

0.25

)0.53

= 0.837± 0.084 (36)

on angular scales 85′ < θ < 230′. Comparing this
with the WMAP5 combined constraints with baryonic
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smaller scale
(large K=10Mpc-1)
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Weak lensing power spectrum and Integrated Sachs-Wolfe Cross 
Correlation

The ratio of lensing correlation measured within 100′
radius for rc = 300 Mpc (dotted) and rc = 600 Mpc (dashed) 
to the ΛCDM prediction. The data point from CFHTLS Wide 

weak lensing measurements, 
the vertical error bar: 1σ range. 

current weak lensing measurements cannot 
distinguish our predictions from that of the ΛCDM 

(small change in value of Φ_)

Cross-power spectrum of a galaxy survey at z≅0.5
with the CMB, for ΛCDM (solid), rc = 300 Mpc (dotted) 

and rc = 600 Mpc (dashed)

(faster decay of Φ_)



Bulk Flows

Text

Text

Peculiar velocity measurements through the continuity equation, probe Δm in the linear regime
.

producing the observed bulk flows on 100 Mpc scales. The vertical line 
shows the WMAP5+BAO+SN best fit value



Lyman-α forest
1

The transfer function of the density potential related to Δm , at z = 3 and k = 1.4 Mpc-1 for CDM (solid), rc = 
300 Mpc (dotted)and rc = 600 Mpc (dashed). 
The data point (with 1σ errorbar) characterizes the excess power observed in Lyman-forest observations. 





 Massive gravity potentially:
 Degravitate the vacuum  solve the CC problem
 Cause excess power on small scales at late times
 Explain lack of power in CMB on large angles 

 Several observations point to excess power 
(relative to ΛCMB) on small scales at late times

  Our phenomenological model can roughly 
explain observations if the rc ~ 600 Mpc

 At our present level of understanding, the 
model is not uniquely fixed by either theory or 
observations


