Exploring the Cosmological Observations for Signatures of Extra Dimensions

> Ghazal Geshnizjani with Niayesh Afshordi and Justin Khoury JCAP 08:030 (2009)[arXiv:0812.2244]

Cosmology: the Golden Era

Cosmology: the Golden Era

 A six-parameter model can now explain (almost) all observations, ranging from the intergalactic neutral hydrogen to the Cosmic Microwave Background (CMB)

Cosmology: the Golden Era

A six-parameter model can now explain (almost) all observations, ranging from the intergalactic neutral hydrogen to the Cosmic Microwave Background (CMB)

Cosmic density power spectrum

1000

2dF galaxies Cluster abundance

Weak lensing

0.001

▲ Lyman Alpha Forest

0.01

0.1

 10^{4}

105

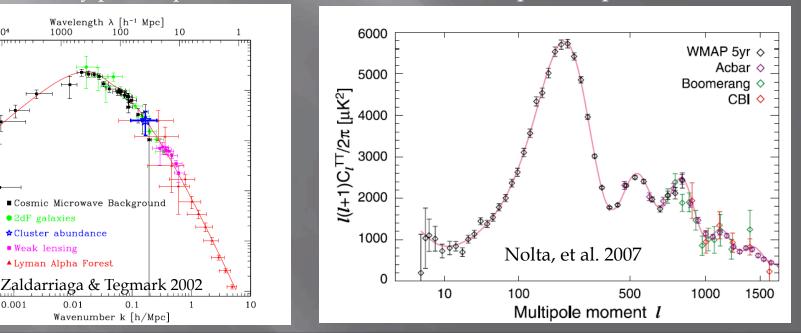
104

1000

100

10

Current power spectrum $P(k) \; \left[(h^{\text{-1}} \; Mpc)^3 \right]$



CMB power spectrum

Precision Cosmology

Cosmological parameters are now measured with exquisite precision

WMAP 5-year Cosmological Interpretation

Komatsu, et al. 2008

TABLE 1 Summary of the cosmological parameters of ACDM model and the corresponding 68% intervals

Class	Parameter	$W\!M\!AP$ 5-year ML^a	WMAP+BAO+SN ML	$W\!M\!AP$ 5-year Mean b	WMAP+BAO+SN Mean
Primary	$100\Omega_b h^2$ $\Omega_c h^2$	$2.268 \\ 0.1081 \\ 0.751$	$2.262 \\ 0.1138 \\ 0.723$	2.273 ± 0.062 0.1099 ± 0.0062 0.742 ± 0.030	$\begin{array}{c} 2.267\substack{+0.058\\-0.059}\\ 0.1131\pm0.0034\\ 0.726\pm0.015\end{array}$
	$ \begin{array}{l} \Omega_{\Lambda} \\ n_s \\ \tau \\ \Delta_{\mathcal{R}}^2(k_0^{\ e}) \end{array} $	$0.961 \\ 0.089 \\ 2.41 \times 10^{-9}$	0.723 0.962 0.088 2.46×10^{-9}	$\begin{array}{c} 0.742 \pm 0.030 \\ 0.963 \substack{+0.014 \\ -0.015 \\ 0.087 \pm 0.017 \\ (2.41 \pm 0.11) \times 10^{-9} \end{array}$	0.726 ± 0.013 0.960 ± 0.013 0.084 ± 0.016 $(2.445 \pm 0.096) \times 10^{-9}$

Is there any trouble in ACDM paradise? theoretical nightmares Cosmological Constant Problem:

(what happened to rest of the vacuum energy?)

Standard model presents us with a vexing theoretical problem:

Why is Λ so unnaturally small?

* In EFT, robust contribution to vacuum energy is

 $\delta \rho_{\rm vac} \sim \sum_{\rm SM} m_{\rm SM}^4 \log(\Lambda_{\rm UV}/m_{\rm SM})$

which, already with the electron, is $\gg (1 \ {
m meV})^4$

Is there any trouble in ACDM paradise?

Live happily: Anthropic reasoning or look for a more satisfying solution

* In EFT, robust contribution to vacuum energy is

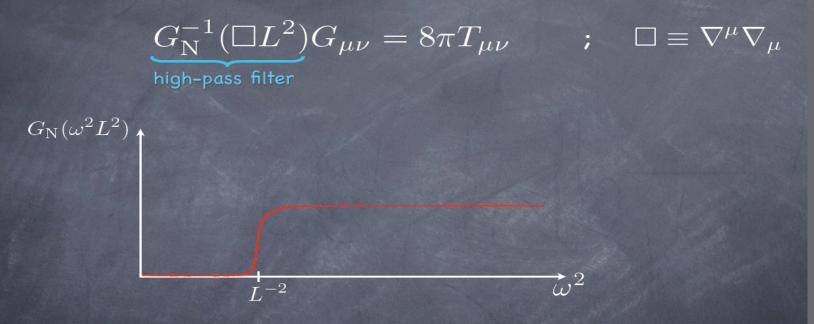
 $\delta \rho_{\rm vac} \sim \sum m_{\rm SM}^4 \log(\Lambda_{\rm UV}/m_{\rm SM})$

which, already with the electron, is $\gg (1 \ {
m meV})^4$

Another approach: *De-Gravitation*

Dvali, Hofmann, and Khoury 07

infrared-modified gravity theories, inspired by brane-world constructions with infinite-volume extra dimension



Sources with wavelength << L gravitate normally, whereas those with wavelength >> L (including vacuum energy) degravitate.

Cosmological degravitation

Around Minkowski space:

$$(\mathcal{E}h)_{\mu\nu} + \frac{m^2(\Box)}{2}(h_{\mu\nu} - \eta_{\mu\nu}h) = T_{\mu\nu}$$
$$m^2(\Box) = r_c^{-2(1-\alpha)}(-\Box)^{\alpha} \quad 0 < \alpha < 1/2$$

 Aiming at solving the cosmological constant problem (not the coincidence problem)

Due to the higher-dimensional nature of these constructions, extracting cosmological predictions presents a daunting technical challenge.

C. de Rham, S. Hofmann, J. Khoury and A. J. Tolley

Some features can be relevant for our model building scheme

- The 4d graviton is no longer massless but a resonance (a continuum of massive states) with a tiny width r_c⁻¹.
- On intermediate scales less than r_c⁻¹ existence of an extra scalar force should enhance gravitational attraction by order unity.
- Vainshtein conjecture: Non-linear interactions can decouple the extra scalar and suppress these effects near astrophysical sources.
- The theories of interest are higher-dimensional generalizations of the Dvali-Gabadadze-Porrati model in which our visible universe is confined to a 3-brane.
- It has been shown instabilities are absent if our 3-brane lies within a succession of higher-dimensional branes, each with their own induced gravity term, and embedded in one another in a flat bulk space-time (Cascading Gravity). In the simplest codimension-2 case, for instance, our 3-brane is embedded in a 4-brane within a 6-dimensional bulk.

How to look for signatures of such theories

What are the implications for Cosmological observations?

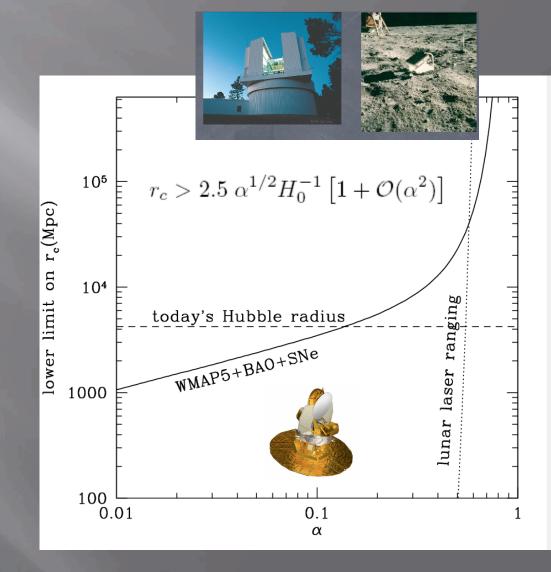
General cosmological solution is non-existent,
⇒ Devise a phenomenological model
⇒ Least number of variables
⇒ Features known about theory
⇒ Explore the data

Expansion History Close to ΛCDM

The modifications to Friedmann Equation in cascading gravity suggest slow varying function of Hr_c equation and in analogy with $\alpha = 1/2$, Dvali, Gabadadze, Porati model we assume:

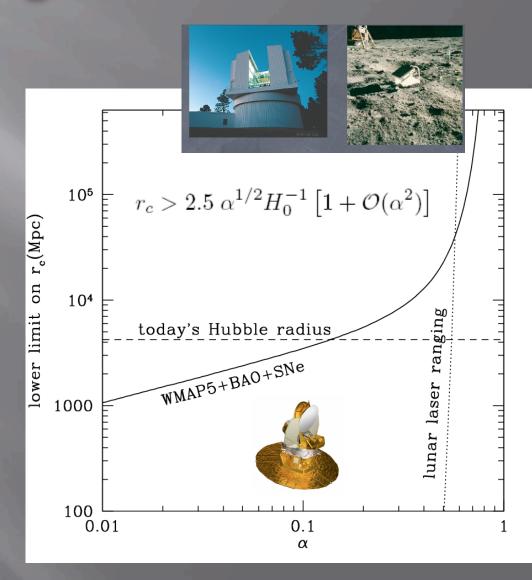
$$H^{2} = \frac{8\pi G}{3}\rho - \frac{H^{2\alpha}}{r_{c}^{2(1-\alpha)}}$$

Degravitating FRW



Degravitating FRW

■ FRW with α → 0 indistinguishable from ΛCDM



Inhomogeneous Universe could be different (Lensing and Newtonian potentials can be different)

$$ds^{2} = -(1+2\Psi)dt^{2} + a^{2}(1+2\Phi)d\vec{x}^{2}$$

- $\Psi = -\Phi$ in Λ CDM+General Relativity
- Non-relativistic matter follows -Ψ
- Photons (Lensing and ISW) see $\Phi_{-} = (\Phi \Psi)/2$
- $Φ_ ≠ -Ψ$ could signal the breakdown of General Relativity
- Could lead to larger growth on intermediate scales:
 Gravity becomes massive → fifth force enhances gravitational attraction on non-relativistic matter (not photons)

observational anomalies (to be taken with a grain of salt)

- Structure on small scales
 - Lyman-α forest
- Structure on large scales
 - Integrated Sachs-Wolfe effect
 - Dark flow

may indicate larger growth

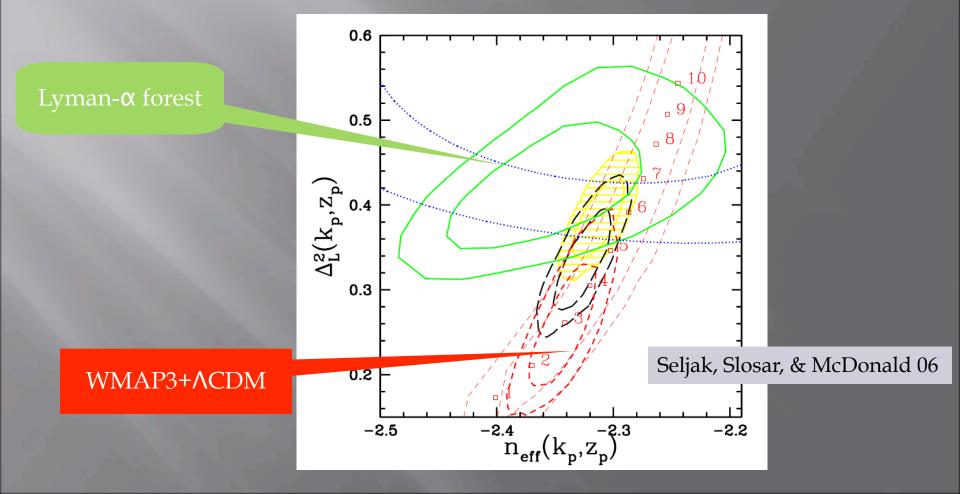
- Cosmic Microwave Background
 - CMB auto-correlation vanishes beyond 60 deg's

Large Scale modifications provide a new possible way to explain large scale anomaly of CMB:

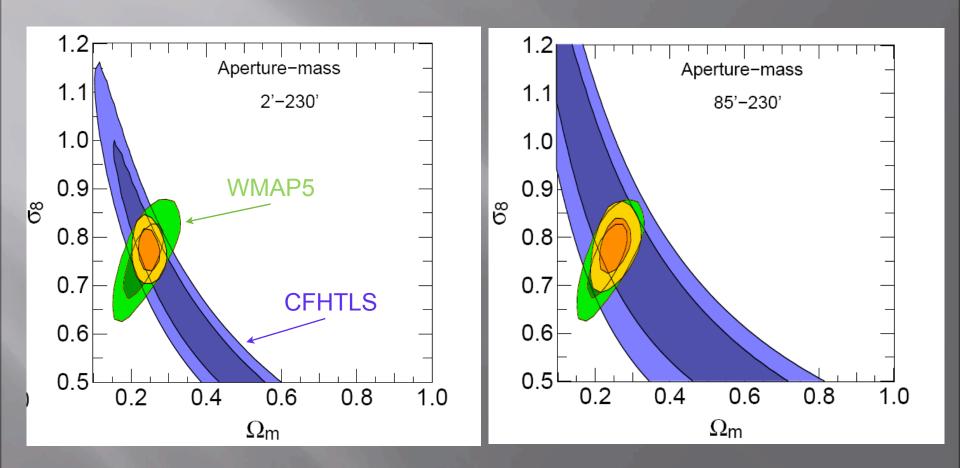
We will fit our model so that ISW and Sachs-Wolfe effects cancel on super-horizon scales

Lyman-α excess: structure at z~3

• Ly- α , more clumpy than CMB predicts?



But σ₈ from lensing is consistent with ACDM

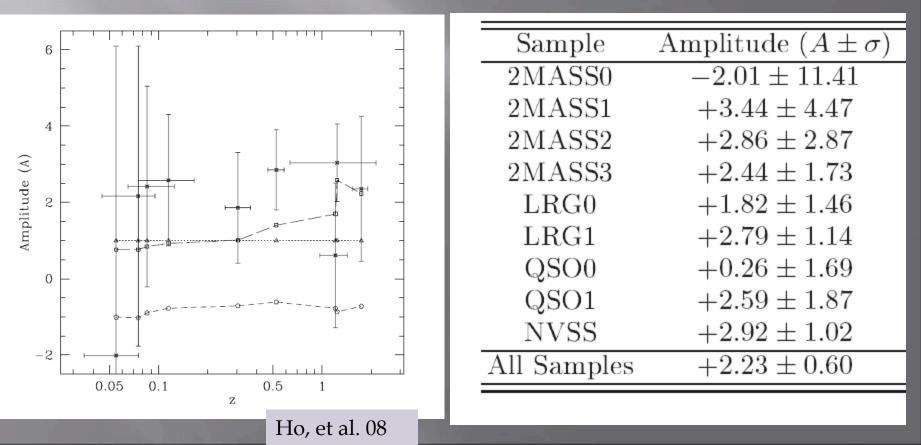


Fu, et al. 2008: Very weak lensing in the CFHTLS

ISW effect X galaxies: metric Pert. at z~0.1-1

Gravitational Potential: 2.23±0.60 larger than ΛCDM predicts

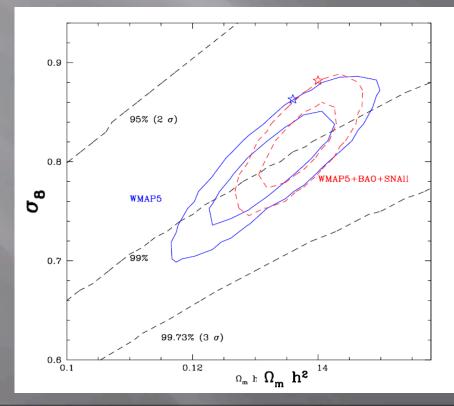
A = Observed ISW / Predicted ISW



Dark Bulk Flow I: velocities at z=0

■ Local bulk flow within 50 Mpc is $407 \pm 81 \text{ km/s}$ → \Local DDM predicts: $V_{rms} = 190 \text{ km/s}$

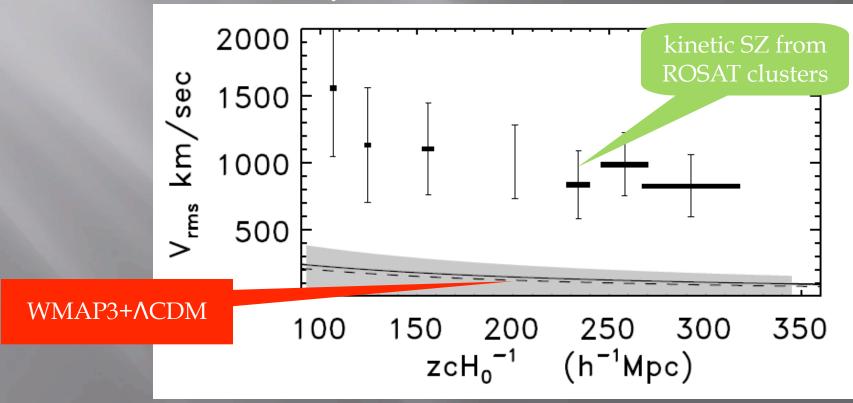
Watkins, Feldman, & Hudson 08



Dark Bulk Flow II: velocities at z=0

Local bulk flow within 300 Mpc is ~1000 ± 300 km/s: First statistical detection of kinetic SZ effect

Kashlinsky, et al. 08



CMB auto-correlation, beyond 60 deg's

	Data Source	$\underset{(\mu K)^4}{S_{1/2}}$	$\begin{array}{c} P(S_{1/2}) \\ (\text{per cent}) \end{array}$
$ \begin{array}{c} 1000\\ 800\\ 600\\ \hline \\ 600\\ \hline \\ \hline \\ 400\\ \hline \\ \hline $	V3 (kp0, DQ) W3 (kp0, DQ) ILC3 (kp0, DQ) ILC3 (kp0), $C(>60^{\circ}) = 0$ ILC3 (full, DQ)	$1288 \\ 1322 \\ 1026 \\ 0 \\ 8413$	$0.04 \\ 0.04 \\ 0.017 \\ \\ 4.9$
200 - WMAP pseudo-C ₁ 0 -200 - LCDM	V5 (KQ75) W5 (KQ75) V5 (KQ75, DQ) W5 (KQ75, DQ) ILC5 (KQ75) ILC5 (KQ75, DQ) ILC5 (KQ75, DQ) ILC5 (full, DQ)	$1346 \\ 1330 \\ 1304 \\ 1284 \\ 1146 \\ 1152 \\ 8583$	$\begin{array}{c} 0.042 \\ 0.038 \\ 0.037 \\ 0.034 \\ 0.025 \\ 0.025 \\ 5.1 \end{array}$
0 20 40 60 80 100 120 140 160 180 θ (degrees) $S_{1/2} \equiv \int_{-1}^{1/2} [\mathcal{C}(\theta)]^2 d(\cos \theta)$	WMAP3 pseudo- C_{ℓ} WMAP3 MLE C_{ℓ} Theory3 C_{ℓ} WMAP5 C_{ℓ} Theory5 C_{ℓ}	2093 8334 52857 8833 49096	$\begin{array}{c} 0.18 \\ 4.2 \\ 43 \\ 4.6 \\ 41 \end{array}$

Copi, Huterer, Schwarz, & Starkman 08

CMB auto-correlation, beyond 60 deg's

	Data Source	$S_{1/2} \ (\mu { m K})^4$	$\begin{array}{c} P(S_{1/2}) \\ (\text{per cent}) \end{array}$
$\begin{array}{c} 1000\\ 800\\ 600\\ \hline \\ 600\\ \hline \\ 400\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	V3 (kp0, DQ) W3 (kp0, DQ) ILC3 (kp0, DQ) ILC3 (kp0), $C(>60^{\circ}) = 0$ ILC3 (full, DQ) V5 (KQ75) W5 (KQ75, DQ) W5 (KQ75, DQ) ILC5 (KQ75, DQ) ILC5 (KQ75, DQ) ILC5 (full, DQ)	$ \begin{array}{c} 1288\\ 1322\\ 1026\\ 0\\ 8413\\ 1346\\ 1330\\ 1304\\ 1284\\ 1146\\ 1152\\ 8583\\ \end{array} $	$\begin{array}{c} 0.04\\ 0.04\\ 0.017\\\\ 4.9\\ 0.042\\ 0.038\\ 0.037\\ 0.034\\ 0.025\\ 0.025\\ 5.1\\ \end{array}$
$S_{1/2} \equiv \int_{-1}^{1/2} [\mathcal{C}(\theta)]^2 d(\cos \theta)$	WMAP3 pseudo- C_{ℓ} WMAP3 MLE C_{ℓ} Theory3 C_{ℓ} WMAP5 C_{ℓ}	2093 8334 52857 8833	0.18 4.2 43 4.6
$J_{-1}^{-1} = J_{-1}^{-1} [C(0)]^{-1} (C(0))^{-1}$	Theory 5 C_{ℓ}	49096	41

Copi, Huterer, Schwarz, & Starkman 08

How we deal with perturbations

Use Parametrized Post-Friedmann (PPF) formulation (Hu & Sawicki 2007): $g = \frac{\Phi + \Psi}{\Phi - \Psi}$

(Consistent in analogy with DGP model for $\alpha = 1/2$)

• $g \rightarrow 0$

• **CR**: at early times or large densities

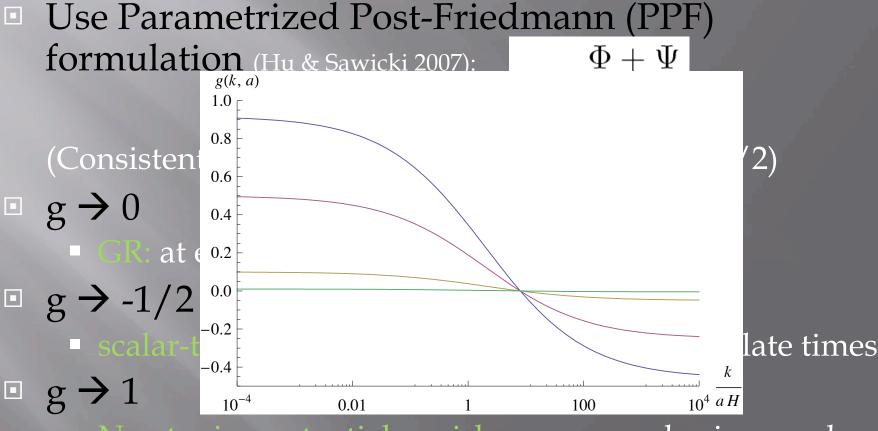
• $g \rightarrow -1/2$

scalar-tensor theory: on sub-horizon scales at late times

• $g \rightarrow 1$

Newtonian potential vanishes on super-horizon scales at late times

How we deal with perturbations



 Newtonian potential vanishes on super-horizon scales at late times

Cancelling ISW against Sachs-Wolfe

On super-horizon scales, in the matter era:

$$\frac{\delta T_{\rm CMB}}{T_{\rm CMB}} = \frac{1}{3}\Phi_- + 2\int dt \frac{\partial\Phi_-}{\partial t} \simeq \frac{1}{3}\Phi_- + 2\Delta\Phi_-$$

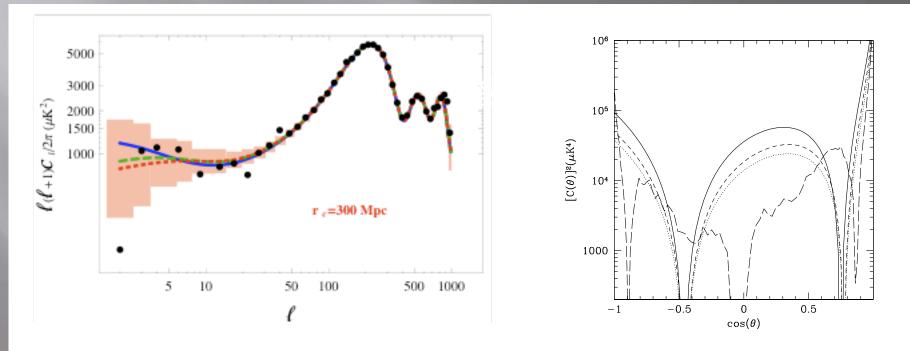
 Assuming adiabatic initial condition *ς* remains constant on large scales (Bertschinger 2006)

$$\begin{split} \zeta &= {\rm const.} = \frac{H}{H'} \left[(g-1) \Phi_- - g' \Phi_- - (g+1) \Phi'_- \right] \\ &+ (g+1) \Phi_- \simeq \frac{(5+g) \Phi_-}{3} \end{split}$$

□ If g goes from 0 to 1, ISW and Sachs-Wolfe cancel!

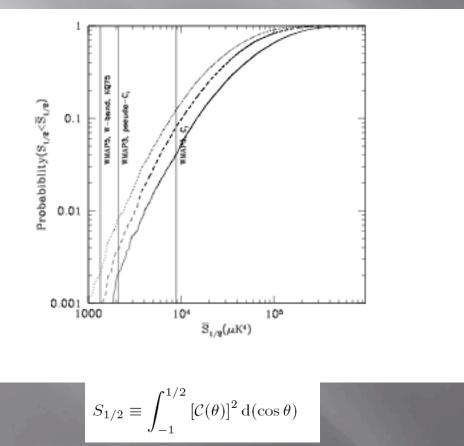
de-Correlating CMB on large angles CMB angular power spectra

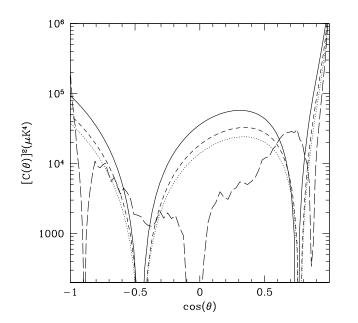
best-fit ACDM (solid curve), rc = 600 Mpc (dashed curve) and r= 300 Mpc (short-dashed curve)



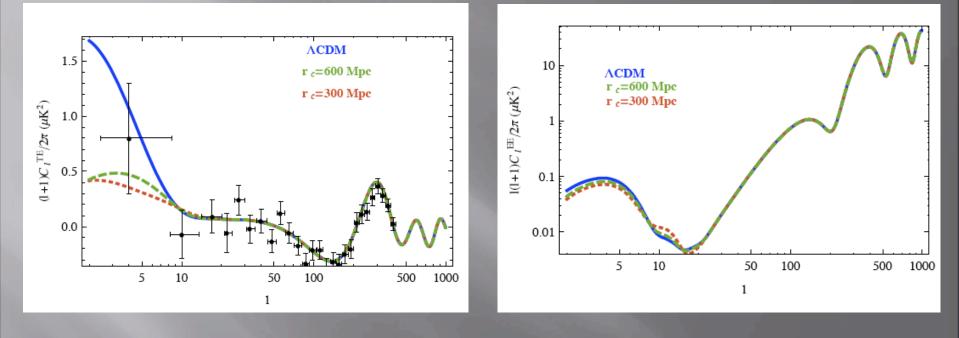
de-Correlating CMB on large angles CMB angular power spectra

best-fit ACDM (solid curve), rc = 600 Mpc (dashed curve) and r= 300 Mpc (short-dashed curve)





Prediction for CMB Polarization power spectra

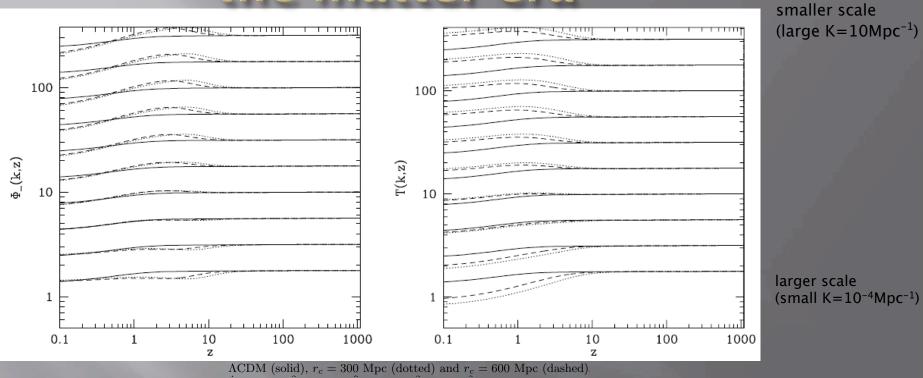


Temperature-Polarization (TE) power spectrum

polarization(EE) power spectrum

predicts a significantly lower TE cross-power spectrum at I < 10, which should be clearly distinguished from Λ CDM by the Planck satellite, due to its better polarization sensitivity and foreground cleaning capabilities

Potential Transfer Function in the matter era

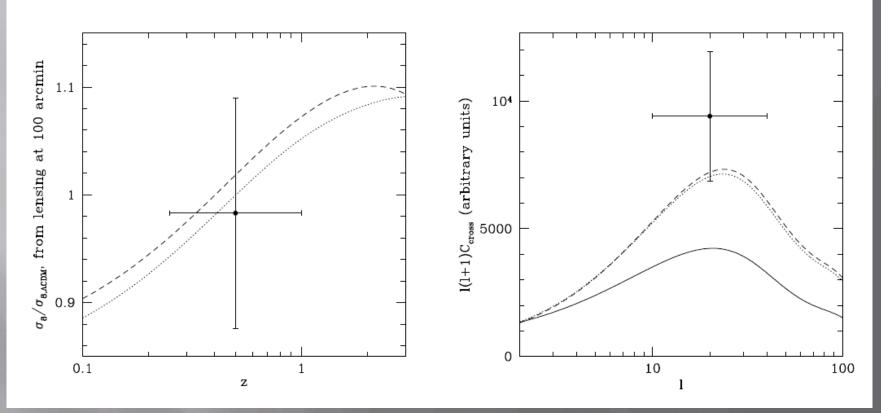


Lensing, $\Phi_{\underline{}}$

comoving density perturbations Δ_m/a

Plenty of excess power on small scalesLensing potential is much less affected

Weak lensing power spectrum and Integrated Sachs-Wolfe Cross Correlation



The ratio of lensing correlation measured within 100'radius for rc = 300 Mpc (dotted) and rc = 600 Mpc (dashed) to the Λ CDM prediction. The data point from CFHTLS Wide weak lensing measurements, the vertical error bar: 1σ range.

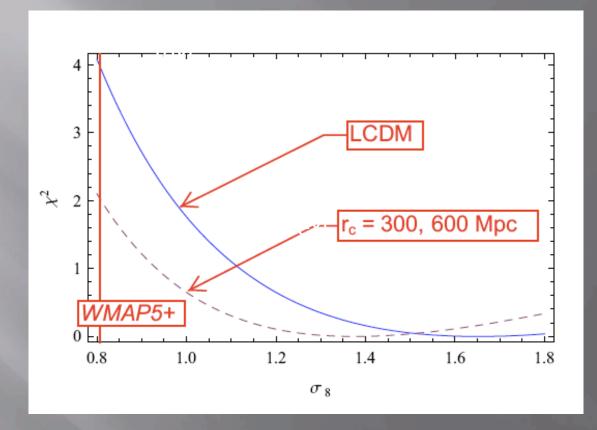
current weak lensing measurements cannot distinguish our predictions from that of the ACDM (small change in value of Φ_{-})

Cross-power spectrum of a galaxy survey at $z \cong 0.5$ with the CMB, for Λ CDM (solid), rc = 300 Mpc (dotted) and rc = 600 Mpc (dashed)

(faster decay of Φ_{\perp})

Bulk Flows

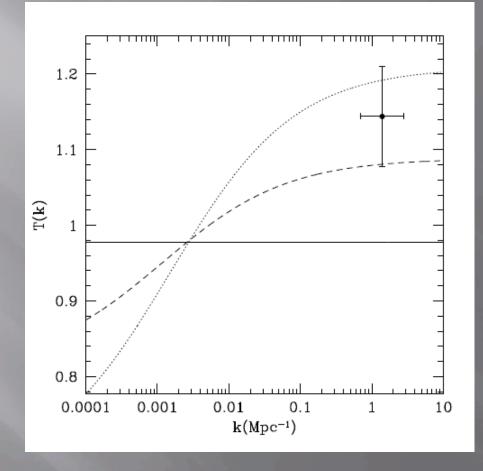
Peculiar velocity measurements through the continuity equation, probe Δ_m in the linear regime



producing the observed bulk flows on 100 Mpc scales. The vertical line shows the WMAP5+BAO+SN best fit value

Lyman-*\alpha* forest

1



The transfer function of the density potential related to Δ_m , at z = 3 and k = 1.4 Mpc⁻¹ for CDM (solid), rc = 300 Mpc (dotted)and rc = 600 Mpc (dashed).

The data point (with 1 o errorbar) characterizes the excess power observed in Lyman-forest observations.

The Moral

Massive gravity potentially:

- Degravitate the vacuum \rightarrow solve the CC problem
- Cause excess power on small scales at late times
- Explain lack of power in CMB on large angles
- Several observations point to excess power (relative to ΛCMB) on small scales at late times
- Our phenomenological model can roughly explain observations if the r_c ~ 600 Mpc
- At our present level of understanding, the model is not uniquely fixed by either theory or observations