

Asymmetric explosion of core-collapse supernovae

T. Foglizzo, CEA Saclay, France J. Guilet, J. Sato, S. Fromang

A very narrow window in space and time

Observational constraints on the asymmetry of the explosion mechanism

SNR composition gradients ? (Katsuda et al. 08)

Core-collapse supernovae since 2003

What do we understand of SASI?

From the kettle to supernovae

Core collapse in 2003: « What was missing? »

VOLUME 90, NUMBER 24

PHYSICAL REVIEW LETTERS

week ending 20 JUNE 2003

Improved Models of Stellar Core Collapse and Still No Explosions: What Is Missing?

R. Buras, M. Rampp, H.-Th. Janka, and K. Kifonidis

Stationary Accretion Shock Instability : SASI

Numerical simulations: SASI has been ubiquitous since 2003

		initial	sym.	SASI	v-heat
2003	Blondin et al.	stalled	2D axi.	Х	-
2004	Scheck et al.	15 M _o	2D axi.	Х	Х
2006	Scheck et al.	15 M _o	2D axi.	Х	Х
	Burrows et al.	11 M _o	2D axi.	Х	Х
	Ohnishi et al.	stalled	2D axi.	Х	Х
	Blondin & Mezzacappa	stalled	2D axi.	Х	_
2007	Blondin & Mezzacappa	stalled	3D	spiral	-
	Kotake et al.	stalled	2D axi.	Х	Х
	Burrows et al.	11-25 M _o	2D axi.	Х	Х
	Blondin & Shaw	stalled	2D eq.	spiral	_
	Fryer & Young	23 M _o	3D	Х	Х
2008	Scheck et al.	15 M _o	2D axi.	Х	Х
	lwakami et al.	stalled	3D	Х	Х
	Murphy & Burrows	11.2 & 15 M _o	2D axi.	Х	Х
	Ott et al.	20 M _o	2D axi.	Х	Х
2009	Marek & Janka	11.2 & <mark>15 M</mark> o	2D axi.	Х	Х
	lwakami et al.	stalled	3D	spiral ?	Х
	Fernandez & Thompson	stalled	2D axi.	Х	
	Fernandez & Thompson	stalled	2D axi.	Х	Х
	Murphy et al.	12-40 M _o	2D axi.	Х	Х
2010	Endeve et al.	stalled	2D axi.	MHD	-
	Suwa et al.	13 M _o	2D axi.	Х	Х
	Fernandez	stalled	3D	spiral	_

The unexpected possible consequences of SASI

15

- successful explosion driven by neutrino energy 15M_{sol} (Marek & Janka 09)
- new explosion mechanism driven by acoustic energy 11-25M_{sol} (Burrows et al. 06, 07, but Weinberg & Quataert 08)
- pulsar kick (Scheck et al. 04, 06)
- pulsar spin (Blondin & Mezzacappa 07)
- H/He mixing in SN1987A (Kifonidis et al. 06, Hammer et al. 09)

(Ott et al. 06, Kotake et al. 07, Marek et al. 09, Ott 08, Murphy et al. 09)

- magnetic field amplification ?

(Endeve et al. 2008)

0 z [10¹² cm]

extrapolated

A new explosion mechanism based on acoustic energy

Burrows et al. 06, 07

Classical explosion mechanism based on neutrino energy aided by 2D hydrodynamical instabilities

Marek & Janka 09

Classical explosion mechanism based on neutrino energy aided by 2D hydrodynamical instabilities Marek & Janka 09

How does SASI help the neutrino-driven explosion ?

What is the mechanism at work behind SASI ?

- Growing evidence for the advective-acoustic mechanism
 - cycle efficiency of the cycles, wkb (Foglizzo et al. 07)
 - timescales in simulations (Scheck et al. 08)
 - timescale of the dominant mode (Fernandez & Thompson 09)

Knowing the mechanism → optimal grid size in simulations ? (Sato et al. 09)
→ why is SASI a low I=1,2, low frequency instability ? (Foglizzo 09)
→ which saturation amplitude ? (Guilet et al. 09)

Linear coupling between the acoustic wave

and the entropy/vorticity wave

(Sato, Foglizzo & Fromang 09)

Aero-acoustic instabilities

advected perturbationsacoustic feedback

Why is SASI a low frequency instability ? (Foglizzo 09)

3D effects on SASI evolution

interaction with ν -driven convection ?

A shallow water SASI experiment: Lab. Astro. at low cost?

Potential consequences of SASI are numerous:

neutrino driven explosion acoustic explosion NS kick NS spin mixing grav. waves magnetic field

Still large uncertainties concerning 3D & EOS

Understanding SASI can be helpful:

perturbative analysis: code accuracy, mechanism toy model: SASI properties first insight into non linear saturation SASI experiment in shallow water ?