Jean-François Dufaux

A.P.C.

1日 : 1월 : 1물 : 1물 :

Gravitational Waves from Preheating after Inflation:

Overview and Recent Results

JFD - Phys.Rev.Lett.103(2009) JFD, D. Figueroa, J. Garcia-Bellido - to appear P. Brax, JFD, S. Mariadassou - in preparation

OUTLINE

- Introduction
 - \hookrightarrow Gravity waves (GW) from the early universe
 - \hookrightarrow Preheating after Inflation
- GW from preheated scalar fields
 - $\hookrightarrow \mathsf{Methods}$
 - $\hookrightarrow \mathsf{Results}$
- GW from the non-perturbative decay of SUSY flat directions
- GW from preheated gauge fields
- Conclusions

Gravitational Waves from the Early Universe

Interact very weakly and are not absorbed

 \Rightarrow Direct probe of high-energy phenomena producing them

Target for several high-sensitivity interferometric experiments (LIGO, VIRGO, LISA, ET, BBO, DECIGO, ...) in frequency range 10^{-5} to 10^{3} Hz

Typical wavelength when produced: $\lambda_{\rho} < H_{\rho}^{-1}$ (post-inflationary source) \hookrightarrow Frequency today: $f_0 = (a_{\rho}/a_0) * (2\pi/\lambda_{\rho}) < 10^3 \text{ Hz} \Rightarrow \rho_{\rho}^{1/4} < 10^{11} \text{ GeV}$

Possible sources: inflation, preheating, phase transitions, cosmic strings, ...

A milestone achieved by ground interferometers

[Ligo and Virgo collaborations, Nature 460 (2009)]

Cosmological GW (extra radiation component) may affect expansion rate of the universe during BBN and at last scattering

 \hookrightarrow Constrained by abundance of light elements and CMB

For the first time, LIGO reached a sensitivity below these bounds and the sense bounds and the sense of the s

Preheating after Inflation

	Reheating		Hot Big Bang
\rightarrow	Particle-genesis	\rightarrow	Thermal bath
/	Thermalization	/	of particles
			\hookrightarrow BBN ,
	\longrightarrow	$\xrightarrow{\text{Reheating}} \\ \\ Particle-genesis \\ Thermalization \\ \\ \\ \\ \hline \\ \\ \\ \end{array}$	$ \begin{array}{c} & \text{Reheating} \\ & \text{Particle-genesis} \\ & \text{Thermalization} \\ & \hookrightarrow ???? \end{array} $

Two kinds of decay channels for the inflaton:

• Perturbative: $\phi(t) =$ collection of particles decaying independently \hookrightarrow Slow decay, faster thermalization

Valid if the inflaton couples very weakly to all other fields

- Non-perturbative: coherent and collective effects ⇒ Preheating
 - \hookrightarrow Explosive decay, slower thermalization
 - If one non-perturbative decay channel exists, it dominates the dynamics

Preheating is a violent and highly inhomogeneous process

 \Rightarrow Production of gravity waves, carrying relic information about this epoch = -2000

Preheating after chaotic inflation

[Kofman, Linde, Starobinsky], ...

Explosive production of particles with occupation numbers $n_k \sim 1/g^2$. Followed by long, turbulent-like evolution towards thermal equilibrium.

Non-linear classical random fields \Rightarrow Lattice Simulations

GW from preheated scalar fields: Methods [JFD, Bergman, Felder, Kofman, Uzan '07]

$$ds^{2} = a^{2}(\tau) \left[-d\tau^{2} + (\delta_{ij} + h_{ij}) dx^{i} dx^{j} \right] \quad \text{with} \quad \partial_{i} h_{ij} = h_{ii} = 0 \text{ (TT)}$$
$$h_{ij}'' + 2 \frac{a'}{a} h_{ij}' - \nabla^{2} h_{ij} = 16\pi G a^{2} \Pi_{ij}^{TT} \tag{1}$$

In Fourier space: $\Pi_{ij}^{TT}(\vec{k}) = (P_{il}P_{jm} - \frac{1}{2}P_{ij}P_{lm}) \Pi_{lm}(\vec{k})$ with $P_{ij} = \delta_{ij} - \hat{k}_i \hat{k}_j$

Analytics: Solve Eq.(1) in Fourier space with Green function. With informations about the statistical properties of the source, calculate $\rho_{\rm gw} \propto \langle h'_{ij} h'_{ij} \rangle$ with ensemble average.

Numerics: Solve Eq.(1) together with evolution equations for the source (scalar fields) and scale factor. Calculate ρ_{gw} with spatial and time averages. Apply TT projection in Fourier space when GW spectra are output.

Spectrum today:

$$\mathbf{h}^{2} \, \boldsymbol{\Omega}_{\mathrm{gw}}(\mathbf{f}) = \left(\frac{\mathbf{h}^{2}}{\rho_{\mathrm{c}}} \, \frac{\mathrm{d}\rho_{\mathrm{gw}}}{\mathrm{d}\ln \mathbf{f}}\right)_{\mathbf{0}} = \left(\frac{1}{\rho_{\mathrm{tot}}} \, \frac{\mathrm{d}\rho_{\mathrm{gw}}}{\mathrm{d}\ln k}\right)_{p} \, \left(\frac{a_{p}}{a_{*}}\right)^{1-3w} \, \left(\frac{g_{0}}{g_{*}}\right)^{1/3} \, h^{2} \, \Omega_{\mathrm{rad}}$$

200

NB: Equation of state jumps quickly towards w = 1/3 during preheating [Podolsky et al '05], [JFD et al '06]

GW from preheated scalar fields: Results [JFD, Bergman, Felder, Kofman, Uzan '07]

Evolution of $ho_{\rm gw}$ with time

Linear stage of preheating:

Gaussian random fields and analytical evolution of the source \Rightarrow Check of the lattice results

Turbulence and thermal bath

Scalar fields with $\chi_k(t) \propto \exp[i\omega_k t]$ GW production *forbidden* by helicity conservation

Different for massless vector fields

Most GW produced in intermediate non-linear and non-perturbative stage

The spectra of particles produced by preheating are usually strongly peaked around some typical (comoving) momentum k_*

 $R_* = a/k_*$: Characteristic physical size of the source inhomogeneities

Typical frequency and amplitude of GW when produced:

$$f_{
ho} \, pprox \, rac{1}{R_{*}} ~,~ \left(rac{
ho_{
m gw}}{
ho_{
m tot}}
ight)_{
ho} \, pprox \, (R_{*} \, H)_{
ho}^{2}$$

Similar to GW from bubble collisions in 1st-order phase transition In a given model of preheating, one can calculate k_* analytically \Rightarrow Estimate how the GW spectrum depends on the parameters

Peak frequency and amplitude of GW spectrum today:

$$f_* \, pprox \, rac{1}{\left(R_* \, H
ight)_p} \, \left(rac{
ho_{
m tot}^{1/4}}{10^{11}\,{
m GeV}}
ight) \, 10^3 \, {
m Hz} ~, \qquad h^2 \, \Omega_{
m gw}^* \, pprox \, 10^{-6} \, \left(R_* \, H
ight)_p^2$$

<ロト < 団 ト < 三 ト < 三 ト < 回 ト < 回 ト < 回 ト < 回 ト < 回 ト < 回 ト < 回 ト < 回 ト < 回 ト < 0 へ ()</p>

GW from Preheating after Hybrid Inflation

$$V = \frac{\lambda}{4} (|\sigma|^2 - v^2)^2 + \frac{g^2}{2} \phi^2 |\sigma|^2 + V_{\rm sr}(\phi)$$

Inflation when $\phi > \phi_c = \sqrt{\lambda} v/g$
When $\phi < \phi_c$, (ϕ, σ) roll to minimum $(0, v)$
Fluctuations: $\delta \ddot{\sigma}_k + (k^2 + \partial^2 V) \delta \sigma_k = 0$
 $m_{\sigma}^2 = \partial^2 V < 0$: "Tachyonic Preheating"

Key parameters: λ , g^2 , v and $V_c = \dot{\phi}_c / (m \phi_c)$ ($\tilde{V}_c = 10^3 g^3$)

Three regimes of GW production: [JFD, Felder, Kofman, Navros '08]

- Significant V_c (> \tilde{V}_c) and $g^2 \ge \lambda$: preheating onset by inflaton velocity $f_* \sim \lambda^{1/4} V_c^{1/3} 10^{11} \text{Hz} < 10^3 \text{Hz} \Rightarrow \lambda$ as low as 10^{-30}
- Negligible V_c (< \tilde{V}_c) and $g^2 \ge \lambda$: preheating onset by quantum diffusion $f_* \sim g \ \lambda^{1/4} \ 10^{11} \,\mathrm{Hz} < 10^3 \,\mathrm{Hz} \Rightarrow \lambda \sim g^2 < 10^{-11}$

• $g^2 << \lambda$: successive inflaton oscillations and GW production $f_* \sim g \ \lambda^{-1/4} \ 10^{10} \,\mathrm{Hz} < 10^3 \,\mathrm{Hz} \Rightarrow \lambda \sim 1, \ g^2 < 10^{-15}$ Peak frequency and amplitude of the GW spectrum today:

$$f_* ~\sim~ f(\lambda, g^2, V_c) ~10^{10} ~{
m Hz}$$
 , $h^2 ~\Omega_{
m gw}^* ~\sim~ g(\lambda, g^2, V_c) ~(v/M_P)^2$

Regions of the parameter space leading to observable GW

Particle-physics models of hybrid inflation with very small couplings:

- In SUSY models (D-term, P-term, ...), $g^2 \sim \lambda < 10^{-11}$ allows to satisfy bounds on cosmic strings [Endo et al '03], [Kallosh, Linde '03], ...
- [Barnaby, Cline '06] argues that the end of brane / anti-brane inflation in a warped throat can be modeled by a 4-D hybrid potential with $g^2 \ll \lambda$

DQ P

• If σ is a moduli field, $m \sim \sqrt{\lambda}v \sim \text{TeV}$ and $v \sim M_P \Rightarrow \lambda \sim 10^{-30}$ "Super-natural inflation" [Randall, Soljacic, Guth '95], "Thermal inflation" [Lyth, Stewart '95]

GW from Preheating Vs Observations: Status

Preheating after chaotic inflation: $f_* \sim 10^6 - 10^9 \text{ Hz}$ $(
ho_{
m inf}^{1/4} \sim 10^{15} \text{ GeV})$

Preheating after hybrid inflation: GW cover a wide range of frequencies and amplitudes. Can be observable, but requires very small coupling constants

nac

Preheating after Hilltop Inflation [Brax, JFD, Mariadassou], in progress Ex.: $V = (M^2 - \phi^4 / \Lambda^2)^2$ $\delta \ddot{\phi}_k + (k^2 + V'') \delta \phi_k = 0$ $m^2 = V'' < 0$: tachyonic instability $\dot{m} \gg m^2$: non-adiabatic production

nac

$$\begin{split} k^{\rm IR}_* &\sim \sqrt{|V''|} \sim H ~\ll~ k^{\rm UV}_* \sim M^{3/2} / \Lambda^{1/2} \\ \text{Tachyonic dominates for } \Lambda < 10^{16} \text{ GeV} ~\Rightarrow \\ \text{Peak frequency and amplitude of GW today:} \\ f_* &\sim \frac{\Lambda}{\rm GUT} \, 10^2 \, \rm Hz \quad , \quad h^2 \, \Omega^*_{\rm gw} \sim 10^{-7} \end{split}$$

In this model, GW can be further redshifted by intermediate matter-dominated stage until the inflaton decays completely

Ex: Coupling to fermions $\mathcal{L}_{int} = h \phi \psi \overline{\psi} \Rightarrow$ Decay possible iff $m_{\psi} < m_{\phi}/2$ Non-zero vev ϕ_{min} at the minimum $\Rightarrow m_{\psi} = h \phi_{min}$

The decay is possible only for small coupling $h \ll 1$ and is therefore delayed

Supersymmetric Flat Directions

Combinations of complex scalar fields along which the renormalizable potential is exactly flat in the limit of unbroken SUSY.

Flatness lifted by SUSY-breaking and non-renormalizable terms

$$V = m^{2} |\phi|^{2} + \left(\frac{A m}{M_{P}^{n-3}} \phi^{n} + \text{h.c.}\right) + \frac{|\lambda|^{2}}{M_{P}^{2n-6}} |\phi|^{2n-2} + \dots \qquad (m \sim \text{TeV})$$

In the early universe: [Dine, Randall, Thomas '95]

$$V = \left(m^2 - c H^2\right) |\phi|^2 + \dots$$

(NB: $V \supset T^2 |\phi|^2$ for small VEVs)

 ϕ can acquire a very large VEV during inflation. Subsequent evolution damped untill $H \sim m$. Then, out-of-phase oscillations of $\text{Re}(\phi)$ and $\text{Im}(\phi)$.

Ex: Affleck-Dine baryogenesis

 $\exists \rightarrow$

The Non-Perturbative Decay of Flat Direction Condensates [Olive, Peloso '06],[Basboll et al '07], [Gümrükçüoğlu et al '08], ...

Model: $V_D = g^2 (|\phi_1|^2 - |\phi_2|^2)^2$ (D-term potential) Background: $\phi_1 = \phi_2 = \Phi(t) e^{i\sigma(t)}$

Fluctuations around this background have the mass matrix:

$$\mathcal{M}^{2} = g^{2} \Phi^{2}(t) \left(\begin{array}{cc} 2\cos^{2}\sigma(t) & \sin 2\sigma(t) \\ \sin 2\sigma(t) & 2\sin^{2}\sigma(t) \end{array} \right)$$

Eigenstates vary non-adiabatically with time \Rightarrow abundant particle production

Once the fluctations have been sufficiently amplified, they backreact on the condensate and convert most of its energy into large inhomogeneities [JFD '09]

GW from the Non-Perturbative Decay of Flat Directions [JFD '09]

Main differences with respect to preheating after inflation:

- $1/R_* \sim H \sim m \sim \text{TeV} \Rightarrow \text{GW}$ frequency in the Hz-kHz range
- When they decay, flat directions are subdominant: $ho_{
 m flat} <
 ho_{
 m tot}$

$$\hookrightarrow ~~ \Omega_{
m gw} \propto (
ho_{
m flat}/
ho_{
m tot})^2$$

 \hookrightarrow Equation of state and GW depend also on inflaton sector!! Analytical estimates for the peak frequency and amplitude:

$$f_* \ \sim \ \left(\frac{a_i}{a_r}\right)^{1/4} \ \sqrt{\frac{m}{\mathrm{TeV}}} \, 5 \ \times \ 10^2 \, \mathrm{Hz} \quad \ , \qquad h^2 \, \Omega^*_{\mathrm{gw}} \ \sim \ 10^{-4} \ \left(\frac{\Phi_i}{M_P}\right)^4 \ \left(\frac{a_i}{a_r}\right)$$

Key parameters: initial vev Φ_i of the condensate when it starts to oscillate, soft SUSY-breaking mass *m* and reheat temperature of the universe T_R

$$a_i/a_r = 1$$
 if $T_R > 0.2 \sqrt{m M_p}$ (radiation-domination during the decay)
 $a_i/a_r \simeq \left(5 T_R/\sqrt{m M_p}\right)^{4/3}$ otherwise (matter-domination during the decay)

GW spectra for m = 100 GeV (left) and m = 10 TeV (right)

Can be observable for high enough initial VEV, $\Phi_i > 10^{17}$ GeV $\Phi_i \sim (m M_P^{n-3})^{1/(n-2)}$ depends on non-renormalizable terms $(W \supset \phi^n/M_P^{n-3})$ MSSM flattest direction: $n = 9 \Rightarrow \Phi_i \sim 10^{16}$ GeV allowed by gauge invariance But: may be forbidden by other symmetries $\Rightarrow \Phi_i \sim M_P$ possible [Dine, Randall, Thomas '95], [Gaillard, Murayama, Olive '95]

GW from Abelian Gauge Fields at Preheating

[JFD, Figueroa, Garcia-Bellido], to appear

F

Motivation: No GW from scalar field turbulence after preheating

$$-\mathcal{L} = (D_{\mu}\phi)^{*} D^{\mu}\phi + \frac{1}{4} F_{\mu\nu}F^{\mu\nu} + \dots \text{ with } D_{\mu} = \partial_{\mu} - i e A_{\mu}$$
Source terms: $T_{ij} \supset \qquad \partial_{i}\phi \partial_{j}\phi^{*} \qquad \dot{A}_{i} \dot{A}_{j} \qquad e^{2} A_{i} A_{j} |\phi|^{2}$
For "wave-like" fields:
$$h_{j}(\mathbf{q}) \qquad h_{j}(\mathbf{q}) \qquad$$

Lattice simulations of gauge theories: (a nightmare...) In the continuum: $\phi \to e^{i\alpha(x)}\phi \Rightarrow D_{\mu}\phi \to e^{i\alpha(x)}D_{\mu}\phi$ On the lattice: $\partial_i^+ \phi = \frac{\phi(x+\hat{i}) - \phi(x)}{dx} \rightarrow \frac{e^{i\alpha(x+\hat{i})} \phi(x+\hat{i}) - e^{i\alpha(x)} \phi(x)}{dx}$ Links: $U_i(x, x + \hat{i}) \equiv e^{-ie \int_x^{x+\hat{i}} A_i dx} \approx e^{-ie A_i dx} \Rightarrow D_i^+ \phi = \frac{U_i(x, x+\hat{i}) \phi(x+\hat{i}) - \phi(x)}{i}$ Allows to derive discrete equations of motion from a gauge-invariant lattice action. Required for constraint equation to follow from the dynamical equations that are evolved. In the gauge $A_0 = 0$, Gauss constraint: $\partial_i \dot{A}_i = \langle e_{\pm}^2 j_0, \langle \pm \rangle = \langle e_{\pm}^2 j_0, \langle$ 500 **Model:** Hybrid inflation with a complex "Higgs field" X coupled to a U(1) gauge field A_{μ}

$$V = rac{\lambda}{4} \left(|X|^2 - v^2
ight)^2 + rac{g^2}{2} \phi^2 |X|^2 + V_{
m sr}(\phi)$$

The fluctuations of X are amplified by tachyonic preheating and source the production of A_{μ} .

 A_{μ} acquires a mass $m_A = e v$ through the Higgs mechanism. In models where X has zero VEV, its fluctuations provide a mass $m_A = e \langle X^2 \rangle^{1/2}$. In $U(1) \times ... \times U(1)$ models, a massless A_{μ} is totally decoupled \Rightarrow not amplified.

Higgs' "bubbles" and magnetic "strings" during symmetry-breaking

Spatial profile of the Higgs

 A_{μ} tends to be localized where X = 0 to minimize $\rho \supset |\partial_{\mu}X - ieA_{\mu}X|^2$

Higgs' "bubbles" and magnetic "strings" during symmetry breaking

Spatial distributions of |X| ("bubbles") at different times

Spatial distributions of \vec{B}^2 ("strings") at different times

Signatures in the GW Spectra

Peak of scalar spectrum: $k_* \propto \sqrt{\lambda} v$ (depends on g^2 , λ , initial velocity,...)

Peak of vector spectrum:

 $k_* \simeq m_A = e v$ (string dynamics / width)

Multi-peaked GW for $e^2 \gg \lambda$

Conclusions and Perspectives

- There can be several instances in the early universe where scalar field condensates decay in an explosive and highly inhomogeneous way. This generates a stochastic background of GW that carries unique informations about these high-energy phenomena.
- For preheating after inflation, these GW can be observable if inflation occurs at low enough energy scales (complementary to GW from inflation itself). Depending on the model, they can cover a wide range of frequencies and amplitude.
- For the non-perturbative decay of SUSY flat directions, these GW fall naturally in the Hz-kHz frequency range where ground interferometers operate. They carry informations on both SUSY (scale of SUSY breaking) and inflation (reheat temperature).
- In both cases, gauge fields can have important consequences on GW production and leave specific imprints in the GW spectra
- Non-abelian symmetries like SU(2) × U(1) are necessary to produce massless gauge fields (photons) at preheating. ⇒ GW production from long, turbulent evolution towards thermal equilibrium after preheating??
- How do flat directions decay in realistic models like MSSM?? Other cosmological consequences (baryogenesis, reheating, ...)??
- Applications to other GW sources, phase transitions, cosmic strings, ...

nac