Sébastien Clesse

Service de Physique Théorique, University of Brussels, Centre of Cosmology, Phenomenology and Particle Physics (CP3), University of Louvain based on

S.C., J. Rocher, hep-ph/0809.4355
S.C., C. Ringeval, J. Rocher, hep-ph/0909.0402
S.C., arXiv:1006.4522

New insights in hybrid inflation

[^0]0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to arvoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along. waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozerer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

0 . Basics on inflation

- Horizon Problem

- Flatness Problem

- Topological defects

- Inflation : Period of accelerated expansion of the universe, that is $\ddot{a}>0$, where a is the scale factor

0. Basics on inflation

Plan of the talk...

1. Slore-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along. waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

0 . Basics on inflation

- Horizon Problem

- Flatness Problem
- Topological defects

Number of e-folds:

$$
N_{\mathrm{end}} \equiv \ln \frac{a_{\mathrm{end}}}{a_{\mathrm{i}}}>60
$$

- Inflation : Period of accelerated expansion of the universe, that is $\ddot{a}>0$, where a is the scale factor

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to arvoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

0 . Basics on inflation

- Horizon Problem
- Flatness Problem
- Topological defects

$$
\begin{aligned}
& \text { Number of e-folds: } \\
& \qquad N_{\text {end }} \equiv \ln \frac{a_{\text {end }}}{a_{\mathrm{i}}}>60
\end{aligned}
$$

- Inflation : Period of accelerated expansion of the universe, that is $\ddot{a}>0$, where a is the scale factor
- Simplest realisation : Fill the universe with an homogeneous scalar field ϕ, slowly rolling along its potential (ex: $\quad V(\phi)=m^{2} \phi^{2}$)

0. Basics on inflation

Plan of the talk...

1. Sloze-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along. waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives Questions...

0 . Basics on inflation

- Horizon Problem
- Flatness Problem
- Topological defects

Number of e-folds:

$$
N_{\mathrm{end}} \equiv \ln \frac{a_{\mathrm{end}}}{a_{\mathrm{i}}}>60
$$

- Inflation : Period of accelerated expansion of the universe, that is $\ddot{a}>0$, where a is the scale factor
- Simplest realisation : Fill the universe with an homogeneous scalar field ϕ, slowly rolling along its potential (ex: $\quad V(\phi)=m^{2} \phi^{2}$)
- Dynamics : Einstein equations in homogeneous FLWR universe
+ Klein-Gordon equation

$$
\begin{array}{rlr}
H^{2} & =\frac{8 \pi}{3 m_{\mathrm{p}}^{2}}\left[\frac{1}{2} \dot{\phi}^{2}+V(\phi)\right] \quad \ddot{\phi}+3 H \dot{\phi}+\frac{\mathrm{d} V}{\mathrm{~d} \phi}=0 \\
\frac{\ddot{a}}{a} & =\frac{8 \pi}{3 m_{\mathrm{p}}^{2}}\left[-\dot{\phi}^{2}+V(\phi)\right]
\end{array}
$$

0. Basics on inflation

Plan of the talk...

1. Sloze-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along. waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives Questions...

0 . Basics on inflation

- Horizon Problem
- Flatness Problem
- Topological defects

Number of e-folds:

$$
N_{\mathrm{end}} \equiv \ln \frac{a_{\mathrm{end}}}{a_{\mathrm{i}}}>60
$$

- Inflation : Period of accelerated expansion of the universe, that is $\ddot{a}>0$, where a is the scale factor
- Simplest realisation : Fill the universe with an homogeneous scalar field ϕ, slowly rolling along its potential (ex: $\quad V(\phi)=m^{2} \phi^{2}$)
- Dynamics : Einstein equations in homogeneous FLWR universe
+ Klein-Gordon equation

$$
H^{2}=\frac{8 \pi}{3 m_{\mathrm{p}}^{2}}\left[\frac{1}{2} \dot{\phi}^{2}+V(\phi)\right] \quad \ddot{\theta}+3 H \dot{\phi}+\frac{\mathrm{d} V}{\mathrm{~d} \phi}=0 \quad \begin{aligned}
& \text { Slow-roll } \\
& \text { approximation }
\end{aligned}
$$

0. Basics on inflation

Plan of the talk...

1. Sloze-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis
for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along. raterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives Questions...

0 . Basics on inflation

- Horizon Problem
- Flatness Problem
- Topological defects

Number of e-folds:

$$
N_{\mathrm{end}} \equiv \ln \frac{a_{\mathrm{end}}}{a_{\mathrm{i}}}>60
$$

- Inflation : Period of accelerated expansion of the universe, that is $\ddot{a}>0$, where a is the scale factor
- Simplest realisation : Fill the universe with an homogeneous scalar field ϕ, slowly rolling along its potential (ex: $\quad V(\phi)=m^{2} \phi^{2}$)
- Dynamics : Einstein equations in homogeneous FLWR universe
+ Klein-Gordon equation

$$
\begin{aligned}
H^{2} & =\frac{8 \pi}{3 m_{\mathrm{p}}^{2}}\left[\frac{1}{2} \ddot{\phi}^{2}+V(\phi)\right] & \ddot{\phi}+3 H \dot{\phi}+\frac{\mathrm{d} V}{\mathrm{~d} \phi}=0 & \begin{array}{c}
\text { Slow-roll } \\
\text { approximation }
\end{array} \\
\frac{\ddot{a}}{a} & =\frac{8 \pi}{3 m_{\mathrm{p}}^{2}}\left[\ddot{\phi}^{2}+V(\phi)\right] & \phi(x, t)=\bar{\phi}(t)+\delta \phi(x, t) &
\end{aligned}
$$

- Cosmological Perturbations: $\quad \phi(x, t)=\bar{\phi}(t)+\delta \phi(x, t)$

$$
g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu}
$$

0. Basics on inflation

Plan of the talk...

1. Sloze-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to arvoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along. reaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

0 . Basics on inflation

- Horizon Problem
- Flatness Problem
- Topological defects

Number of e-folds:

$$
N_{\mathrm{end}} \equiv \ln \frac{a_{\mathrm{end}}}{a_{\mathrm{i}}}>60
$$

- Inflation : Period of accelerated expansion of the universe, that is $\ddot{a}>0$, where a is the scale factor
- Simplest realisation : Fill the universe with an homogeneous scalar field ϕ, slowly rolling along its potential (ex: $\quad V(\phi)=m^{2} \phi^{2}$)
- Dynamics : Einstein equations in homogeneous FLWR universe
+ Klein-Gordon equation

$$
\begin{array}{rlrl}
H^{2} & =\frac{8 \pi}{3 m_{\mathrm{p}}^{2}}\left[\frac{1}{2} \dot{\phi}^{2}+V(\phi)\right] & \ddot{\phi}+3 H \dot{\phi}+\frac{\mathrm{d} V}{\mathrm{~d} \phi}=0 \quad \begin{aligned}
\text { Slow-roll } \\
\text { approximatic }
\end{aligned} \\
\frac{\ddot{a}}{a} & =\frac{8 \pi^{2}}{3 m_{\mathrm{p}}^{2}}\left[-\dot{\phi}^{2}+V(\phi)\right] \quad \phi(x, t)=\bar{\phi}(t)+\delta \phi(x, t)
\end{array}
$$

- Cosmological Perturbations : $\phi(x, t)=\bar{\phi}(t)+\delta \phi(x, t)$

$$
g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu}
$$

- Power spectrum of scalar pert of the metric, in SR approximation:

$$
\mathcal{P}_{\zeta}(k)=C\left(\frac{k}{k_{*}}\right)^{n_{\mathrm{s}}-1}
$$

(nearly) scale invariance
0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to arvoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along. raterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozerer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

0 . Basics on inflation

- Horizon Problem
- Flatness Problem
- Topological defects

Number of e-folds:

$$
N_{\mathrm{end}} \equiv \ln \frac{a_{\mathrm{end}}}{a_{\mathrm{i}}}>60
$$

- Inflation : Period of accelerated expansion of the universe, that is $\ddot{a}>0$, where a is the scale factor
- Simplest realisation : Fill the universe with an homogeneous scalar field ϕ, slowly rolling along its potential (ex: $\quad V(\phi)=m^{2} \phi^{2}$)
- Dynamics : Einstein equations in homogeneous FLWR universe
+ Klein-Gordon equation

$$
\begin{aligned}
H^{2} & =\frac{8 \pi}{3 m_{\mathrm{p}}^{2}}\left[\frac{1}{2} \dot{\phi}^{2}+V(\phi)\right] & \ddot{\phi}+3 H \dot{\phi}+\frac{\mathrm{d} V}{\mathrm{~d} \phi}=0 & \begin{array}{c}
\text { Slow-roll } \\
\text { approximation }
\end{array} \\
\frac{\ddot{a}}{a} & =\frac{8 \pi}{3 m_{\mathrm{p}}^{2}}\left[-\dot{\phi}^{2}+V(\phi)\right] & &
\end{aligned}
$$

- Cosmological Perturbations : $\phi(x, t)=\bar{\phi}(t)+\delta \phi(x, t)$

$$
g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu}
$$

- Power spectrum of scalar pert of the metric, in SR approximation:

$$
\mathcal{P}_{\zeta}(k)=C\left(\frac{k}{k_{*}}\right)^{n_{s}-1} \begin{array}{|c}
\text { COBE norm. }: C=(2.43 \pm 0.11) \times 10^{-9} \\
\text { WMAP7: } n_{s}=0.963_{-0.015}^{+0.014}
\end{array}
$$

(nearly) scale invariance
0. Basics on inflation

Plan of the talk...

1. Sloze-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for \bar{F}-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along. reaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozerer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

0 . Basics on inflation

- Horizon Problem
- Flatness Problem
- Topological defects

Number of e-folds:

$$
N_{\mathrm{end}} \equiv \ln \frac{a_{\mathrm{end}}}{a_{\mathrm{i}}}>60
$$

- Inflation : Period of accelerated expansion of the universe, that is $\ddot{a}>0$, where a is the scale factor
- Simplest realisation : Fill the universe with an homogeneous scalar field ϕ, slowly rolling along its potential (ex: $\quad V(\phi)=m^{2} \phi^{2}$)
- Dynamics : Einstein equations in homogeneous FLWR universe
+ Klein-Gordon equation

$$
\begin{array}{rlrl}
H^{2} & =\frac{8 \pi}{3 m_{\mathrm{p}}^{2}}\left[\frac{1}{2} \dot{\phi}^{2}+V(\phi)\right] & \ddot{\phi}+3 H \dot{\phi}+\frac{\mathrm{d} V}{\mathrm{~d} \phi}=0 & \begin{array}{r}
\text { Slow-roll } \\
\text { approximati }
\end{array} \\
\frac{\ddot{a}}{a} & =\frac{8 \pi^{2}}{3 m_{\mathrm{p}}^{2}}\left[-\dot{\phi}^{2}+V(\phi)\right] & \phi(x, t)=\bar{\phi}(t)+\delta \phi(x, t)
\end{array}
$$

- Cosmological Perturbations : $\phi(x, t)=\bar{\phi}(t)+\delta \phi(x, t)$

$$
g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu}
$$

- Power spectrum of scalar pert of the metric, in SR approximation:

$$
\begin{gathered}
\mathcal{P}_{\zeta}(k)=C\left(\frac{k}{k_{*}}\right)^{n_{\mathrm{s}}-1} \\
C \sim \frac{H_{*}^{2}}{\pi \epsilon_{1 *}} / n_{s}-1=-2 \epsilon_{1 *}-\epsilon_{2 *} \rightarrow \epsilon^{\epsilon_{1}}=\frac{m_{\mathrm{p}}^{2}}{16 \pi}\left(\frac{\frac{\mathrm{~d} V}{\mathrm{~d} \phi}}{V}\right)^{2} \ll 1 \\
n_{\mathrm{p}}^{2}\left[\left(\frac{V^{\prime}}{V}\right)^{2}-\frac{V^{\prime \prime}}{V}\right] \ll 1
\end{gathered}
$$

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for \bar{F}-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along. weaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives Questions...

0 . Basics on inflation

Other realisation : Fill the universe with TWO scalar fields
F.L. equations: $\quad H^{2}=\frac{8 \pi}{3 m_{\mathrm{p}}^{2}}\left[\frac{1}{2}\left(\dot{\phi}^{2}+\dot{\psi}^{2}\right)+V(\phi, \psi)\right]$

$$
\frac{\ddot{a}}{a}=\frac{8 \pi^{2}}{3 m_{\mathrm{p}}^{2}}\left[-\dot{\phi}^{2}-\dot{\psi}^{2}+V(\phi, \psi)\right]
$$

K.G. equations: $\quad \ddot{\phi}+3 H \dot{\phi}+\frac{\mathrm{d} V}{\mathrm{~d} \phi}=0 \quad \ddot{\psi}+3 H \dot{\psi}+\frac{\mathrm{d} V}{\mathrm{~d} \psi}=0$
0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hoze to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4. Other hybrid
models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analusis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along. weaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozerer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

Plan of the talk....

- Classical Inflaton ϕ (slow-roll inflation in the valley)

- Higgs-type auxiliary field ψ
- Hybrid potential (Linde, astro-ph/9307002) $\quad V(\phi, \psi)=\Lambda^{4}\left[\left(1-\frac{\psi^{2}}{M^{2}}\right)+\frac{\phi^{2}}{\mu^{2}}+2 \frac{\phi^{2} \psi^{2}}{\phi_{\mathrm{c}}^{2} M^{2}}\right]$

0. Basics on inflation

Plan of the talk...

1. Slore-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories

2.4.Other hybrid models

2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analusis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along. weaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozerer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

Plan of the talk...

- Classical Inflaton ϕ (slow-roll inflation in the valley)

- Higgs-type auxiliary field ψ
- Hybrid potential (Linde, astro-ph/9307002) $\quad V(\phi, \psi)=\Lambda^{4}\left[\left(1-\frac{\psi^{2}}{M^{2}}\right)+\frac{\phi^{2}}{\mu^{2}}+2 \frac{\phi^{2} \psi^{2}}{\phi_{\mathrm{c}}^{2} M^{2}}\right]$

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4. Other hybrid
models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analusis
for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along. reaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozerer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

Plan of the talk...

- Classical Inflaton ϕ (slow-roll inflation in the valley)

- Higgs-type auxiliary field ψ
- Hybrid potential (Linde, astro-ph/9307002) $\quad V(\phi, \psi)=\Lambda^{4}\left[\left(1-\frac{\psi^{2}}{M^{2}}\right)+\frac{\phi^{2}}{\mu^{2}}+2 \frac{\phi^{2} \psi^{2}}{\phi_{\mathrm{c}}^{2} M^{2}}\right]$

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis
for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along reaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozerer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

Plan of the talk...

- Classical Inflaton ϕ (slow-roll inflation in the valley)

- Higgs-type auxiliary field ψ
- Hybrid potential (Linde, astro-ph/9307002) $\quad V(\phi, \psi)=\Lambda^{4}\left[\left(1-\frac{\psi^{2}}{M^{2}}\right)+\frac{\phi^{2}}{\mu^{2}}+2 \frac{\phi^{2} \psi^{2}}{\phi_{\mathrm{c}}^{2} M^{2}}\right]$

Usual description

- 1-field effective potential along the valley
- Slow-roll approximation
- Quasi instantaneous end of inflation when instability is reached
- The primordial scalar power spectrum is slightly blue, disfavoured by CMB experiments

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to arvoid fine-tuning?
2.3. Anamorphosis trajectories
2.4. Other hybrid
models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along. zeaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozerer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

Plan of the talk...

- Classical Inflaton ϕ (slow-roll inflation in the valley)

- Higgs-type auxiliary field ψ
- Hybrid potential (Linde, astro-ph/9307002) $\quad V(\phi, \psi)=\Lambda^{4}\left[\left(1-\frac{\psi^{2}}{M^{2}}\right)+\frac{\phi^{2}}{\mu^{2}}+2 \frac{\phi^{2} \psi^{2}}{\phi_{\mathrm{c}}^{2} M^{2}}\right]$

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hoze to arvoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analusis
for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along reaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

Plan of the talk...

- Classical Inflaton ϕ (slow-roll inflation in the valley)

- Higgs-type auxiliary field ψ
- Hybrid potential (Linde, astro-ph/9307002) $\quad V(\phi, \psi)=\Lambda^{4}\left[\left(1-\frac{\psi^{2}}{M^{2}}\right)+\frac{\phi^{2}}{\mu^{2}}+2 \frac{\phi^{2} \psi^{2}}{\phi_{\mathrm{c}}^{2} M^{2}}\right]$

1. Slow-roll violations

- along the valley
- effects on the small field phase
- effects on the spectral index

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hoze to arvoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis
for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along. waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozerer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

Plan of the talk...

- Classical Inflaton ϕ (slow-roll inflation in the valley)

- Higgs-type auxiliary field ψ
- Hybrid potential (Linde, astro-ph/9307002) $\quad V(\phi, \psi)=\Lambda^{4}\left[\left(1-\frac{\psi^{2}}{M^{2}}\right)+\frac{\phi^{2}}{\mu^{2}}+2 \frac{\phi^{2} \psi^{2}}{\phi_{\mathrm{c}}^{2} M^{2}}\right]$

1. Slow-roll violations

- along the valley
- effects on the small field phase
- effects on the spectral index
$\ln \left[V(\phi, \psi) / m_{\mathrm{pl}}^{4}\right]$

1. Slow-roll violations

- along the valley
- effects on the small field phase
- effects on the spectral index
$\ln \left[V(\phi, \psi) / m_{\mathrm{pl}}^{4}\right]$

1. Slow-roll violations

- along the valley
- effects on the small field phase
- effects on the spectral index
$\ln \left[V(\phi, \psi) / m_{\mathrm{pl}}^{4}\right]$

2. Initial conditions (sub-plankian)
3. Slow-roll violations

- along the valley
- effects on the small field phase
- effects on the spectral index
$\ln \left[V(\phi, \psi) / m_{\mathrm{pl}}^{4}\right]$

1. Slow-roll violations

- along the valley
- effects on the small field phase
- effects on the spectral index
$\ln \left[V(\phi, \psi) / m_{\mathrm{pl}}^{4}\right]$

1. Slow-roll violations

- along the valley
- effects on the small field phase
- effects on the spectral index
- successful if $\mathrm{N}>60$
- How to avoid fine-tuning?
- MCMC exploration of the
parameter space
Tachyonic preheating:
when $-m_{\psi}>H$,

$$
0.5 \phi / m_{\mathrm{pl}}
$$

\qquad

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hoze to arvoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along reaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozerer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

Plan of the talk...

- Classical Inflaton ϕ (slow-roll inflation in the valley)

- Higgs-type auxiliary field ψ
- Hybrid potential (Linde, astro-ph/9307002) $\quad V(\phi, \psi)=\Lambda^{4}\left[\left(1-\frac{\psi^{2}}{M^{2}}\right)+\frac{\phi^{2}}{\mu^{2}}+2 \frac{\phi^{2} \psi^{2}}{\phi_{\mathrm{c}}^{2} M^{2}}\right]$

1. Slow-roll violations

- along the valley
- effects on the small field phase

2. Initial conditions (sub-plankian)

- effects on the spectral index

3. Waterfall:

- Identification of a regime with $\mathrm{N}>60$ during the waterfall
- Observable modes leave the Hubble radius during the waterfall
- Initial power spectrum modified
- successful if $\mathrm{N}>60$
- How to avoid fine-tuning?
- MCMC exploration of the
parameter space
Tachyonic preheating:
when $-m_{\psi}>H$,

Eract2 ? Teld dynamics
0. Basics on inflation Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Horv to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along. waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

1. Slow-roll violations

- 1-field effective potential: $V(\phi)=\Lambda^{4}\left[1+\left(\frac{\phi}{\mu}\right)^{2}\right]$
- First slow-roll parameter: $\quad \epsilon_{1} \equiv-\frac{\dot{H}}{H^{2}} \quad$ - Slow-roll approximation: $\quad \epsilon_{1} \ll 1$

$$
\epsilon_{1}(\phi)=\frac{1}{4 \pi}\left(\frac{m_{\mathrm{pl}}}{\mu}\right)^{2} \frac{(\phi / \mu)^{2}}{\left[1+(\phi / \mu)^{2}\right]^{2}}
$$

0. Basics on inflation

Plan of the talk...

1. Slore-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions.
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs Stochastic dynamics
3.2. Inflation along reaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

1. Slow-roll violations

- 1-field effective potential: $V(\phi)=\Lambda^{4}\left[1+\left(\frac{\phi}{\mu}\right)^{2}\right]$
- First slow-roll parameter: $\quad \epsilon_{1} \equiv-\frac{\dot{H}}{H^{2}} \quad$ - Slow-roll approximation: $\quad \epsilon_{1} \ll 1$

$$
\begin{aligned}
& \mu=0.1 m_{\mathrm{pl}} \quad \text { (top curves) } \\
& \mu=0.4 m_{\mathrm{pl}} \quad \text { (bottom curves) }
\end{aligned}
$$

$$
\epsilon_{1}(\phi)=\frac{1}{4 \pi}\left(\frac{m_{\mathrm{pl}}}{\mu}\right)^{2} \frac{(\phi / \mu)^{2}}{\left[1+(\phi / \mu)^{2}\right]^{2}}
$$

The small field phase naturally does not take place if...

1. if $\phi_{\mathrm{c}} \gtrsim \mu$ (trivial)
2. if slow-roll is violated (non trivial, exact dynamics needed)

Implications:

- Need of super-Planckian initial field values for $\mathbf{N}>60$
- Red scalar power spectrum instead of blue
- Hybrid inflation like a chaotic model

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Horv to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along reaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

1. Slow-roll violations

- 1-field effective potential: $V(\phi)=\Lambda^{4}\left[1+\left(\frac{\phi}{\mu}\right)^{2}\right]$
- First slow-roll parameter: $\quad \epsilon_{1} \equiv-\frac{\dot{H}}{H^{2}} \quad$ - Slow-roll approximation: $\quad \epsilon_{1} \ll 1$

$$
\epsilon_{1}(\phi)=\frac{1}{4 \pi}\left(\frac{m_{\mathrm{pl}}}{\mu}\right)^{2} \frac{(\phi / \mu)^{2}}{\left[1+(\phi / \mu)^{2}\right]^{2}}
$$

The small field phase naturally does not take place if...

1. if $\phi_{\mathrm{c}} \gtrsim \mu$ (trivial)
2. if slow-roll is violated (non trivial, exact dynamics needed)

Implications:

- Need of super-Planckian initial field values for $\mathbf{N}>60$
- Red scalar power spectrum instead of blue
- Hybrid inflation like a chaotic model

0. Basics on inflation

Plan of the talk...

1. Slore-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4. Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

Plan of the talk...

- Classical Inflaton ϕ (slow-roll inflation in the valley)

- Higgs-type auxiliary field ψ
- Hybrid potential (Linde, astro-ph/9307002) $\quad V(\phi, \psi)=\Lambda^{4}\left[\left(1-\frac{\psi^{2}}{M^{2}}\right)+\frac{\phi^{2}}{\mu^{2}}+2 \frac{\phi^{2} \psi^{2}}{\phi_{\mathrm{c}}^{2} M^{2}}\right]$

1. Slow-roll violations

- along the valley
- effects on the small field phase

2. Initial conditions (sub-plankian)

- effects on the spectral index

$$
\ln \left[V(\phi, \psi) / m_{\mathrm{pl}}^{4}\right] \text {-10 }
$$

3. Waterfall:

- Identification of a regime with $\mathrm{N}>60$ during the waterfall
- Observable modes leave the Hubble radius during the waterfall
- Initial power spectrum modified
- successful if $\mathrm{N}>60$
- How to avoid fine-tuning?
- MCMC exploration of the
parameter space
Tachyonic preheating:
when $-m_{\psi}>H$,
$\sum_{\text {Exact 2-ffeld }}^{0.0}$ dynamics

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Horv to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives Questions...

2. Initial conditions

- Classical Inflaton ϕ (slow-roll inflation in the valley)

- Higgs-type auxiliary field ψ
- Hybrid potential (Linde, astro-ph/9307002) $\quad V(\phi, \psi)=\Lambda^{4}\left[\left(1-\frac{\psi^{2}}{M^{2}}\right)+\frac{\phi^{2}}{\mu^{2}}+2 \frac{\phi^{2} \psi^{2}}{\phi_{\mathrm{c}}^{2} M^{2}}\right]$

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hoze to arvoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.1 Fine-tuning of the initial conditions...

Tetradis, astro-ph/97072/4
Mendes, Liddle, astro-ph/0006020

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4. Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.1 Fine-tuning of the initial conditions....

Tetradis, astro-ph/97072 / 4
Mendes, Liddle, astro-ph/0006020

0. Basics on inflation

Plan of the talk...

1. Slore-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4. Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.1 Fine-tuning of the initial conditions....

Tetradis, astro-ph/97072 / 4
Mendes, Liddle, astro-ph/0006020

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4. Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along raterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.1 Fine-tuning of the initial conditions...

Tetradis, astro-ph/97072/4
Mendes, Liddle, astro-ph/0006020

- Isolated points or structures?

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4. Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along raterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.1 Fine-tuning of the initial conditions...

Tetradis, astro-ph/97072/4
Mendes, Liddle, astro-ph/0006020

- Isolated points or structures?
- Origin ?

0. Basics on inflation

Plan of the talk...

1. Slore-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4. Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along raterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.1 Fine-tuning of the initial conditions...

Tetradis, astro-ph/97072/4
Mendes, Liddle, astro-ph/0006020

- Isolated points or structures?
- Origin ?
- Quantification of successful areas?

0. Basics on inflation

Plan of the talk...

1. Slore-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along. waterfall trajectories
3.3. MCMC analysis of the parameter
space space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.2 How to avoid fine-tuning?

- Set of successful initial conditions :

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for \bar{F}-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter
space space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.2 How to avoid fine-tuning?

- Set of successful initial conditions :

0. Basics on inflation

Plan of the talk...

1. Slore-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4. Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.2 How to avoid fine-tuning?

- Set of successful initial conditions :

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to arvoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along reaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozerer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.3 Anamorphosis trajectories

- Set of successful initial conditions :

- Chaotic dynamical system
- 3 attractors
- Succ. points outside the valley:
- basin of attraction of the valley
- continuous map $=>$ connected set
- Fintite area with fractal boundaries
(similar to Mandelbrot set)
\uparrow Analogy with anamorphosis

0. Basics on inflation

Plan of the talk...

1. Slore-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hoze to arvoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along raterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.3 Anamorphosis trajectories

- Set of successful initial conditions :

For $\quad \phi, \psi<0.2 m_{\mathrm{pl}}$
Up to 20% of area are anamorphosis points

Anamorphosis seems to be an elegant possibility to avoid fine-tuning problem of initial conditions
0. Basics on inflation

Plan of the talk...

1. Slore-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along raterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.4 Other hy brid models...

\uparrow Hybrid-type models:

- Anamorphosis successful initial conditons:
- Smooth hybrid inflation: up to 80%
- in other models: Smooth+SUGRA, Shifted and Shifted+SUGRA, Radion Assisted Gauge inflation.

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter
space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.5 Smooth inflation

- Smooth inflation: (Lazarides, Panagiotakopoulos, hep-ph/9506325)

Effective 2-field potential (SUSY): $\quad V(\phi, \psi)=\kappa^{2}\left(M^{2}-\frac{\psi^{4}}{m_{\mathrm{Pl}}^{2}}\right)^{2}+2 \kappa^{2} \phi^{2} \frac{\psi^{6}}{m_{\mathrm{Pl}}^{4}}$
2 valleys and a flat $\psi=0$ direction \Rightarrow No topological defects

For $\phi, \psi<0.2 m_{\mathrm{pl}}$
Up to 80% of area are anamorphosis points
0. Basics on inflation

Plan of the talk...

1. Slore-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to arvoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along raterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.6 Remaining questions...

Hybrid-type models:

- Anamorphosis successful initial conditons :
- Smooth hybrid inflation: up to 80%
- in other models: Smooth+SUGRA, Shifted and Shifted+SUGRA, Radion Assisted Gauge inflation, F-term SUGRA.

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hoze to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.6 Remaining questions...

Hybrid-type models:

- Anamorphosis successful initial conditons :
- Smooth hybrid inflation: up to 80%
- in other models: Smooth+SUGRA, Shifted and Shifted+SUGRA, Radion Assisted Gauge inflation, F-term SUGRA.
\uparrow Questions:
- Local in parameter space ?
- Effect of initial velocities?

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.6 Remaining questions...

Hybrid-type models:

- Anamorphosis successful initial conditons :
- Smooth hybrid inflation: up to 80%
- in other models: Smooth+SUGRA, Shifted and Shifted+SUGRA, Radion Assisted Gauge inflation, F-term SUGRA.
\uparrow Questions:
- Local in parameter space ?
- Effect of initial velocities ?

MCMC statistical analysis of the 7D space of initial field values

+ initial field velocities
+ potential parameters

0. Basics on inflation

Plan of the talk...

1. Slore-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.7MCMC exploration - hybrid model

- Probability density distributions of initial field values:

Flat Prior: $\quad-0.2 m_{\mathrm{p}}<\phi, \psi<0.2 m_{\mathrm{p}}$

Fixed potential params, vanishing initial velocities

fixed potential params, marginalised over initial velocities

marginalised over velocities and potenital params.
0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.7 MCMC exploration-hybrid model

- Probability density distributions of initial field values:

Flat Prior: $\quad-0.2 m_{\mathrm{p}}<\phi, \psi<0.2 m_{\mathrm{p}}$

Fixed potential params, vanishing initial velocities

fixed potential params, marginalised over initial velocities

marginalised over velocities and potenital params.
0. Basics on inflation

Plan of the talk...

1. Slore-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.7 MCMC exploration-hybrid model

- Probability density distributions of initial field values:

Flat Prior: $\quad-0.2 m_{\mathrm{p}}<\phi, \psi<0.2 m_{\mathrm{p}}$

Fixed potential params, vanishing initial velocities

fixed potential params, marginalised over initial velocities

marginalised over velocities and potenital params.

Inflation starts more probably outside the inflationary valley
marginalised on whole 6 D space

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.7 MCMC exploration - hybrid model

- Probability density distribution of initial velocities:

Flat Prior + Bound: $\quad\left(\frac{\mathrm{d} \phi}{\mathrm{d} N}\right)^{2}+\left(\frac{\mathrm{d} \psi}{\mathrm{d} N}\right)^{2}<\frac{9 m_{\mathrm{p}}^{2}}{8 \pi} \equiv \frac{6}{\kappa^{2}}$

marginalised over initial fields and potential params.
Flat distribution for $\frac{\mathrm{d} \phi}{\mathrm{d} N}$ and $\frac{\mathrm{d} \psi}{\mathrm{d} N}$
0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Horv to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along. reaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

2.7 MCMC exploration-hybrid model

- Probability density distributions of parameters:

Flat prior on the logarithm

$$
V(\phi, \psi)=\Lambda^{4}\left[\left(1-\frac{\psi^{2}}{M^{2}}\right)+\frac{\phi^{2}}{\mu^{2}}+2 \frac{\phi^{2} \psi^{2}}{\phi_{\mathrm{c}}^{2} M^{2}}\right]
$$

Position
of the instability point
0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4. Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along reaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives

2.8 MCMC exploration - F-term SUGRA

- Simple and realistic model in (local) SUSY framework
- SUGRA corrections dominate radiative correction
- Only one potential parameter $M \quad V_{\text {tree }}^{\text {sugra }}(s, \psi)=\kappa^{2} \exp \left(\frac{s^{2}+\psi^{2}}{2 M_{\mathrm{pl}}^{2}}\right)$

- MCMC analysis:

- Similar results for distributions of initial fields and initial velocities
- Bound on the parameter:

Questions...
0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to arooid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along raterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

Plan of the talk...

- Classical Inflaton ϕ (slow-roll inflation in the valley)

- Higgs-type auxiliary field ψ
- Hybrid potential (Linde, astro-ph/9307002) $\quad V(\phi, \psi)=\Lambda^{4}\left[\left(1-\frac{\psi^{2}}{M^{2}}\right)+\frac{\phi^{2}}{\mu^{2}}+2 \frac{\phi^{2} \psi^{2}}{\phi_{\mathrm{c}}^{2} M^{2}}\right]$

Usually:

- Quasi-instantaneous waterfall
- Observable modes leave the Hubble radius inside the valley
- Blue power spectrum (disfavored)
$\ln \left[V(\phi, \psi) / m_{\mathrm{pl}}^{4}\right]$

3. Waterfall:

- Identification of a regime with
- Identification of a regime with $\mathrm{N}>60$ during the waterfall
- Observable modes leave the Hubble radius during the waterfall
- Initial power spectrum modified

stact2-1 Teld dynamics

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to arvoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along reaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives Questions...

3.1 Classical vs. Stochastic dynamics

Before instability point...

Classical oscillations

VS
Quantum fluctuations

$$
\ln \left[V(\phi, \psi) / m_{\mathrm{pl}}^{4}\right]
$$

- Classical oscillations: damped by $\exp \left(-\frac{3}{2} N\right)$
- Quantum fluctuations: $\quad \Delta \psi_{\mathrm{qu}} \simeq \frac{H}{2 \pi} \quad$ and $\quad 10^{-30} \lesssim \Delta \psi_{\text {qu }} \lesssim 10^{-6}$

Generically, classical trajectories reach the instability point displaced from the valley line by $\Delta \psi_{\mathrm{qu}}$
0. Basics on inflation

Plan of the talk...

1. Slore-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along reaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

3.1 Classical vs. Stochastic dynamics

Around instability point...
Classical dynamics (mainly ϕ evolution)

vS

Quantum backreactions of the adiabatic field and
Quantum backreactions-10 of the transverse field

0. Basics on inflation

Plan of the talk...

1. Slore-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4. Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along reaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Power spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

3.1 Classical vs. Stochastic dynamics

Around instability point...
Classical dynamics (mainly ϕ evolution)
vs
Quantum backreactions of the adiabatic field and
Quantum backreactions-10 of the transverse field

<

- Adiabatic field: $\quad \epsilon_{1}>\frac{H^{2}}{\pi m_{\mathrm{pl}}^{2}}$

0. Basics on inflation

Plan of the talk...

1. Slore-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

3.1 Classical vs. Stochastic dynamics

Around instability point...
Classical dynamics (mainly ϕ evolution)
vs
Quantum backreactions of the adiabatic field and
Quantum backreactions-10 of the transverse field

- Adiabatic field: $\quad \epsilon_{1}>\frac{H^{2}}{\pi m_{\mathrm{pl}}^{2}}$
- Transverse field: $\quad \dot{\psi}+\frac{1}{3 H} \frac{\mathrm{~d} V}{\mathrm{~d} \psi}=\frac{H^{3 / 2}}{2 \pi} \xi(t) \quad$ (Langevin equation)

0. Basics on inflation

Plan of the talk...

1. Slore-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

3.1 Classical vs. Stochastic dynamics

Around instability point...
Classical dynamics (mainly ϕ evolution)
vs
Quantum backreactions
of the adiabatic field and
Quantum backreactions-10 of the transverse field

Noise term

- Adiabatic field: $\quad \epsilon_{1}>\frac{H^{2}}{\pi m_{\mathrm{pl}}^{2}}$
- Transverse field: $\quad \dot{\psi}+\frac{1}{3 H} \frac{\mathrm{~d} V}{\mathrm{~d} \psi}=\frac{H^{3 / 2}}{2 \pi} \xi(t) \quad$ (Langevin equation)

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-turing of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

3.1 Classical vs. Stochastic dynamics

Around instability point...
Classical dynamics (mainly ϕ evolution)
vS
Quantum backreactions of the adiabatic field and
Quantum backreactions-10 of the transverse field

Noise term

- Transverse field: $\quad \dot{\psi}+\frac{1}{3 H} \frac{\mathrm{~d} V}{\mathrm{~d} \psi}=\frac{H^{3 / 2}}{2 \pi} \xi(t)$ (Langevin equation)
- Exact solution : $\left\langle\psi^{2}(x)\right\rangle=\frac{H^{2}}{8 \pi^{2} r}\left[\frac{\exp (x)}{a x}\right]^{a} \Gamma(a, a x)$ fixes initial conditions at instability with $\quad a \equiv 4 M_{\mathrm{pl}}^{2} / M^{2} r \quad x \equiv \exp \left[-2 r\left(N-N_{\mathrm{c}}\right)\right] \quad r \equiv \frac{3}{2}-\sqrt{\frac{9}{4}}-6 \frac{M_{\mathrm{pl}}^{2}}{\mu^{2}}$

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4. Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs.

Stochastic dynamics
3.2. Inflation along. waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

3.1 Classical vs. Stochastic dynamics

Around instability point...
Classical dynamics (mainly ϕ evolution)
vS
Quantum backreactions of the adiabatic field and
Quantum backreactions-10 of the transverse field

Noise term

- Transverse field: $\quad \dot{\psi}+\frac{1}{3 H} \frac{\mathrm{~d} V}{\mathrm{~d} \psi}=\frac{H^{3 / 2}}{2 \pi} \xi(t) \quad$ (Langevin equation)
- Exact solution : $\left\langle\psi^{2}(x)\right\rangle=\frac{H^{2}}{8 \pi^{2} r}\left[\frac{\exp (x)}{a x}\right]^{a} \Gamma(a, a x)$ fixes initial conditions at instability

$$
\text { with } a \equiv 4 M_{\mathrm{pl}}^{2} / M^{2} r \quad x \equiv \exp \left[-2 r\left(N-N_{\mathrm{c}}\right)\right] \quad r \equiv \frac{3}{2}-\sqrt{\frac{9}{4}-6 \frac{M_{\mathrm{pl}}^{2}}{\mu^{2}}}
$$

- In the regime

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4. Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along reaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

3.2 Inflation along waterfall trajectories

The exact 2 -field classical dynamics of waterfall trajectories

$$
\phi_{\mathrm{c}}=0.03 m_{\mathrm{pl}}, M=0.03 m_{\mathrm{pl}}, \mu=636.4 m_{\mathrm{pl}}, \Lambda^{4}=10^{-24} m_{\mathrm{pl}}^{4}
$$

Much more than 60 e-folds along the waterfall

Classical value of ψ quickly much larger than its standard deviation

Red power spectrum of adiabatic perturbations
0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4. Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along reaterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozeer spectrum of adiabatic pert.
4. Conclusion and Perspectives Questions...

3.2 Inflation along waterfall trajectories

The exact 2 -field classical dynamics of waterfall trajectories

Is it generic in the potential parameter space?
Much more than 60 e-folds along the waterfall

Classical value of ψ quickly much larger than its standard deviation

Red power spectrum

 of adiabatic perturbations$$
\phi_{\mathrm{c}}=0.03 m_{\mathrm{pl}}, M=0.03 m_{\mathrm{pl}}, \mu=636.4 m_{\mathrm{pl}}, \Lambda^{4}=10^{-24} m_{\mathrm{pl}}^{4}
$$

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4. Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along reaterfall trajectories
3.3. MCMC analysis of the parameter
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...
3.3 MCMC analysis of the parameter space

$$
V(\phi, \psi)=\Lambda^{4}\left[\left(1-\frac{\psi^{2}}{M^{2}}\right)+\frac{\phi^{2}}{\mu^{2}}+2 \frac{\phi^{2} \psi^{2}}{\phi_{\mathrm{c}}^{2} M^{2}}\right]
$$

- Flat priors on the \log of the potential parameters
- Exclusion of trajectories for which quantum stochastic effects of the adiabatic field become dominant
- Posterior probability distributions for >60 e-folds along waterfall :

- Bound on the combination $\log \left(\frac{\mu M}{m_{\mathrm{pl}}^{2}}\right)>0.21$ 95\%C.L..

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hore to aroid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozerer spectrum of adiabatic pert.
4. Conclusion and Perspectives

3.3 MCMC analysis of the parameter space

$$
V(\phi, \psi)=\Lambda^{4}\left[\left(1-\frac{\psi^{2}}{M^{2}}\right)+\frac{\phi^{2}}{\mu^{2}}+2 \frac{\phi^{2} \psi^{2}}{\phi_{\mathrm{c}}^{2} M^{2}}\right]
$$

- Flat priors on the log of the potential parameters
- Exclusion of trajectories for which quantum stochastic effects of the adiabatic field become dominant
- Posterior probability distributions for $\mathbf{>} \mathbf{6 0}$ e-folds along waterfall :

- High energy waterfall inflation less probable

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hoze to arvoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives Questions...

3.4 Power spectrum of adiabatic pert.

- Power spectrum (spectral index) of adiabatic perturbations
(slow-roll approximation for the adiabatic field)
- Agreement with CMB constraints in a large part of the parameter space
- Iso-curvature modes contribution NOT YET included

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to avoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions..
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

4. Conclusions and perspectives

- Slow-roll violations in the valley:
- The small field phase does not take place anymore
- A critical value of μ has been established
- Super-Plankian initial field values needed
- Red power spectrum, like in chaotic inflation
- Initial conditions (I.C.) in hybrid inflation models:
- I.C. do not require to be fine-tuned along the valley
- ψ_{i} more likely to be outside the inflationary valley (anamorphosis)
- I.C. organiszd in connected structure with fractal boundaries
- successful I.C. independant of initial velocities
- Natural bounds on potential parameters from only requirement of sufficiently long inflation.
- Similar results for other hybrid models (F-term,Smooth...)

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Howe to arvoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum
of adiabatic pert.
4. Conclusion and Perspectives Questions...

4. Conclusions and perspectives

\uparrow Hybrid inflation along waterfall trajectories:

- Exact 2-fields dynamics
- Much more than 60 e-folds can be realized classically before tachyonic preheating occurs.
- Classical dynamics not spoiled by field quantum backreactions
- Bounds on potential parameters from MCMC analysis
- Red power spectrum of adiabatic perturbations, possibly in agreement with CMB constraints.

0. Basics on inflation

Plan of the talk...

1. Slorv-roll violations
2. Initial conditions
2.1. Fine-tuning of IC
2.2. Hoze to arvoid fine-tuning?
2.3. Anamorphosis trajectories
2.4.Other hybrid models
2.5. Smooth inflation
2.6. Remaining questions...
2.7. MCMC analysis for original hybrid model
2.8 MCMC analysis for F-term SUGRA
3. Waterfall inflation
3.1. Classical vs. Stochastic dynamics
3.2. Inflation along waterfall trajectories
3.3. MCMC analysis of the parameter space
3.4 Pozer spectrum of adiabatic pert.
4. Conclusion and Perspectives

Questions...

4. Conclusions and perspectives

\uparrow Hybrid inflation along waterfall trajectories:

- Exact 2-fields dynamics
- Much more than 60 e-folds can be realized classically before tachyonic preheating occurs.
- Classical dynamics not spoiled by field quantum backreactions
- Bounds on potential parameters from MCMC analysis
- Red power spectrum of adiabatic perturbations, possibly in agreement with CMB constraints.
\rightarrow Perspective:
- This regime is suspected to exist for other hybrid models

Confirmed for F-term SUSY/SUGRA hybrid model (preliminary)

- Inclusion of iso-curvature modes in the power spectrum calculation
- Schemes of symmetry breaking in GUT may be reviewed...
- What happens when the stochastic effects dominate ?

Thank you for your attention...

1. Hybrid inflation

Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives_

Questions...

- Basics on inflation
- Sloze-roll violations
- IC grids of Tetradis and Mendes, Liddlle
- Super-planckian IC
- Varying parameters
- Grid with red spectrum prediction
- Shifted and Smooth
models
- Radion model
- Fractal Box-Counting Dimension
- MCMC method
- Distr init.velocitites
-2D palf for parmeters/initial fields
- F-term SUGRA model

More slides
for questions...

1. Basics on inflation

1. Hybrid inflation Fine-tuning of IC
2. Howe to aroid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions
of parameters

5. MCMC analysis
for F-term SUGRA
6. Conchusion and Perspectives

Questions...

- Horizon Problem
- Flatness Problem
- Topological defects

Inflation : Period of acceleration of the expansion of the universe, that is $\quad \ddot{a}>0$, where a is the scale factor

1. Hybrid inflation

Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrial models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis
for F-term SUGRA
6. Conchusion and Perspectives

Questions...

- Horizon Problem
- Flatness Problem
- Topological defects

$$
N_{\mathrm{end}} \equiv \ln \frac{a_{\mathrm{end}}}{a_{\mathrm{i}}}>60
$$

Inflation : Period of acceleration of the expansion of the universe, that is $\quad \ddot{a}>0$, where a is the scale factor

1. Hybrid inflation

Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives

Questions...

- Horizon Problem
- Flatness Problem
- Topological defects

$$
N_{\mathrm{end}} \equiv \ln \frac{a_{\mathrm{end}}}{a_{\mathrm{i}}}>60
$$

Inflation : Period of acceleration of the expansion of the universe, that is $\quad \ddot{a}>0$, where a is the scale factor

Simplest realisation : Fill the universe with a scalar field
F.L. equations: $\quad H^{2}=\frac{8 \pi}{3 m_{\mathrm{p}}^{2}}\left[\frac{1}{2} \dot{\phi}^{2}+V(\phi)\right]$
$\frac{\ddot{a}}{a}=\frac{8 \pi}{3 m_{\mathrm{p}}^{2}}\left[-\dot{\phi}^{2}+V(\phi)\right]$
K.G. equation: $\quad \ddot{\phi}+3 H \dot{\phi}+\frac{\mathrm{d} V}{\mathrm{~d} \phi}=0$

1. Hybrid inflation

Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conchusion and Perspectives

Questions...

- Horizon Problem
- Flatness Problem
- Topological defects

$$
N_{\mathrm{end}} \equiv \ln \frac{a_{\mathrm{end}}}{a_{\mathrm{i}}}>60
$$

Inflation : Period of acceleration of the expansion of the universe, that is $\quad \ddot{a}>0$, where a is the scale factor

Simplest realisation : Fill the universe with a scalar field

Slow-roll

$$
\frac{\ddot{a}}{a}=\frac{8 \pi}{3 m_{\mathrm{p}}^{2}}\left[\dot{\phi}^{2}+V(\phi)\right]
$$ approximation

K.G. equation: $\quad \ddot{\beta}+3 H \dot{\phi}+\frac{\mathrm{d} V}{\mathrm{~d} \phi}=0$

1. Basics on inflation

1. Hybrid inflation Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives

Questions...

- Horizon Problem
- Flatness Problem
- Topological defects

$$
N_{\mathrm{end}} \equiv \ln \frac{a_{\mathrm{end}}}{a_{\mathrm{i}}}>60
$$

Inflation : Period of acceleration of the expansion of the universe, that is $\quad \ddot{a}>0$, where a is the scale factor

Simplest realisation : Fill the universe with a scalar field
F.L. equations: $\quad H^{2}=\frac{8 \pi}{3 m_{\mathrm{p}}^{2}}\left[\frac{1}{2} \dot{\phi}^{2}+V(\phi)\right]$

$$
\frac{\ddot{a}}{a}=\frac{8 \pi}{3 m_{\mathrm{p}}^{2}}\left[-\dot{\phi}^{2}+V(\phi)\right]
$$

Slow-roll
K.G. equation: $\quad \ddot{\beta}+3 H \dot{\phi}+\frac{\mathrm{d} V}{\mathrm{~d} \phi}=0$

Cosmological Perturbations:

$$
\begin{aligned}
& \phi(x, t)=\bar{\phi}(t)+\delta \phi(x, t) \\
& g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu}
\end{aligned}
$$

Power spectrum of scalar pert of the metric, in SR approximation
$\mathcal{P}_{\zeta}(k) \simeq \frac{H_{*}^{2}}{\pi m_{\mathrm{p}}^{2} \epsilon_{1 *}} \sim\left(\frac{k}{k_{*}}\right)^{n_{\mathrm{s}}-1} \quad$ with $\quad \epsilon_{1}=\frac{m_{\mathrm{p}}^{2}}{16 \pi}\left(\frac{\frac{\mathrm{~d} V}{\mathrm{~d} \phi}}{V}\right)^{2} \ll 1$
(nearly) scale invariance

1. Basics on inflation

1. Hybrid inflation Fine-tuning of IC
2. Hoze to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities_
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives_

Questions...

- Horizon Problem
- Flatness Problem
- Topological defects

$$
N_{\mathrm{end}} \equiv \ln \frac{a_{\mathrm{end}}}{a_{\mathrm{i}}}>60
$$

Inflation : Period of acceleration of the expansion of the universe, that is $\quad \ddot{a}>0$, where a is the scale factor

Simpler realisation : Fill the universe with a scalar field

Slow-roll approximation
K.G. equation: $\quad \ddot{\phi}+3 H \dot{\phi}+\frac{\mathrm{d} V}{\mathrm{~d} \phi}=0$

Cosmological Perturbations : $\quad \phi(x, t)=\bar{\phi}(t)+\delta \phi(x, t)$

$$
g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu}
$$

Scalar spectral index, in SR approximation

$$
n_{s}-1=-2 \epsilon_{1 *}-\epsilon_{2 *} \quad \text { with } \quad \epsilon_{2}=\frac{m_{\mathrm{p}}^{2}}{4 \pi}\left[\left(\frac{V^{\prime}}{V}\right)^{2}-\frac{V^{\prime \prime}}{V}\right] \ll 1
$$

1. Basics on inflation

1. Hybrid inflation Fine-tuning of IC
2. Hore to aroid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives.

Questions...

- Horizon Problem
- Flatness Problem
- Topological defects

$$
N_{\mathrm{end}} \equiv \ln \frac{a_{\mathrm{end}}}{a_{\mathrm{i}}}>60
$$

Inflation : Period of acceleration of the expansion of the universe, that is $\quad \ddot{a}>0$, where a is the scale factor

Simpler realisation : Fill the universe with a scalar field

Slow-roll approximation
K.G. equation: $\quad \ddot{\phi}+3 H \dot{\phi}+\frac{\mathrm{d} V}{\mathrm{~d} \phi}=0$

Cosmological Perturbations:

$$
\begin{aligned}
& \phi(x, t)=\bar{\phi}(t)+\delta \phi(x, t) \\
& g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu}
\end{aligned}
$$

Scalar spectral index, in SR approximation

$$
n_{s}-1=-2 \epsilon_{1 *}-\epsilon_{2 *} \quad \text { WMAP5 : } \quad n_{s}=0.963_{-0.015}^{+0.014}
$$

1. Basics on inflation

1. Hybrid inflation

Fine-tuning of IC
2. Howe to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities_
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives_ Questions...

Other realisation : Fill the universe with TWO scalar fields

F.L. equations: $\quad H^{2}=\frac{8 \pi}{3 m_{\mathrm{p}}^{2}}\left[\frac{1}{2}\left(\dot{\phi}^{2}+\dot{\psi}^{2}\right)+V(\phi, \psi)\right]$

$$
\frac{\ddot{a}}{a}=\frac{8 \pi^{2}}{3 m_{\mathrm{p}}^{2}}\left[-\dot{\phi}^{2}-\dot{\psi}^{2}+V(\phi, \psi)\right]
$$

K.G. equations: $\quad \ddot{\phi}+3 H \dot{\phi}+\frac{\mathrm{d} V}{\mathrm{~d} \phi}=0 \quad \ddot{\psi}+3 H \dot{\psi}+\frac{\mathrm{d} V}{\mathrm{~d} \psi}=0$

1. Hybrid inflation Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conchusion and Perspectives

Questions...

1. Hybrid inflation

- Inflaton ϕ
- Higgs-type auxiliary field ψ
- Hybrid potential (Linde, astro-ph/9307002)

1. Hybrid inflation

Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives

Questions...

1. Hybrid inflation

- Inflation ϕ
- Higgs-type auxiliary field ψ
- Hybrid potential (Linde, astro-ph/9307002)

$$
V(\phi, \psi)=\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4}\left(M^{2}-\psi^{2}\right)^{2}+\frac{\lambda^{\prime}}{2} \phi^{2} \psi^{2}
$$

- 1-field effective potential
$V(\phi)=\Lambda^{4}\left[1+\left(\frac{\phi}{\mu}\right)^{2}\right]$
- First slow-roll parameter $\epsilon_{1} \equiv-\frac{\dot{H}}{H^{2}}$
inflation: $\quad \epsilon_{1}<1$
slow-roll approximation:

1. Hybrid inflation Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conchusion and Perspectives

Questions...

1. Hybrid inflation

- Inflaton ϕ
- Higgs-type auxiliary field ψ
- Hybrid potential (Linde, astro-ph/9307002)

$$
V(\phi, \psi)=\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4}\left(M^{2}-\psi^{2}\right)^{2}+\frac{\lambda^{\prime}}{2} \phi^{2} \psi^{2}
$$

- 1-field effective potential $\quad V(\phi)=\Lambda^{4}\left[1+\left(\frac{\phi}{\mu}\right)^{2}\right]$
- First slow-roll parameter
$\epsilon_{1} \equiv-\frac{\dot{H}}{H^{2}}$
inflation: $\quad \epsilon_{1}<1 \quad$ slow-roll approximation: $\quad \epsilon_{1} \ll 1$

Slow-roll can be violated \Rightarrow Exact approach

Blue spectrum avoided

- If critical point of instability is in the large field phase
- When slow-roll is violated

2. Fine-tuning of the initial conditions...

1. Hybrid inflation Fine-tuning of IC
2. Hore to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives.

Questions...

$$
V(\phi, \psi)=\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4}\left(M^{2}-\psi^{2}\right)^{2}+\frac{\lambda^{\prime}}{2} \phi^{2} \psi^{2}
$$

Tetradis, astro-ph/97072/4
Mendes, Liddle, astro-ph/0006020

$$
\lambda=\lambda^{\prime}=1, M=0.03 m_{\mathrm{pl}}, m=10^{-6} m_{\mathrm{pl}} \quad \lambda=\lambda^{\prime}=1, M=0.004 m_{\mathrm{pl}}, m=10^{-6} m_{\mathrm{pl}}
$$

(in Planck mass)

2. Fine-tuning of the initial conditions...

1. Hybrid inflation Fine-tuning of IC
2. Hore to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives. Questions...

$$
V(\phi, \psi)=\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4}\left(M^{2}-\psi^{2}\right)^{2}+\frac{\lambda^{\prime}}{2} \phi^{2} \psi^{2}
$$

Tetradis, astro-ph/97072 / 4
Mendes, Liddle, astro-ph/0006020

2. Fine-tuning of the initial conditions...

1. Hybrid inflation Fine-tuning of IC
2. Hore to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives.

Questions...

$$
V(\phi, \psi)=\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4}\left(M^{2}-\psi^{2}\right)^{2}+\frac{\lambda^{\prime}}{2} \phi^{2} \psi^{2}
$$

Tetradis, astro-ph/97072 / 4
Mendes, Liddle, astro-ph/0006020

2. Fine-tuning of the initial conditions...

1. Hybrid inflation Fine-tuning of IC
2. Hore to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives.

Questions...

$$
V(\phi, \psi)=\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4}\left(M^{2}-\psi^{2}\right)^{2}+\frac{\lambda^{\prime}}{2} \phi^{2} \psi^{2}
$$

Tetradis, astro-ph/97072 / 4
Mendes, Liddle, astro-ph/0006020

- Isolated points or structures?

2. Fine-tuning of the initial conditions...

1. Hybrid inflation Fine-tuning of IC
2. Hore to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives. Questions...

$$
V(\phi, \psi)=\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4}\left(M^{2}-\psi^{2}\right)^{2}+\frac{\lambda^{\prime}}{2} \phi^{2} \psi^{2}
$$

Tetradis, astro-ph/97072 / 4
Mendes, Liddle, astro-ph/0006020

- Isolated points or structures?
- Origin ?

2. Fine-tuning of the initial conditions...

1. Hybrid inflation Fine-tuning of IC
2. Hore to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives

Questions...

$$
V(\phi, \psi)=\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4}\left(M^{2}-\psi^{2}\right)^{2}+\frac{\lambda^{\prime}}{2} \phi^{2} \psi^{2}
$$

Tetradis, astro-ph/97072 / 4
Mendes, Liddle, astro-ph/0006020

- Isolated points or structures?
- Origin ?
- Quantification of successful areas?

1. Hybria inflation Fine-tuning of IC
2. Howe to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives_ Questions...
7. Fine-tuning of the initial conditions...

$$
V(\phi, \psi)=\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4}\left(M^{2}-\psi^{2}\right)^{2}+\frac{\lambda^{\prime}}{2} \phi^{2} \psi^{2}
$$

Tetradis, astro-ph/97072/4
Mendes, Liddle, astro-ph/0006020

- Isolated points or structures ?
- Origin ?
- Quantification successful areas?

Numerical integration of exact 2-field dynamics of to explore the space of initial conditions extended to super-planckian values

4. How to avoid fine-tuning?

1. Hybrid inflation

Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives_

Questions...

- Extended space of initial conditions

$\lambda=\lambda^{\prime}=1, M=0.03 m_{\mathrm{pl}}, m=10^{-6} m_{\mathrm{pl}}$

1. Hybrid inflation Fine-tuning of IC
2. Horv to aroid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conchusion and Perspectives

Questions...

- Super-Planckian initial conditions:

ϵ_{1}

$$
\epsilon_{1}=0.022,0.020,0.0167,0.015
$$

1. Hybrid inflation Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conchusion and Perspectives

Questions...

$$
\lambda=\lambda^{\prime}=1, M=0.03 m_{\mathrm{pl}}, m=10^{-6} m_{\mathrm{pl}}
$$

- Super-Planckian initial conditions:

Variation of potential parameters:

- λ ’ reduced
\Rightarrow slope of the transition reduced \Rightarrow
less "isolated" points
- M or λ increases
\Rightarrow less "isolated" points
- m has no effect until it is small

$$
\epsilon_{1}=0.022,0.020,0.0167,0.015
$$

- mas no effect until it is small

3. How to avoid fine-tuning?

1. Hybrid inflation Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conchusion and Perspectives

Questions...

- Super-Planckian initial conditions:

$$
\lambda=\lambda^{\prime}=1, M=0.03 m_{\mathrm{pl}}, m=10^{-6} m_{\mathrm{pl}}
$$

Variation of potential parameters:

- λ ' reduced
\Rightarrow slope of the transition reduced \Rightarrow
less "isolated" points
- M or λ increases
\Rightarrow less "isolated" points
- m has no effect until it is small

Isocurves of ϵ_{1} (first slow-roll par.)
$\epsilon_{1}=0.022,0.020,0.0167,0.015$
(from left to right)

1. Hybrid inflation

Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis
for F-term SUGRA
6. Conchusion and Perspectives

Questions...

- Super-Planckian initial conditions:

Variation of potential parameters:

- λ ' reduced
\Rightarrow slope of the transition reduced \Rightarrow
less "isolated" points
- M or λ increases
\Rightarrow less "isolated" points
- m has no effect until it is small
- m increases
\Rightarrow "small field" phase disappears due to slow-roll violation
\Rightarrow elliptic unsuccessful region

1. Hybrid inflation Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis
for F-term SUGRA
6. Conchusion and Perspectives

Questions...

- Super-Planckian initial conditions:

Variation of potential parameters:

- λ ' reduced
\Rightarrow slope of the transition reduced \Rightarrow
less "isolated" points
- M or λ increases
\Rightarrow less "isolated" points
- m has no effect until it is small
- m increases
\Rightarrow "small field" phase disappears due to slow-roll violation
\Rightarrow elliptic unsuccessful region

If super-planckian values are allowed,
The fine-tuning problem is resolved!

1. Hybrid inflation Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conchusion and Perspectives

Questions...

- Shifted inflation:

F-term superpotential + non-renormalizable term

Effective 2-field potential:

$$
\begin{gathered}
V(\phi, \psi)=\kappa^{2}\left(\psi^{2}-M^{2}-\frac{\beta}{\kappa} \psi^{4}\right)^{2}+2 \kappa^{2} \phi^{2} \psi^{2}\left(1-2 \frac{\beta}{\kappa} \psi\right)^{2} \\
1 \text { central }+2 \text { parallel valleys }
\end{gathered}
$$

1. Hybrid inflation

Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conchusion and Perspectives

Questions...

- Shifted inflation:

F-term superpotential + non-renormalizable term

Effective 2-field potential:

$$
\begin{gathered}
V(\phi, \psi)=\kappa^{2}\left(\psi^{2}-M^{2}-\frac{\beta}{\kappa} \psi^{4}\right)^{2}+2 \kappa^{2} \phi^{2} \psi^{2}\left(1-2 \frac{\beta}{\kappa} \psi\right)^{2} \\
1 \text { central }+2 \text { parallel valleys }
\end{gathered}
$$

- Smooth inflation:

F-term superpotential + non-renormalizable term $+Z_{2}$ symmetry
Effective 2-field potential: $\quad V(\phi, \psi)=\kappa^{2}\left(M^{2}-\frac{\psi^{4}}{m_{\mathrm{Pl}}^{2}}\right)^{2}+2 \kappa^{2} \phi^{2} \frac{\psi^{6}}{m_{\mathrm{Pl}}^{4}}$

$$
V(\phi, \psi)=\kappa^{2}\left(M^{2}-\frac{\psi^{4}}{m_{\mathrm{Pl}}^{2}}\right)^{2}+2 \kappa^{2} \phi^{2} \frac{\psi^{6}}{m_{\mathrm{Pl}}^{4}}
$$

5. Robustress of predictions

- Smooth inflation: (Lazarides, Panagiotakopoulos, hep-ph/9506325)

1. Hybrid inflation Fine-tuning of IC
2. Hoze to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives_

Questions...

Effective 2-field potential (SUSY): $\quad V(\phi, \psi)=\kappa^{2}\left(M^{2}-\frac{\psi^{4}}{16 M_{\mathrm{p}}}\right)^{2}+\kappa^{2} \phi^{2} \frac{\psi^{6}}{16 M_{\mathrm{p}}}$ 2 valleys and a flat $\quad \psi=0$ direction \Rightarrow No topological defects

5. Robustness of predictions

- Smooth inflation: (Lazarides, Panagiotakopoulos, hep-ph/9506325)

1. Hybrid inflation Fine-tuning of IC
2. Hoze to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives_ Questions...

Effective 2-field potential (SUSY): $\quad V(\phi, \psi)=\kappa^{2}\left(M^{2}-\frac{\psi^{4}}{16 M_{\mathrm{p}}}\right)^{2}+\kappa^{2} \phi^{2} \frac{\psi^{6}}{16 M_{\mathrm{p}}}$ 2 valleys and a flat $\quad \psi=0$ direction \Rightarrow No topological defects

5. Robustness of predictions

1. Hybrid inflation

Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conchusion and Perspectives

Questions...

- Shifted inflation: (Jeannerot, Khalil, Lazarides, Shafi, hep-ph/0002151) Effective 2-field potential (SUSY):

$$
\begin{gathered}
V(\phi, \psi)=\kappa^{2}\left(\psi^{2}-M^{2}-\frac{\beta}{\kappa} \psi^{4}\right)^{2}+2 \kappa^{2} \phi^{2} \psi^{2}\left(1-2 \frac{\beta}{\kappa} \psi\right)^{2} \\
1 \text { central }+2 \text { parallel valleys }
\end{gathered}
$$

5. Robustness of predictions

1. Hybrid inflation

Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conchusion and Perspectives

Questions...

- Shifted inflation: (Jeannerot, Khalil, Lazarides, Shafi, hep-ph/0002151) Effective 2-field potential (SUSY):

$$
\begin{gathered}
V(\phi, \psi)=\kappa^{2}\left(\psi^{2}-M^{2}-\frac{\beta}{\kappa} \psi^{4}\right)^{2}+2 \kappa^{2} \phi^{2} \psi^{2}\left(1-2 \frac{\beta}{\kappa} \psi\right)^{2} \\
1 \text { central }+2 \text { parallel valleys }
\end{gathered}
$$

5. Robustness of predictions

1. Hybrid inflation

Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conchusion and Perspectives_ Questions...

- Shifted inflation: (Jeannerot, Khalil, Lazarides, Shafi, hep-ph/0002151) Effective 2-field potential (SUSY):

$$
\begin{gathered}
V(\phi, \psi)=\kappa^{2}\left(\psi^{2}-M^{2}-\frac{\beta}{\kappa} \psi^{4}\right)^{2}+2 \kappa^{2} \phi^{2} \psi^{2}\left(1-2 \frac{\beta}{\kappa} \psi\right)^{2} \\
1 \text { central }+2 \text { parallel valleys }
\end{gathered}
$$

Unsuccessful region

 around the parallel valley without anamorphosis points1. Hybrid inflation Fine-tuning of IC
2. Howe to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives_ Questions...

5. Robustness of predictions

- Radion assisted gauge inflation:

> (M. Fairbairn, L.Lopez-Honorez, M.Tytgat, hep-ph/0302160)

Effective 2-field potential: $\quad V(\phi, \psi)=\frac{1}{4} \frac{\phi^{2}}{f^{2}} \psi^{4}+\frac{\lambda}{4}\left(\psi^{2}-\psi_{0}^{2}\right)^{2}$
Super-planckian values allowed

1. Hybrid inflation Fine-tuning of IC
2. Howe to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives_

Questions...

5. Robustness of predictions

- Radion assisted gauge inflation:

> (M. Fairbairn, L.Lopez-Honorez, M.Tytgat, hep-ph/0302160)

Effective 2-field potential: $\quad V(\phi, \psi)=\frac{1}{4} \frac{\phi^{2}}{f^{2}} \psi^{4}+\frac{\lambda}{4}\left(\psi^{2}-\psi_{0}^{2}\right)^{2}$
Super-planckian values allowed

For $\phi, \psi<0.2 m_{\mathrm{pl}}$
Up to 25% of area are anamorphosis points

1. Hybrid inflation Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis
for F-term SUGRA
6. Conchusion and Perspectives

Questions...

4. Robustness of predictions

- Radion assisted gauge inflation:
(M. Fairbairn, L.Lopez-Honorez, M.Tytgat, hep-ph/0302160)

Gauge-type inflation :

- φ phase of a Wilson loop wrapped around a compact 5th dim.
- Super-planckian values allowed
- Varying radius R of the extra-dimension $\quad \psi \equiv(2 \pi R)^{-1}$

Effective 2-field potential: $\quad V(\phi, \psi)=\frac{1}{4} \frac{\phi^{2}}{f^{2}} \psi^{4}+\frac{\lambda}{4}\left(\psi^{2}-\psi_{0}^{2}\right)^{2}$
2 valleys and a flat $\quad \psi=$ direction

5. Fractal behaviour?

1. Hybrid inflation Fine-tuning of IC
2. Howe to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions
of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives_ Questions...

- Fractal properties of anamorphosis points:

- Structure with fractal boundaries ?
- Fractal Surface?
\uparrow Convergence of the area covered by successful points?

5. Fractal behaviour?

1. Hybrid inflation Fine-tuning of IC
2. Howe to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives_ Questions...

- Fractal properties of anamorphosis points:

Box Counting Dimension

- Structure with fractal boundaries ?

$$
1.2
$$

- Fractal Surface? 2.0
\uparrow Convergence of the area covered by successful points?

5. Fractal behaviour?

1. Hybrid inflation Fine-tuning of IC
2. Howe to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives_ Questions...

- Fractal properties of anamorphosis points:

Box Counting Dimension

- Structure with fractal boundaries ?

Yes
1.2

- Fractal Surface?
\uparrow Convergence of the area covered by successful points?

No 2.0

Yes

$\phi_{i} / m_{\mathrm{Pl}}$

5. Fractal behaviour?

1. Hybrid inflation Fine-tuning of IC
2. Howe to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives_ Questions...

- Fractal properties of anamorphosis points:

Box Counting Dimension

- Structure with fractal boundaries ?
- Fractal Surface ?
Yes
No
Yes
...like Mandelbrot Set

6. Fractal behaviour?

1. Hybrid inflation

Fine-tuning of IC
2. Howe to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions
of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives. Questions...

- Fractal properties of anamorphosis points:

6. Fractal behaviour?

1. Hybrid inflation

Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities_
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives. Questions...

- Fractal properties of anamorphosis points:

- Structure with fractal boundaries ?
\rightarrow Fractal Surface ?
\uparrow Convergence of the area covered by successful points?

1. Hybrid inflation

Fine-tuning of IC
2. Howe to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives.

Questions...

- Fractal properties of anamorphosis points:

- Structure with fractal boundaries ?
- Fractal Surface?
\uparrow Convergence of the area covered by successful points?
-Box-Counting dimension
- Can be numerically evaluated:
- \mathbf{N} random initial conditions $\quad x_{n}=\left(\phi_{n}, \psi_{n}\right)$
- 3 trajectories for each point: $x_{n}-\epsilon, x_{n}, x_{n}+\epsilon$
- $f(\epsilon)$, fraction of points ending in a different attractor/all successful

1. Hybrid inflation

Fine-tuning of IC
2. Howe to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives.

Questions...

- Fractal properties of anamorphosis points:

Box Counting Dimension

- Structure with fractal boundaries ?
- Fractal Surface?
\uparrow Convergence of the area covered by successful points?
-Box-Counting dimension
- Can be numerically evaluated:
- \mathbf{N} random initial conditions $\quad x_{n}=\left(\phi_{n}, \psi_{n}\right)$
- 3 trajectories for each point: $x_{n}-\epsilon, x_{n}, x_{n}+\epsilon$
- $f(\epsilon)$, fraction of points ending in a different attractor/all successful

1. Hybrid inflation

Fine-tuning of IC
2. Howe to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives.

Questions...

- Fractal properties of anamorphosis points:

Box Counting Dimension

- Structure with fractal boundaries ?
1.2
\rightarrow Fractal Surface ?
\uparrow Convergence of the area covered by successful points?
-Box-Counting dimension
- Can be numerically evaluated:
- \mathbf{N} random initial conditions $\quad x_{n}=\left(\phi_{n}, \psi_{n}\right)$
- 3 trajectories for each point: $x_{n}-\epsilon, x_{n}, x_{n}+\epsilon$
- $f(\epsilon)$, fraction of points ending in a different attractor/all successful

1. Hybrid inflation

Fine-tuning of IC
2. Howe to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives.

Questions...

- Fractal properties of anamorphosis points:

Box Counting Dimension

- Structure with fractal boundaries ?
1.2
- Fractal Surface? 2.0
- Convergence of the area covered by successful points?
-Box-Counting dimension
+ Can be numerically evaluated:
- \mathbf{N} random initial conditions $\quad x_{n}=\left(\phi_{n}, \psi_{n}\right)$
- 3 trajectories for each point: $x_{n}-\epsilon, x_{n}, x_{n}+\epsilon$
- $f(\epsilon)$, fraction of points ending in a different attractor/all successful

1. Hybrid inflation

Fine-tuning of IC
2. Howe to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives.

Questions...

- Fractal properties of anamorphosis points:

Box Counting Dimension

- Structure with fractal boundaries ? Yes 1.2
\rightarrow Fractal Surface?
\uparrow Convergence of the area covered by successful points?
-Box-Counting dimension
- Can be numerically evaluated:
- \mathbf{N} random initial conditions $\quad x_{n}=\left(\phi_{n}, \psi_{n}\right)$
- 3 trajectories for each point: $x_{n}-\epsilon, x_{n}, x_{n}+\epsilon$
- $f(\epsilon)$, fraction of points ending in a different attractor/all successful

1. Hybrid inflation

Fine-tuning of IC
2. Howe to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives.

Questions...

- Fractal properties of anamorphosis points:

Box Counting Dimension

- Structure with fractal boundaries ? Yes 1.2
- Fractal Surface?

No
2.0
\uparrow Convergence of the area covered by successful points?

6. Fractal behaviour?

-Box-Counting dimension $\quad D \equiv \lim _{\epsilon \rightarrow 0} \frac{\log N(\epsilon)}{\log (1 / \epsilon)}$

- Can be numerically evaluated:
- \mathbf{N} random initial conditions $\quad x_{n}=\left(\phi_{n}, \psi_{n}\right)$
- $\mathbf{3}$ trajectories for each point: $x_{n}-\epsilon, x_{n}, x_{n}+\epsilon$
- $f(\epsilon)$, fraction of points ending in a different attractor/all successful

1. Hybrid inflation

Fine-tuning of IC
2. Howe to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives.

Questions...

- Fractal properties of anamorphosis points:

Box Counting Dimension

- Structure with fractal boundaries ? Yes 1.2
- Fractal Surface?

No
2.0
\uparrow Convergence of the area covered by successful points? Yes
-Box-Counting dimension

+ Can be numerically evaluated:
- \mathbf{N} random initial conditions $\quad x_{n}=\left(\phi_{n}, \psi_{n}\right)$
- 3 trajectories for each point: $x_{n}-\epsilon, x_{n}, x_{n}+\epsilon$
- $f(\epsilon)$, fraction of points ending in a different attractor/all successful

6. Fractal behaviour?

1. Hybrid inflation

Fine-tuning of IC
2. Howe to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives.

Questions..

- Fractal properties of anamorphosis points:
- Structure with fractal boundaries ?
\downarrow Fractal Structure ?
\uparrow Convergence of the area?

7. MCMC exploration

1. Hybrid inflation

Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities_
- Probability distributions
of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives. Questions...

- The MCMC method:

1. Hybrid inflation Fine-tuning of IC
2. Hore to aroid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions
of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives_

Questions...

- The MCMC method:
 Exploration of a 7D space

- Each element of the chain depends only of the previous one
- Chosen from a gaussian random distribution around the previous one, under an acceptance condition
- Simple acceptance condition: Trajectory leading to N>60 e-folds
\downarrow Flat prior for the initial fields - initial velocities - \log of parameters
\rightarrow Range $-0.2 m_{\mathrm{p}}<\phi, \psi<0.2 m_{\mathrm{p}}$ and $\left(\frac{\mathrm{d} \phi}{\mathrm{d} N}\right)^{2}+\left(\frac{\mathrm{d} \psi}{\mathrm{N}}\right)^{2}<\frac{9 m_{\mathrm{p}}^{2}}{8 \pi} \equiv \frac{6}{\kappa^{2}}$

$$
M<0.2 m_{\mathrm{p}}
$$

\uparrow Final density of points proportional to the target distribution

1. Hybrid inflation Fine-tuning of IC
2. Howe to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions
of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives.

Questions...

- The MCMC method:
 Exploration of a 7D space

- Each element of the chain depends only of the previous one
- Chosen from a gaussian random distribution around the previous one, under an acceptance condition
- Simple acceptance condition: Trajectory leading to N>60 e-folds
\downarrow Flat prior for the initial fields - initial velocities - log of parameters
+ Range $-0.2 m_{\mathrm{p}}<\phi, \psi<0.2 m_{\mathrm{p}}$ and $\left(\frac{\mathrm{d} \phi}{\mathrm{d} N}\right)^{2}+\left(\frac{\mathrm{d} \psi}{\mathrm{N}}\right)^{2}<\frac{9 m_{\mathrm{p}}^{2}}{8 \pi} \equiv \frac{6}{\kappa^{2}}$

$$
M<0.2 m_{\mathrm{p}}
$$

\downarrow Final density of points proportional to the target distribution

- The 2-fields potential:

$$
V(\phi, \psi)=\Lambda^{4}\left[\left(1-\frac{\psi^{2}}{M^{2}}\right)^{2}+\frac{\phi^{2}}{\mu^{2}}+\frac{\phi^{2} \psi^{2}}{\nu^{4}}\right]
$$

1. Hybrid inflation

Fine-tuning of IC
2. Hore to aroid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives. Questions...

- Probability distribution of initial velocities:

Flat Prior + Bound:

Flat probability distribution for $\frac{\mathrm{d} \phi}{\mathrm{d} N}$ and $\frac{\mathrm{d} \psi}{\mathrm{d} N}$

7. MCMC exploration

1. Hybrid inflation Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conchusion and Perspectives_

Questions...

FIG. 6: 3D probability density for the fields, for MCMC on the fields only (left), including initial velocities (center), including both initial velocities and parameters (right).

FIG. 7: Distribution of points in the plane of $\log \nu^{2}-\log M$ (left) and in the plane $\log \nu^{2} / \psi$ (right)

FIG. 8: Distribution of points in the plane of $\log M / \psi$ (left), and in the plane $\log \mu / \psi$

WMAP5

1. Hybrid inflation Fine-tuning of IC
2. Horv to aroid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives_

Questions...

F-term SUGRA model

1. Hybrid inflation Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis
for F-term SUGRA
6. Conchusion and Perspectives

Questions...

- Simple and realistic model in (local) SUSY framework
- SUGRA corrections dominate radiative correction
- Only one potential parameter M
- Slightly BLUE spectrum predicted: BUT: this is the favoured case if cosmic strings formation is taken account BUT: it can be RED due to domination of radiative corrections before reaching instability point in the valley
- 2 field potential: $\quad V_{\text {tree }}^{\text {sugra }}(s, \psi)=\kappa^{2} \exp \left(\frac{s^{2}+\psi^{2}}{2 M_{\mathrm{pl}}^{2}}\right)$

$$
\begin{aligned}
& \times\left\{\left(\frac{\psi^{2}}{4}-M^{2}\right)^{2}\left(1-\frac{s^{2}}{2 M_{\mathrm{pl}}^{2}}+\frac{s^{4}}{4 M_{\mathrm{pl}}^{4}}\right)\right. \\
& \left.+\frac{s^{2} \psi^{2}}{4}\left[1+\frac{1}{M_{\mathrm{pl}}^{2}}\left(\frac{1}{4} \psi^{2}-M^{2}\right)\right]^{2}\right\} .
\end{aligned}
$$

- F-term + C.W. corrections:

$$
\begin{aligned}
V_{1-\text { loop }}^{\mathrm{cw}}(s)=\frac{\kappa^{4} M^{4} \mathcal{N}}{32 \pi^{2}} & {\left[2 \ln \frac{s^{2} \kappa^{2}}{\Lambda^{2}}+(z+1)^{2} \ln \left(1+z^{-1}\right)\right.} \\
& \left.+(z-1)^{2} \ln \left(1-z^{-1}\right)\right]
\end{aligned}
$$

F-term SUGRA model

1. Hybrid inflation Fine-tuning of IC
2. How to avoid fine-tuning?
3. Other hybrid models
4. MCMC analysis
for original hybrid model

- Probability distributions of the fields
- Probability distributions of initial velocities
- Probability distributions of parameters

5. MCMC analysis for F-term SUGRA
6. Conclusion and Perspectives_

Questions...

FIG. 12: Set of initial field values $\left(\psi_{\mathrm{i}} / M_{\mathrm{pl}}, s_{\mathrm{i}} / M_{\mathrm{pl}}\right)$ for the SUGRA F-term model leading to more than 60 e-folds of inflation (dark red). The initial field velocities are assumed to vanish and the potential parameter is fixed at $M=10^{-2} m_{\mathrm{pl}}$. As for the original hybrid model, we recover a set of dimension two with a fractal boundary.

[^0]: Institut d'Astrophysique de Paris (IAP), 2nd November 2010

