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CMB spectrum

〈∆T

T
(n̂)

∆T

T
(n̂′)〉

• If data are Gaussian, they are fully characterized by the power spectrum (FT of 2-pf): 
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• Scales larger than Hubble radius at decoupling. 
Dominant effect: gravitational second-order effects

• Low multipoles:



Sachs-Wolfe effect

• Adiabatic I.C.

• Matter dominance only

• Large angles: gravity only, no sub-Hubble plasma physics

[Sachs-Wolfe ’67]

eq dec 

matter inflation 

Physically consistent limit: the calculation is exact if recombination takes place much after 
equality, there is no Lambda and the universe is so old that observed scales are infinitely 
larger than Hubble radius at recombination
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Sachs-Wolfe calculation

• Photon redshift:

• Intrinsic anisotropy (adiabatic I.C.):

[Sachs-Wolfe ’67]

To(n̂) =
ωo

ωe
Te("xe)Because of Liouville’s theorem:

!xe = n̂(τo − τe)

Perturbed metric in conformal time:

cf linear Poisson eq:
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ds2 = a2(τ)
[
−(1 + 2Φ("x))dτ2 + (1− 2Φ("x))d"x2
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∇2Φ =4 πGρ(t)a2(t)δ(t, $x)



Power spectrum
∆T

T
(n̂) =

1
3
Φ(!xdec)• Sachs-Wolfe effect:

Cl ∝
1
l2

• Flat-sky approximation: not very good on large angular scales; however simpler and more 
transparent expressions

!m

n̂

tensor components of the metric. Finally, the last term in the second line of eq. (2.31), represents

the lensing effect. All these effects were discussed for a more general metric in [27, 28].

There is a nice way to check the factor φ2/18 in the expression (2.31) which, as we will see, is

important for the squeezed limit of the bispectrum [14]. Let us take the limit in which one of the

two Fourier modes of the initial conditions φ becomes infinitely long. This mode is still out of the

horizon today and therefore cannot affect any physical observable. Let us check that this is indeed

the case. When one of the wavevectors goes to zero, all the terms containing spatial derivatives in

the expression above vanish as it is clear from the explicit form of the metric eq.s (2.4) - (2.7). One is

left only with the first two terms which, up to second order, it is useful to rewrite in an exponential

form [15]
δT

T
(n̂) =

[

1

3
φ +

1

18
φ2

]

e

! eφe/3 − 1 . (2.33)

At first sight it looks that the constant mode can affect observations through the second order term,

which mixes a short mode with the constant one. This actually is not the case as the constant mode

also affects the average measured temperature. Indeed the well defined measurable quantity is given

by
To(n̂) − T̄o

T̄o
= eφe/3〈e−φe/3〉 − 1 . (2.34)

Now we see that indeed a constant contribution to φ cancels out: the quadratic term cancels with

the redefinition of the average temperature. Notice that this is only possible because of the exact

numerical coefficient 1/18 in front of the quadratic term.

In this way we also understand why the argument presented in [20] for the squeezed limit of the

3-point function is not correct. In that reference it is argued that a term like φ2
e/18, which induces

a correlation between short and long modes, cannot exist, as it would imply – as in eq. (2.33) – that

a mode which is still out of the horizon gives a measurable effect. What was neglected is that the

same mode would change the average of the measured temperature.

3 CMB bispectrum and its shape

In this section we will introduce the observables that we are going to study, in particular the CMB

bispectrum and its shape dependence. We will use the flat sky approximation. Even though this

approximation is not very good on the large angular scales (lower multipoles) where the Sachs-Wolfe

effect applies, the expressions that we will derive are much more transparent in this limit.

In the flat sky approximation (see Appendix A) the Fourier transform in the sky of the temper-

ature anisotropies is

a"l =

∫

d2 #m
δT

T
(n̂) e−i"l·"m , (3.1)

where we have decomposed n̂ into a part orthogonal and parallel to the line of sight as n̂ ≡ (#m, 1)
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(see appendix A). The spectrum of the 2-point function is defined as

〈a!l a!l′〉 = (2π)2δ(#l +#l′)Cl . (3.2)

We can rewrite the standard linear Sachs-Wolfe terms in eq. (2.31) in Fourier space,

δT

T
(n̂) =

∫

d3k

(2π)3
1

3
φ!k ei!k·n̂De . (3.3)

As explained more accurately in appendix A, it is convenient to separate #k as the sum of a 2-

dimensional vector parallel to the flat-sky and a component orthogonal to it,

#k ≡ (#k‖, k⊥) . (3.4)

Using this decomposition and inserting eq. (3.3) in eq. (3.1) one obtains

a!l =

∫

d3k

(2π)3
1

3
φ!k eik⊥De (2π)2δ(#l − #k‖De) . (3.5)

From this expression the power spectrum defined in eq. (3.2) reads,

Cl =
A

9πl2
, (3.6)

where for simplicity we have used a scale invariant power spectrum for the gravitational potential φ,

〈φ!k φ!k′〉 = (2π)3δ(#k + #k′)
A

k3
. (3.7)

We are interested in the ensemble average of the product of three a!l. Thus, we define the CMB

bispectrum B(#l1,#l2,#l3) as

〈a!l1
a!l2

a!l3
〉 = (2π)2δ(#l1 +#l2 +#l3)B(#l1,#l2,#l3) . (3.8)

Translational and rotational invariance reduce the number of degrees of freedom of B to three

independent variables only, for instance l1, l2, l3. This is completely general, but in the particular

limit we are studying (large scales and perfect matter dominance) we will also see that the leading

contributions to the bispectrum are scale invariant, i. e. the amount of non-Gaussianity is the same

at long and short scales. Mathematically this implies that the function B is a homogenous function

of degree −4,

B(λ#l1,λ#l2,λ#l3) = λ−4B(#l1,#l2,#l3) , (3.9)

which further reduces the number of degrees of freedom to two, for instance the ratios r2 ≡ l2/l1

and r3 ≡ l3/l1. Without loss of generality we can assume 0 ≤ r3 ≤ r2 ≤ 1; the triangle inequality

implies r3 ≥ 1− r2. This is very similar to what happens when one studies the shape dependence of

the primordial 3-point function of the curvature perturbation [21]; with the difference that here we

are in two and not three dimensions.
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• Power spectrum in flat sky:

〈Φ!kΦ!k′〉 ∝ δ("k + "k′)
1
k3

• Use the power spectrum of gravitational potential

⇒



Power spectrum

〈∆T
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• If data are Gaussian, they are fully characterized by the power spectrum (FT of 2-pf): 

⇒ Cl ∝
1
l2



Beyond Gaussianity
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(n̂3)〉 3-p statistic
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For instance:

Bispectrum
• Deviation from Gaussianity are imprinted in the bispectrum (FT of 3-pf)

⇒〈∆T

T
(n̂1)

∆T

T
(n̂2)

∆T

T
(n̂3)〉 〈al1m1al2m2al3m3〉 =

(
!1 !2 !3
m1 m2 m3

)
Bl1l2l3

[Babich, Creminelli, Zaldarriaga ’04] 

l1 = 1

l2 l3

• Squeezed: • Equilateral: 

l1 = 1
l2

l3
l2 l3

l2 → 0 l1 = l2 = l3

l1 = 1

• The bispectrum is a function of 6 parameters: -2 from translational, -1 from rotational, -1 
from scale invariance = 2 independent parameters

〈a!l1
a!l2

a!l3
〉 = (2π)3δ(#l1 +#l2 +#l3)B(#l1,#l2,#l3)• Flat sky:

r2 ≡ l2/l1; r3 ≡ l3/l1; 1− r3 ≤ r2 ≤ r3



Primordial non-Gaussianities
• Simple, single field slow-roll inflation predicts very small non-Gaussianities

• Other models predict larger non-Gaussianities:

✓ Local shape non-Gaussianity, generated on super-Hubble scales (curvaton, 
modulated reheating, new ekpyrosis...):

〈Φ!k1
Φ!k2

Φ!k3
〉 ∝ δ("k1 + "k2 + "k3)

1
k3
1k

3
2

+ perms ⇒ Maximized in squeezed limit
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[Maldacena ’02]

Φ(!x) = φg(!x)− f local
NL φ2

g(!x)



Primordial non-Gaussianities
✓ Equilateral shape non-Gaussianity, generated at Hubble-crossing (DBI, ghost 
inflation...):

〈Φ!k1
Φ!k2

Φ!k3
〉 ∝ δ("k1 + "k2 + "k3)

(
− 1

2k3
1k

3
2
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3k2

1k
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3

+ perms
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• Bispectrum: B ∝ f equil
NL · 1

l41
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obtained numerically

• Equilateral: 

l2 l3

l1 = l2 = l3

l1 = 1

[Babich, Creminelli, Zaldarriaga ’04] 

Divergences removed by cancellation in the squeezed limit



Shape matters

From this expression the power spectrum defined in Eq. (3.2) reads,

Cl =
A

9πl2
, (3.6)

where for simplicity we have used a scale invariant power spectrum for the gravitational potential φ,

〈φ!k φ!k′〉 = (2π)3δ($k + $k′)
A

k3
. (3.7)

We are interested in the ensemble average of the product of three a!l. Thus, we define the CMB

bispectrum B($l1,$l2,$l3) as

〈a!l1
a!l2

a!l3
〉 = (2π)2δ($l1 +$l2 +$l3)B($l1,$l2,$l3) . (3.8)

Translational and rotational invariance reduce the number of degrees of freedom of B to three inde-

pendent variables only, for instance l1, l2, l3. This is completely general, but in the particular limit

we are studying (large scales and perfect matter dominance) we will also see that the leading con-

tributions to the bispectrum are scale invariant, i. e. the amount of non-Gaussianity is the same at

long and short scales. Mathematically this implies that the function B is a homogenous function of

degree −4,

B(λ$l1,λ$l2,λ$l3) = λ−4B($l1,$l2,$l3) , (3.9)

which further reduces the number of degrees of freedom to two, for instance the ratios r2 ≡ l2/l1 and

r3 ≡ l3/l1. Without loss of generality we can assume 0 ≤ r3 ≤ r2 ≤ 1; the triangle inequality implies

r3 ≥ 1 − r2. This is very similar to what happens when one studies the shape dependence of the

primordial 3-point function of the curvature perturbation [15]; with the difference that here we are

in two and not three dimensions.

We are interested in the dependence of B on the two ratios r2 and r3, which describes how the

bispectrum changes as we change the shape of the triangle in Fourier space. The possibility to measure

a bispectrum depends on its signal to noise ratio S/N , which is given in flat-sky approximation by

[9]

(S/N)2 =
1

π

∫

d2l2d2l3
(2π)2

B($l1,$l2,$l3)2

6Cl1Cl2Cl3
. (3.10)

The overall scaling in l is fixed by eq. (3.9) and (3.6): the integrand scales as l−2. To study the shape

dependence one can look at the quantity

r2 r3 B(1, r2, r3) . (3.11)

The square of this quantity is in fact proportional to the integrand in the expression above and thus

quantifies the contribution to (S/N)2 of triangles with a given shape.2

2To be more precise one could rewrite the expression (3.10) for (S/N)2 as an integral over the two ratios
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• Signal/noise is (2d):

For comparison with the results we will derive later, it is interesting to study the functions (3.11)

in the case the CMB bispectrum is dominated by a primordial contribution. Two interesting cases

are given by the so-called local and equilateral shapes [15].

The local shape. A popular shape, usually used in data analysis, is the one obtained when the

potential φ contains a non-linear correction in coordinate space,

φ("x) = φg("x) − f local
NL (φ2

g("x) − 〈φ2
g〉) . (3.13)

(We are using the same sign convention for f local
NL as Komatsu et al. [10].) In this case, the 3-point

function of the gravitational potential φ is

〈φ!k1
φ!k2

φ!k3
〉 = (2π)3δ("k1 + "k2 + "k3)(−2f local

NL A2)

(

1

k3
1k

3
2

+
1

k3
1k

3
3

+
1

k3
2k

3
3

)

. (3.14)

If the non-linear correction (3.13) dominates over those computed in the previous section, then a!l

can be simply computed using Eq. (3.5). By taking the ensemble average of the product of three a!l,

and using Eq. (3.14), the CMB bispectrum induced by local non-linear corrections reads

Blocal = −
2f local

NL A2

27π2

(

1

l21l
2
2

+
1

l21l
2
3

+
1

l22l
2
3

)

. (3.15)

Its corresponding shape is plotted in figure 3.

The equilateral shape. Another theoretically motivated shape for the primordial 3-point

function is the so-called equilateral shape that can be described by [15]

〈φ!k1
φ!k2

φ!k3
〉 = (2π)3δ("k1+"k2+"k3)(−6f equil

NL A2)

(

−
1

k3
1k

3
2

−
1

k3
1k

3
3

−
1

k3
2k

3
3

−
2

k2
1k

2
2k

2
3

+
1

k1k2
2k

3
3

+ (5perms)

)

,

(3.16)

where the permutations act only on the last term. We can compute the CMB bispectrum similarly

to what done in the local case. It is convenient to define

y1 ≡ k‖
1De/l1 , y2 ≡ k‖

2De/l2 . (3.17)

r2 and r3

(S/N)2 ∝
∫

dr2dr3

[

r3/2

2
r3/2

3

(2r2
2

+ 2r2
3

+ 2r2
2
r2
3
− 1 − r4

2
− r4

3
)1/4

B(1, r2, r3)

]2

. (3.12)

Therefore it would seem appropriate to consider the function in brackets as a measure of the S/N contribution;

in this way in fact the integral of the square of the function over an r2, r3 region would directly give the

contribution of those shape configurations to (S/N)2. This would exactly parallel what done in [15] to study

the shape dependence of the primordial 3-point function. However in this way we would introduce a spurious

divergence in the plots for flattened configurations when all the sides of the triangle are aligned: indeed the

denominator of the expression above blows up in this limit. This is just a consequence of describing the

triangle shape in terms of r2 and r3 and it does not imply that flattened triangles are indeed more important.

For this reason we prefer to plot r2 r3 B(1, r2, r3) in the following.
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From this expression the power spectrum defined in Eq. (3.2) reads,

Cl =
A

9πl2
, (3.6)

where for simplicity we have used a scale invariant power spectrum for the gravitational potential φ,

〈φ!k φ!k′〉 = (2π)3δ($k + $k′)
A

k3
. (3.7)

We are interested in the ensemble average of the product of three a!l. Thus, we define the CMB

bispectrum B($l1,$l2,$l3) as

〈a!l1
a!l2

a!l3
〉 = (2π)2δ($l1 +$l2 +$l3)B($l1,$l2,$l3) . (3.8)

Translational and rotational invariance reduce the number of degrees of freedom of B to three inde-

pendent variables only, for instance l1, l2, l3. This is completely general, but in the particular limit

we are studying (large scales and perfect matter dominance) we will also see that the leading con-

tributions to the bispectrum are scale invariant, i. e. the amount of non-Gaussianity is the same at

long and short scales. Mathematically this implies that the function B is a homogenous function of

degree −4,

B(λ$l1,λ$l2,λ$l3) = λ−4B($l1,$l2,$l3) , (3.9)

which further reduces the number of degrees of freedom to two, for instance the ratios r2 ≡ l2/l1 and

r3 ≡ l3/l1. Without loss of generality we can assume 0 ≤ r3 ≤ r2 ≤ 1; the triangle inequality implies

r3 ≥ 1 − r2. This is very similar to what happens when one studies the shape dependence of the

primordial 3-point function of the curvature perturbation [15]; with the difference that here we are

in two and not three dimensions.

We are interested in the dependence of B on the two ratios r2 and r3, which describes how the

bispectrum changes as we change the shape of the triangle in Fourier space. The possibility to measure

a bispectrum depends on its signal to noise ratio S/N , which is given in flat-sky approximation by

[9]

(S/N)2 =
1

π

∫

d2l2d2l3
(2π)2

B($l1,$l2,$l3)2

6Cl1Cl2Cl3
. (3.10)

The overall scaling in l is fixed by eq. (3.9) and (3.6): the integrand scales as l−2. To study the shape

dependence one can look at the quantity

r2 r3 B(1, r2, r3) . (3.11)

The square of this quantity is in fact proportional to the integrand in the expression above and thus

quantifies the contribution to (S/N)2 of triangles with a given shape.2

2To be more precise one could rewrite the expression (3.10) for (S/N)2 as an integral over the two ratios
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[Hu ‘00]

• We can define a scalar product between shapes:

• Very important to constrain non-Gaussianities!

In the limit !l2 → 0, the explicit expression (4.35) gives, taking into account the permutation l1 ↔ l3,

Blens(!l1,!l2,!l3) =
4A2

27π2

1

l42

[

!l1 ·!l2
l21

−
!l2 · (!l1 +!l2)

(!l1 +!l2)2

]

$ −
4A2

27π2

l2il2j

l42

d

dl1j

l1i

l21
, (4.45)

which coincides with the expression above.

5 The total CMB bispectrum

In the previous section we have separated the calculation of the CMB bispectrum generated in the

Sachs-Wolfe limit into five contributions: an intrinsic contribution expressed in terms of the New-

tonian potential evaluated at last scattering, in eq. (4.6), the Rees-Sciama effect, in eq. (4.13), a

contribution from the time dependence of the vector and tensor components of the metric, respec-

tively in eqs. (4.20) and (4.28), and finally the lensing effect, in eq. (4.34). However, it is important

to stress that only the sum of these contributions has a physical meaning. In this section we turn

to discuss this sum, i.e. the total bispectrum. This is plotted in figure 8. By comparing this with

figure 7 one can appreciate that the lensing effect largely dominates the total bispectrum. Let us

see this more quantitatively.

In the squeezed limit the bispectrum is dominated by the intrinsic contribution and the lensing.

In this limit we can compare the total bispectrum to the local bispectrum (3.16) taken with f local
NL = 1.

This yields
Btotal(1, r2 → 0, r3 → 1)

Blocal(1, r2 → 0, r3 → 1)
= −1/6 − cos(2θ) , (5.1)

where we remind that θ represents the angle between the short and long wavelength modes !l1 and

!l2. Thus, the total bispectrum corresponds to f local
NL = −1/6 − cos(2θ).

A remark on the angular dependence in this expression is in order here. Although it is non-

vanishing in the squeezed limit, the lensing contribution (4.34) is not of the local form (3.16). In

particular, as the angular dependence averages to zero, a non-Gaussianity test based on a local

estimator of the form (3.16) would be completely blind to the lensing signal. A quantitative way to

measure how a signal overlaps with another is provided by the cosine between two bispectra, defined

as [21]

cos(B1, B2) ≡
B1 · B2√

B1 · B1
√

B2 · B2
, (5.2)

where B1 · B2 is the scalar product between two bispectra, given by

B1 · B2 ≡
1

π

∫

d2l2d2l3
(2π)2

B1(!l1,!l2,!l3)B2(!l1,!l2,!l3)

6Cl1Cl2Cl3
(5.3)

∝
∫

dr2dr3
r3
2r

3
3B1(1, r2, r3)B2(1, r2, r3)

(

2r2
2 + 2r2

3 + 2r2
2r

2
3 − 1 − r4

2 − r4
3

)1/2
. (5.4)

27

Ex: cos(Blocal · Bequil) = 0.30

In the limit !l2 → 0, the explicit expression (4.35) gives, taking into account the permutation l1 ↔ l3,

Blens(!l1,!l2,!l3) =
4A2

27π2

1

l42

[

!l1 ·!l2
l21

−
!l2 · (!l1 +!l2)

(!l1 +!l2)2

]

$ −
4A2

27π2

l2il2j

l42

d

dl1j

l1i

l21
, (4.45)

which coincides with the expression above.

5 The total CMB bispectrum

In the previous section we have separated the calculation of the CMB bispectrum generated in the

Sachs-Wolfe limit into five contributions: an intrinsic contribution expressed in terms of the New-

tonian potential evaluated at last scattering, in eq. (4.6), the Rees-Sciama effect, in eq. (4.13), a

contribution from the time dependence of the vector and tensor components of the metric, respec-

tively in eqs. (4.20) and (4.28), and finally the lensing effect, in eq. (4.34). However, it is important

to stress that only the sum of these contributions has a physical meaning. In this section we turn

to discuss this sum, i.e. the total bispectrum. This is plotted in figure 8. By comparing this with

figure 7 one can appreciate that the lensing effect largely dominates the total bispectrum. Let us

see this more quantitatively.

In the squeezed limit the bispectrum is dominated by the intrinsic contribution and the lensing.

In this limit we can compare the total bispectrum to the local bispectrum (3.16) taken with f local
NL = 1.

This yields
Btotal(1, r2 → 0, r3 → 1)

Blocal(1, r2 → 0, r3 → 1)
= −1/6 − cos(2θ) , (5.1)

where we remind that θ represents the angle between the short and long wavelength modes !l1 and

!l2. Thus, the total bispectrum corresponds to f local
NL = −1/6 − cos(2θ).

A remark on the angular dependence in this expression is in order here. Although it is non-

vanishing in the squeezed limit, the lensing contribution (4.34) is not of the local form (3.16). In

particular, as the angular dependence averages to zero, a non-Gaussianity test based on a local

estimator of the form (3.16) would be completely blind to the lensing signal. A quantitative way to

measure how a signal overlaps with another is provided by the cosine between two bispectra, defined

as [21]

cos(B1, B2) ≡
B1 · B2√

B1 · B1
√

B2 · B2
, (5.2)

where B1 · B2 is the scalar product between two bispectra, given by

B1 · B2 ≡
1

π

∫

d2l2d2l3
(2π)2

B1(!l1,!l2,!l3)B2(!l1,!l2,!l3)

6Cl1Cl2Cl3
(5.3)

∝
∫

dr2dr3
r3
2r

3
3B1(1, r2, r3)B2(1, r2, r3)

(

2r2
2 + 2r2

3 + 2r2
2r

2
3 − 1 − r4

2 − r4
3

)1/2
. (5.4)

27



Constraints on non-Gaussianities
• Current constraints on “local” and “equilateral” non-Gaussianity from WMAP data:

• Future constrains with perfect CMB experiment (including polarization):

−4 < f local
NL < 80 (95% CL)

−151 < f equil
NL < 253 (95% CL)

[Smith, Senatore, Zaldarriaga ’09]

|f local
NL | < 1.8 (95% CL)

[Komatsu et al. ’08]

✓ Local type:

!k1

!k1

!k2

!k2

!k3

!k3

✓ Equilateral type:

We expect a plethora of second order effects ~(10-5)2 even in absence of primordial 
non-Gaussianities: experiments are getting close to them!

Φ(!x) = φg(!x)− f local
NL φ2

g(!x)



CMB bispectrum from 2nd order perts
• Complete calculation is extremely challenging: 2nd order Boltzmann equations on all scales

• On sub-Hubble scales at recombination people focussed on particular effects:

✓ Dark matter non-linearities on short scales [Bernardeau, Pitrou, Uzan ’08; Bartolo, Riotto ‘08]

✓ Perturbed recombination [Senatore, Tassev, Zaldarriaga ’09; Khatri, Wandelt ‘09]

• On super-Hubble scales we are reduced to a 2nd order GR problem:

[Pyne, Carroll 00; Mollerach, Matarrese ‘97; Bartolo, Matarrese, Riotto ’04]

δT

T
=

1
3
φ + FNL(φ # φ) ⇒ 〈δT

T

δT

T

δT

T
〉 =

1
9
FNL〈φ φ (φ # φ)〉+ perms

δT

T
=

δTrec

Trec
+ Φ ⇒ f equil

NL ∼ 10

δne

ne
≈ ṅe

ne
δt ≈ 5

δnb

nb
⇒ f local

NL ∼ 4



Separate universe

• Primordial non-Gaussianity are encoded in   

• If only one clock (adiabatic perturbations):     is 
conserved on super-Hubble scales

ζ

ds2 = −dt2 + a2(t)e2ζ0("x)d!x2 , k " aH

• We assume there is no primordial non-Gaussianity (e.g., single field inflation)

〈ζ0("x1)ζ0("x2)ζ0("x3)〉 = 0

ζ

• On large scales the metric reads:

eq dec 

radiation matter ! inflation 

comoving scale Hubble s
cal

e

conformal time

OA OB

H−1



Any guess? Squeezed limit

• Consistency relation: if a long mode is out of the horizon today 
it should not affect physical observables

• Second-order calculation keeping only scalar perts.

OA OB

H−1
• Squeezed limit (separation of scales): effect of a very long 
wavelength mode on the 2-pf: 

〈a!lL
a!lS

a−!lS
〉 ∝ 〈ζlLClS 〉

〈a!lL
a!lS

a−!lS
〉 → 0 ⇒

∆T

T
=

1
3
Φdec +

1
18

Φ2
dec ⇒ f local

NL = −1
6

Which of these two results is correct?

[Creminelli, Zaldarriaga, ’04]

[Bartolo, Matarrese, Riotto, ’04]

[Maldacena, ’02]

f local
NL = 0 ✓ 

✓ 



Second-order metric in MD

• Second-order metric is time-dependent: non-linear coupling of the dark matter (sub-
Hubble Newtonian regime) and generation of vector (non-vortical) and tensor modes

• Gaussian initial condition:

[Bartolo, Matarrese, Riotto ’06; 
Boubekeur, Creminelli, Norena, FV ’08]

k ! aH ⇒ φ = −3
5
ζ0

the same as at emission but with a temperature [26, 17]

To(n̂) =
ωo

ωe
Te("xe) , (2.2)

where ωe and ωo are the frequencies at emission and observation of a given photon. Notice that

this statement is exact and therefore holds at any order in perturbation theory. In general also

the temperature at emission will not be isotropic, but will depend on the angle of emission. This

dependence can be however neglected in our case, as we are interested in perturbations which are

much longer than the horizon at recombination.

We work in the so called generalized Poisson gauge and use conformal time τ . In this gauge, the

metric reads [18]

ds2 = a2(τ)
{

−(1 + 2Φ)dτ2 + 2ωidxidτ + [(1 − 2Ψ)δij + γij]dxidxj
}

, (2.3)

where ωi is transverse, ωi,i = 0, and γij is transverse and traceless, γij,i = 0 = γii. In the mat-

ter dominated era, assuming that the amount of primordial gravitational waves is negligible, the

components of this metric are [18, 16, 19]

Φ =φ +
[

φ2 + ∂−2(∂jφ)2 − 3∂−4∂i∂j(∂iφ∂jφ)
]

+
2

21a2H2
∂−2

[

2(∂i∂jφ)2 + 5(∂2φ)2 + 7∂iφ∂i∂
2φ

]

, (2.4)

Ψ =φ −
[

φ2 +
2

3
∂−2(∂iφ)2 − 2∂−4∂i∂j(∂iφ∂jφ)

]

+
2

21a2H2
∂−2

[

2(∂i∂jφ)2 + 5(∂2φ)2 + 7∂iφ∂i∂
2φ

]

, (2.5)

ωi = −
8

3aH
∂−2

[

∂2φ∂iφ − ∂−2∂i∂j(∂
2φ∂jφ)

]

, (2.6)

γij = − 20

(

1

3
−

j1(kτ)

kτ

)

∂−2PTT
ij kl (∂kφ∂lφ) . (2.7)

The scalar quantities Φ and Ψ are the Newtonian and curvature potentials, respectively, while we

will refer to ωi and γij as the vector and tensor components of the metric. The metric is expressed in

terms of φ, the time-independent quantity representing the initial curvature perturbation generated

during inflation. Indeed, φ is simply proportional to the (non-linear) curvature perturbation on

uniform density hypersurfaces ζ: on super-Hubble scales, where ζ is constant,

φ = −
3

5
ζ (k " aH) . (2.8)

In the following we are going to assume that ζ, and therefore φ, obeys a perfectly Gaussian statistic

which is a very good approximation for example in minimal single field inflationary models [36, 37].

In the expression for tensor modes, the spherical Bessel function j1(x) can be written in terms of

trigonometric functions as j1(x) = sin(x)/x2−cos(x)/x, while PTT
ij kl is a transverse traceless projector

defined as

PTT
ij kl ≡

1

2
(PikPjl + PjkPil − PijPkl) , (2.9)

5
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ter dominated era, assuming that the amount of primordial gravitational waves is negligible, the
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The scalar quantities Φ and Ψ are the Newtonian and curvature potentials, respectively, while we

will refer to ωi and γij as the vector and tensor components of the metric. The metric is expressed in

terms of φ, the time-independent quantity representing the initial curvature perturbation generated

during inflation. Indeed, φ is simply proportional to the (non-linear) curvature perturbation on

uniform density hypersurfaces ζ: on super-Hubble scales, where ζ is constant,

φ = −
3

5
ζ (k " aH) . (2.8)

In the following we are going to assume that ζ, and therefore φ, obeys a perfectly Gaussian statistic

which is a very good approximation for example in minimal single field inflationary models [36, 37].

In the expression for tensor modes, the spherical Bessel function j1(x) can be written in terms of

trigonometric functions as j1(x) = sin(x)/x2−cos(x)/x, while PTT
ij kl is a transverse traceless projector

defined as

PTT
ij kl ≡

1

2
(PikPjl + PjkPil − PijPkl) , (2.9)

5

ωi,i = 0 and γii = 0 = γij,i

Gaussian variable

in matter dominance

∇2Φ(t, !x) = 4πGρ(t) a2(t) δ(t, !x)

1
a2H2

∝ a



Sachs-Wolfe at second order

• Lensing:

T (n̂) =
ωo

ωe
Te("xe)

• Photon redshift:

• Intrinsic anisotropy (adiabatic I.C.):

Te(!xe) = Te(n̂(τo − τe))− !α · !∇n̂Te

lensing deflection angle

Te ∝ t̃−2/3
e = [t(1 + 2Φ)1/2]−2/3

e ∝ 1
ae

(1 + 2Φe)−1/3

!xe = (n̂− !α)(τo − τe)!α



Sachs-Wolfe at second order

• Lensing:

T (n̂) =
ωo

ωe
Te("xe)

• Photon redshift:

• Intrinsic anisotropy (adiabatic I.C.):

Te(!xe) = Te(n̂(τo − τe))− !α · !∇n̂Te

[see also Pyne, Carroll ’96, 
Mollerach, Matarrese ’97]

Te ∝ t̃−2/3
e = [t(1 + 2Φ)1/2]−2/3

e ∝ 1
ae

(1 + 2Φe)−1/3

lensing deflection angle

where δ"xe ≡ "xe− n̂De is the deviation from the background trajectory and we have used that Φ = φ

at first order.

In order to find δ"xe we must solve the spatial component of the geodesic equation. Since "∇φ is

already first-order we need to compute δ"xe at first-order only. Thus, equation (2.13) gives

P 0 dPi

dτ
= −2a2∂iφ(P 0)2 , (2.28)

where we have used that Φ + Ψ = 2φ at first order. This equation can be integrated using the

background relation P 0 ∝ 1/a2. The spatial gradient can be decomposed along and orthogonally to

the background photon trajectory. Since φ is time-independent, the component along the photon

trajectory is a total derivative. Furthermore, rising the spatial index with the first order metric and

then using P 0 ∝ (1 − 2φ)/a2 one obtains

dxi

dτ
=

P i

P 0
= −n̂i(1 + 2φ) + 2

∫ τo

τ
dτ ′∇i

‖φ , (2.29)

where we have defined ∇i
‖ ≡ (δij − n̂in̂j)∂j as the spatial gradient orthogonal to the line of sight3

and we have absorbed the dependence on φo in the first-order definition of n̂, n̂i ≡ −P i
o/P

0
o (1+2φo).

Integrating this equation and subtracting the background value n̂De, after an integration by parts

in the second integral one obtains the geodesic deviation

δ"xe = 2n̂

∫ τo

τe

dτφ − 2

∫ τo

τe

dτ(τ − τe)"∇‖φ . (2.30)

The first term on the right hand side, longitudinal to the line of sight, is the so-called Shapiro time-

delay. This effect was discussed in [29] and we will discard it from the following discussion. Indeed,

since the integral of φ tends to average to zero unless the mode wave-vector is orthogonal to the line

of sight, it gives a negligible contribution to the CMB anisotropy. The second term is the transverse

deviation from the background trajectory, responsible for the lensing effect [30].

Including the lensing effect by re-expressing Φe using eq. (2.27) and re-writing Φ in terms of φ

using the large-scale limit of eq. (2.4), i.e., Φ = φ + φ2 + ∂−2(∂jφ)2 − 3∂−4∂i∂j(∂iφ∂jφ), eq. (2.26)

can be finally written as

δT

T
(n̂) =

[

1

3
φ +

1

18
φ2 +

1

3
∂−2

(

(∂iφ)2 − 3∂−2∂i∂j(∂iφ∂jφ)
)

]

e

+

∫ τo

τe

dτ
(

Φ′ + Ψ′ + ω′
in̂

i −
1

2
γ′

ij n̂
in̂j

)

+
1

3
"α · "∇n̂φe , (2.31)

where "α is the deviation angle "α ≡ δ"xe/De = "xe/De − n̂, given from eq. (2.30) as

"α = −2

∫ τo

τe

dτ
τ − τe

τo − τe

"∇‖φ . (2.32)

3Notice that the direction perpendicular to the photon trajectory is parallel to the flat sky, so that, in our

notation, the gradient is parallel to the sky.

9



• k-dependent Kernel:

“Intrinsic” contribution

• Local contribution: [Bartolo, Matarrese, Riotto ’04]

[
1
3

!p1 · !p2

(!p1 + !p2)2
− p2

1p
2
2 + (p2

1 + p2
2)(!p1 · !p2) + (!p1 · !p2)2

(!p1 + !p2)4

]
φ!p1φ!p2

scale invariant

f local
NL = −1

6

where δ"xe ≡ "xe− n̂De is the deviation from the background trajectory and we have used that Φ = φ

at first order.

In order to find δ"xe we must solve the spatial component of the geodesic equation. Since "∇φ is

already first-order we need to compute δ"xe at first-order only. Thus, equation (2.13) gives

P 0 dPi

dτ
= −2a2∂iφ(P 0)2 , (2.28)

where we have used that Φ + Ψ = 2φ at first order. This equation can be integrated using the

background relation P 0 ∝ 1/a2. The spatial gradient can be decomposed along and orthogonally to

the background photon trajectory. Since φ is time-independent, the component along the photon

trajectory is a total derivative. Furthermore, rising the spatial index with the first order metric and

then using P 0 ∝ (1 − 2φ)/a2 one obtains

dxi

dτ
=

P i

P 0
= −n̂i(1 + 2φ) + 2

∫ τo

τ
dτ ′∇i

‖φ , (2.29)

where we have defined ∇i
‖ ≡ (δij − n̂in̂j)∂j as the spatial gradient orthogonal to the line of sight3

and we have absorbed the dependence on φo in the first-order definition of n̂, n̂i ≡ −P i
o/P

0
o (1+2φo).

Integrating this equation and subtracting the background value n̂De, after an integration by parts

in the second integral one obtains the geodesic deviation

δ"xe = 2n̂

∫ τo

τe

dτφ − 2

∫ τo

τe

dτ(τ − τe)"∇‖φ . (2.30)

The first term on the right hand side, longitudinal to the line of sight, is the so-called Shapiro time-

delay. This effect was discussed in [29] and we will discard it from the following discussion. Indeed,

since the integral of φ tends to average to zero unless the mode wave-vector is orthogonal to the line

of sight, it gives a negligible contribution to the CMB anisotropy. The second term is the transverse

deviation from the background trajectory, responsible for the lensing effect [30].

Including the lensing effect by re-expressing Φe using eq. (2.27) and re-writing Φ in terms of φ

using the large-scale limit of eq. (2.4), i.e., Φ = φ + φ2 + ∂−2(∂jφ)2 − 3∂−4∂i∂j(∂iφ∂jφ), eq. (2.26)

can be finally written as

δT

T
(n̂) =

[

1

3
φ +

1

18
φ2 +

1

3
∂−2

(

(∂iφ)2 − 3∂−2∂i∂j(∂iφ∂jφ)
)

]

e

+

∫ τo

τe

dτ
(

Φ′ + Ψ′ + ω′
in̂

i −
1

2
γ′

ij n̂
in̂j

)

+
1

3
"α · "∇n̂φe , (2.31)

where "α is the deviation angle "α ≡ δ"xe/De = "xe/De − n̂, given from eq. (2.30) as

"α = −2

∫ τo

τe

dτ
τ − τe

τo − τe

"∇‖φ . (2.32)

3Notice that the direction perpendicular to the photon trajectory is parallel to the flat sky, so that, in our

notation, the gradient is parallel to the sky.

9



• k-dependent Kernel:

“Intrinsic” contribution

• Local contribution:

Equilateral

0.0 0.5 1.0

0.6

0.8

1.0

0.00
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r2

r3

−r2r3Bintr

f local
NL = −1

6

To compute the bispectrum we can contract this contribution, which is quadratic in φ, with the

product of two linear Sachs-Wolfe effects, whose a!l are given by eq. (3.5). By doing so, evaluating

the 4-point function of φ using Wick’s theorem and the definition of the power spectrum, eq. (3.7),

summing over all permutations, and using the definition of the bispectrum, eq. (3.8), one obtains

Bintr =
2A2

9(2π)2l41

∫ +∞

−∞
dy1dy2

[

1

(y2
1 + r2

1)
3/2(y2

2 + r2
2)

3/2

(

2y1y2 + r2
3 − r2

1 − r2
2

6
(

(y1 + y2)2 + r2
3

)

−
4(y2

1 + r2
1)(y

2
2 + r2

2) + 2(y2
1 + r2

1 + y2
2 + r2

2)(2y1y2 + r2
3 − r2

1 − r2
2) + (2y1y2 + r2

3 − r2
1 − r2

2)
2

4
(

(y1 + y2)2 + r2
3

)2

)

+ 2cyclic

]

. (4.6)

The integrals in the expression above can be integrated numerically. The final result for the bis-

pectrum coming from this contribution is plotted in figure 3. Its contribution is equivalent to

f equil
NL " 1.21.
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Figure 3: The CMB bispectrum induced by the momentum dependent intrinsic contribution in

eq. (4.1).

Notice that this bispectrum is suppressed in the squeezed limit with respect to the local case

in figure 1. This, as discussed, is a consequence of the derivatives in eq. (4.1). Notice that the

suppression, in the limit r2 → 0, is linear in r2 as there is one derivative acting on each φ in

eq. (4.1). Thus in the plots (which include a measure r2r3) the function goes to a constant. This

constant depends on the orientation between the long wavelength mode and the short ones as it is

clear from eq. (4.4): indeed in the figure we see that the limit r2 → 0 depends on the direction from

which the limit is approached. Notice that this behaviour is different from the case of primordial

equilateral non-Gaussianity: in this case there is a suppression going like r2
2 in the squeezed limit

16

[Bartolo, Matarrese, Riotto ’04]

where δ"xe ≡ "xe− n̂De is the deviation from the background trajectory and we have used that Φ = φ

at first order.

In order to find δ"xe we must solve the spatial component of the geodesic equation. Since "∇φ is

already first-order we need to compute δ"xe at first-order only. Thus, equation (2.13) gives

P 0 dPi

dτ
= −2a2∂iφ(P 0)2 , (2.28)

where we have used that Φ + Ψ = 2φ at first order. This equation can be integrated using the

background relation P 0 ∝ 1/a2. The spatial gradient can be decomposed along and orthogonally to

the background photon trajectory. Since φ is time-independent, the component along the photon

trajectory is a total derivative. Furthermore, rising the spatial index with the first order metric and

then using P 0 ∝ (1 − 2φ)/a2 one obtains

dxi

dτ
=

P i

P 0
= −n̂i(1 + 2φ) + 2

∫ τo

τ
dτ ′∇i

‖φ , (2.29)

where we have defined ∇i
‖ ≡ (δij − n̂in̂j)∂j as the spatial gradient orthogonal to the line of sight3

and we have absorbed the dependence on φo in the first-order definition of n̂, n̂i ≡ −P i
o/P

0
o (1+2φo).

Integrating this equation and subtracting the background value n̂De, after an integration by parts

in the second integral one obtains the geodesic deviation

δ"xe = 2n̂

∫ τo

τe

dτφ − 2

∫ τo

τe

dτ(τ − τe)"∇‖φ . (2.30)

The first term on the right hand side, longitudinal to the line of sight, is the so-called Shapiro time-

delay. This effect was discussed in [29] and we will discard it from the following discussion. Indeed,

since the integral of φ tends to average to zero unless the mode wave-vector is orthogonal to the line

of sight, it gives a negligible contribution to the CMB anisotropy. The second term is the transverse

deviation from the background trajectory, responsible for the lensing effect [30].

Including the lensing effect by re-expressing Φe using eq. (2.27) and re-writing Φ in terms of φ

using the large-scale limit of eq. (2.4), i.e., Φ = φ + φ2 + ∂−2(∂jφ)2 − 3∂−4∂i∂j(∂iφ∂jφ), eq. (2.26)

can be finally written as

δT

T
(n̂) =

[

1

3
φ +

1

18
φ2 +

1

3
∂−2

(

(∂iφ)2 − 3∂−2∂i∂j(∂iφ∂jφ)
)

]

e

+

∫ τo

τe

dτ
(

Φ′ + Ψ′ + ω′
in̂

i −
1

2
γ′

ij n̂
in̂j

)

+
1

3
"α · "∇n̂φe , (2.31)

where "α is the deviation angle "α ≡ δ"xe/De = "xe/De − n̂, given from eq. (2.30) as

"α = −2

∫ τo

τe

dτ
τ − τe

τo − τe

"∇‖φ . (2.32)

3Notice that the direction perpendicular to the photon trajectory is parallel to the flat sky, so that, in our

notation, the gradient is parallel to the sky.
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Integrated effects

• We are correlating integrated effects with the last scattering surface: naively they are 
suppressed by gradients on large scales 

Φ(t) = Ψ(t) ∝ a(t)Eg, Newtonian second-order evolution:

H−1
dec

kτdec ! 1

Φ′ + Ψ′ = −τ
4("p1 · "p2)2 + 10p2

1p
2
2 + 7(p2

1 + p2
2)("p1 · "p2)

21("p1 + "p2)2
φ!p1φ!p2

L
S

S
 

H−1
∗

where δ"xe ≡ "xe− n̂De is the deviation from the background trajectory and we have used that Φ = φ

at first order.

In order to find δ"xe we must solve the spatial component of the geodesic equation. Since "∇φ is

already first-order we need to compute δ"xe at first-order only. Thus, equation (2.13) gives

P 0 dPi

dτ
= −2a2∂iφ(P 0)2 , (2.28)

where we have used that Φ + Ψ = 2φ at first order. This equation can be integrated using the

background relation P 0 ∝ 1/a2. The spatial gradient can be decomposed along and orthogonally to

the background photon trajectory. Since φ is time-independent, the component along the photon

trajectory is a total derivative. Furthermore, rising the spatial index with the first order metric and

then using P 0 ∝ (1 − 2φ)/a2 one obtains

dxi

dτ
=

P i

P 0
= −n̂i(1 + 2φ) + 2

∫ τo

τ
dτ ′∇i

‖φ , (2.29)

where we have defined ∇i
‖ ≡ (δij − n̂in̂j)∂j as the spatial gradient orthogonal to the line of sight3

and we have absorbed the dependence on φo in the first-order definition of n̂, n̂i ≡ −P i
o/P

0
o (1+2φo).

Integrating this equation and subtracting the background value n̂De, after an integration by parts

in the second integral one obtains the geodesic deviation

δ"xe = 2n̂

∫ τo

τe

dτφ − 2

∫ τo

τe

dτ(τ − τe)"∇‖φ . (2.30)

The first term on the right hand side, longitudinal to the line of sight, is the so-called Shapiro time-

delay. This effect was discussed in [29] and we will discard it from the following discussion. Indeed,

since the integral of φ tends to average to zero unless the mode wave-vector is orthogonal to the line

of sight, it gives a negligible contribution to the CMB anisotropy. The second term is the transverse

deviation from the background trajectory, responsible for the lensing effect [30].

Including the lensing effect by re-expressing Φe using eq. (2.27) and re-writing Φ in terms of φ

using the large-scale limit of eq. (2.4), i.e., Φ = φ + φ2 + ∂−2(∂jφ)2 − 3∂−4∂i∂j(∂iφ∂jφ), eq. (2.26)

can be finally written as

δT

T
(n̂) =

[

1

3
φ +

1

18
φ2 +

1

3
∂−2

(

(∂iφ)2 − 3∂−2∂i∂j(∂iφ∂jφ)
)

]

e

+

∫ τo

τe

dτ
(

Φ′ + Ψ′ + ω′
in̂

i −
1

2
γ′

ij n̂
in̂j

)

+
1

3
"α · "∇n̂φe , (2.31)

where "α is the deviation angle "α ≡ δ"xe/De = "xe/De − n̂, given from eq. (2.30) as

"α = −2

∫ τo

τe

dτ
τ − τe

τo − τe

"∇‖φ . (2.32)

3Notice that the direction perpendicular to the photon trajectory is parallel to the flat sky, so that, in our

notation, the gradient is parallel to the sky.

9



Integrated effects

• We are correlating integrated effects with the last scattering surface: naively they are 
suppressed by gradients on large scales 
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Correlation with LSS
τ ! τ∗ ≈

τo

l

τ − τe

Φ′ + Ψ′

• But correlation with the last scattering surface does not decay instantaneously!

where δ"xe ≡ "xe− n̂De is the deviation from the background trajectory and we have used that Φ = φ

at first order.

In order to find δ"xe we must solve the spatial component of the geodesic equation. Since "∇φ is

already first-order we need to compute δ"xe at first-order only. Thus, equation (2.13) gives

P 0 dPi

dτ
= −2a2∂iφ(P 0)2 , (2.28)

where we have used that Φ + Ψ = 2φ at first order. This equation can be integrated using the

background relation P 0 ∝ 1/a2. The spatial gradient can be decomposed along and orthogonally to

the background photon trajectory. Since φ is time-independent, the component along the photon

trajectory is a total derivative. Furthermore, rising the spatial index with the first order metric and

then using P 0 ∝ (1 − 2φ)/a2 one obtains

dxi

dτ
=

P i

P 0
= −n̂i(1 + 2φ) + 2

∫ τo

τ
dτ ′∇i

‖φ , (2.29)

where we have defined ∇i
‖ ≡ (δij − n̂in̂j)∂j as the spatial gradient orthogonal to the line of sight3

and we have absorbed the dependence on φo in the first-order definition of n̂, n̂i ≡ −P i
o/P

0
o (1+2φo).

Integrating this equation and subtracting the background value n̂De, after an integration by parts

in the second integral one obtains the geodesic deviation

δ"xe = 2n̂

∫ τo

τe

dτφ − 2

∫ τo

τe

dτ(τ − τe)"∇‖φ . (2.30)

The first term on the right hand side, longitudinal to the line of sight, is the so-called Shapiro time-

delay. This effect was discussed in [29] and we will discard it from the following discussion. Indeed,

since the integral of φ tends to average to zero unless the mode wave-vector is orthogonal to the line

of sight, it gives a negligible contribution to the CMB anisotropy. The second term is the transverse

deviation from the background trajectory, responsible for the lensing effect [30].

Including the lensing effect by re-expressing Φe using eq. (2.27) and re-writing Φ in terms of φ

using the large-scale limit of eq. (2.4), i.e., Φ = φ + φ2 + ∂−2(∂jφ)2 − 3∂−4∂i∂j(∂iφ∂jφ), eq. (2.26)

can be finally written as

δT

T
(n̂) =

[

1

3
φ +

1

18
φ2 +

1

3
∂−2

(

(∂iφ)2 − 3∂−2∂i∂j(∂iφ∂jφ)
)

]

e

+

∫ τo

τe

dτ
(

Φ′ + Ψ′ + ω′
in̂

i −
1

2
γ′

ij n̂
in̂j

)

+
1

3
"α · "∇n̂φe , (2.31)

where "α is the deviation angle "α ≡ δ"xe/De = "xe/De − n̂, given from eq. (2.30) as

"α = −2

∫ τo

τe

dτ
τ − τe

τo − τe

"∇‖φ . (2.32)

3Notice that the direction perpendicular to the photon trajectory is parallel to the flat sky, so that, in our

notation, the gradient is parallel to the sky.
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S
 

Integrated effects

H−1
dec

H−1
∗τ∗ ≈

τo

l

kτ∗ ≈ 1 kτdec ! 1

• We are correlating integrated effects with the last scattering surface: naively they are 
suppressed by gradients on large scales 

Φ(t) = Ψ(t) ∝ a(t)Eg, Newtonian second-order evolution:

• Integrated terms are of the same order as the others!

Φ′ + Ψ′ = −τ
4("p1 · "p2)2 + 10p2

1p
2
2 + 7(p2

1 + p2
2)("p1 · "p2)

21("p1 + "p2)2
φ!p1φ!p2

kτ∗ ≈
l

τo
· τo

l
= 1

where δ"xe ≡ "xe− n̂De is the deviation from the background trajectory and we have used that Φ = φ

at first order.

In order to find δ"xe we must solve the spatial component of the geodesic equation. Since "∇φ is

already first-order we need to compute δ"xe at first-order only. Thus, equation (2.13) gives

P 0 dPi

dτ
= −2a2∂iφ(P 0)2 , (2.28)

where we have used that Φ + Ψ = 2φ at first order. This equation can be integrated using the

background relation P 0 ∝ 1/a2. The spatial gradient can be decomposed along and orthogonally to

the background photon trajectory. Since φ is time-independent, the component along the photon

trajectory is a total derivative. Furthermore, rising the spatial index with the first order metric and

then using P 0 ∝ (1 − 2φ)/a2 one obtains

dxi

dτ
=

P i

P 0
= −n̂i(1 + 2φ) + 2

∫ τo

τ
dτ ′∇i

‖φ , (2.29)

where we have defined ∇i
‖ ≡ (δij − n̂in̂j)∂j as the spatial gradient orthogonal to the line of sight3

and we have absorbed the dependence on φo in the first-order definition of n̂, n̂i ≡ −P i
o/P

0
o (1+2φo).

Integrating this equation and subtracting the background value n̂De, after an integration by parts

in the second integral one obtains the geodesic deviation

δ"xe = 2n̂

∫ τo

τe

dτφ − 2

∫ τo

τe

dτ(τ − τe)"∇‖φ . (2.30)

The first term on the right hand side, longitudinal to the line of sight, is the so-called Shapiro time-

delay. This effect was discussed in [29] and we will discard it from the following discussion. Indeed,

since the integral of φ tends to average to zero unless the mode wave-vector is orthogonal to the line

of sight, it gives a negligible contribution to the CMB anisotropy. The second term is the transverse

deviation from the background trajectory, responsible for the lensing effect [30].

Including the lensing effect by re-expressing Φe using eq. (2.27) and re-writing Φ in terms of φ

using the large-scale limit of eq. (2.4), i.e., Φ = φ + φ2 + ∂−2(∂jφ)2 − 3∂−4∂i∂j(∂iφ∂jφ), eq. (2.26)

can be finally written as

δT

T
(n̂) =

[

1

3
φ +

1

18
φ2 +

1

3
∂−2

(

(∂iφ)2 − 3∂−2∂i∂j(∂iφ∂jφ)
)

]

e

+

∫ τo

τe

dτ
(

Φ′ + Ψ′ + ω′
in̂

i −
1

2
γ′

ij n̂
in̂j

)

+
1

3
"α · "∇n̂φe , (2.31)

where "α is the deviation angle "α ≡ δ"xe/De = "xe/De − n̂, given from eq. (2.30) as

"α = −2

∫ τo

τe

dτ
τ − τe

τo − τe

"∇‖φ . (2.32)

3Notice that the direction perpendicular to the photon trajectory is parallel to the flat sky, so that, in our

notation, the gradient is parallel to the sky.
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Rees-Sciama effect

Equilateral
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where δ"xe ≡ "xe− n̂De is the deviation from the background trajectory and we have used that Φ = φ

at first order.

In order to find δ"xe we must solve the spatial component of the geodesic equation. Since "∇φ is

already first-order we need to compute δ"xe at first-order only. Thus, equation (2.13) gives

P 0 dPi

dτ
= −2a2∂iφ(P 0)2 , (2.28)

where we have used that Φ + Ψ = 2φ at first order. This equation can be integrated using the

background relation P 0 ∝ 1/a2. The spatial gradient can be decomposed along and orthogonally to

the background photon trajectory. Since φ is time-independent, the component along the photon

trajectory is a total derivative. Furthermore, rising the spatial index with the first order metric and

then using P 0 ∝ (1 − 2φ)/a2 one obtains

dxi

dτ
=

P i

P 0
= −n̂i(1 + 2φ) + 2

∫ τo

τ
dτ ′∇i

‖φ , (2.29)

where we have defined ∇i
‖ ≡ (δij − n̂in̂j)∂j as the spatial gradient orthogonal to the line of sight3

and we have absorbed the dependence on φo in the first-order definition of n̂, n̂i ≡ −P i
o/P

0
o (1+2φo).

Integrating this equation and subtracting the background value n̂De, after an integration by parts

in the second integral one obtains the geodesic deviation

δ"xe = 2n̂

∫ τo

τe

dτφ − 2

∫ τo

τe

dτ(τ − τe)"∇‖φ . (2.30)

The first term on the right hand side, longitudinal to the line of sight, is the so-called Shapiro time-

delay. This effect was discussed in [29] and we will discard it from the following discussion. Indeed,

since the integral of φ tends to average to zero unless the mode wave-vector is orthogonal to the line

of sight, it gives a negligible contribution to the CMB anisotropy. The second term is the transverse

deviation from the background trajectory, responsible for the lensing effect [30].

Including the lensing effect by re-expressing Φe using eq. (2.27) and re-writing Φ in terms of φ

using the large-scale limit of eq. (2.4), i.e., Φ = φ + φ2 + ∂−2(∂jφ)2 − 3∂−4∂i∂j(∂iφ∂jφ), eq. (2.26)

can be finally written as

δT

T
(n̂) =

[

1

3
φ +

1

18
φ2 +

1

3
∂−2

(

(∂iφ)2 − 3∂−2∂i∂j(∂iφ∂jφ)
)

]

e

+

∫ τo

τe

dτ
(

Φ′ + Ψ′ + ω′
in̂

i −
1

2
γ′

ij n̂
in̂j

)

+
1

3
"α · "∇n̂φe , (2.31)

where "α is the deviation angle "α ≡ δ"xe/De = "xe/De − n̂, given from eq. (2.30) as

"α = −2

∫ τo

τe

dτ
τ − τe

τo − τe

"∇‖φ . (2.32)

3Notice that the direction perpendicular to the photon trajectory is parallel to the flat sky, so that, in our

notation, the gradient is parallel to the sky.
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We see that the bispectrum induced by the Rees-Sciama effect goes as l−4 and it is parametrically

similar to the intrinsic contribution discussed in the previous section. The analytical and numerical

study of this expression is postponed to appendix B. The final result for the bispectrum is given in

figure 4.

As for the intrinsic contribution the RS bispectrum is suppressed in the squeezed limit r2 → 0

compared with the local shape by r2, with a coefficient which depends on the angle. We show

this analytically in Appendix B. By comparing the Rees-Sciama bispectrum to the equilateral

contribution, as we did for the intrinsic one, we find that the Rees-Sciama contribution is equivalent

to f equil
NL " 0.74.
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Figure 4: The CMB bispectrum induced by the Rees-Sciama effect, eq. (4.7).

4.3 Integrated vector contribution

At second order, the non-diagonal part of the metric g0i ≡ a2ωi becomes non-vanishing and time

dependent on sub-Hubble scales. Similarly to the time-dependent part of the gravitational potentials,

it induces an integrated effect on the photon redshift, given in eq. (2.31) by

δT

T
(n̂) ⊃

∫ τo

τe

dτ ω′
in̂

i . (4.14)

As ωi is transverse we refer to this effect as the integrated vector contribution. As for the Rees-

Sciama, to compute the bispectrum we need to correlate this integrated effect with the intrinsic

temperature fluctuation at last scattering. Even though this effect is suppressed at last scattering,

when modes are still out of the Hubble radius, it will give us a contribution to fNL of order unity,

similarly to what happens for the Rees-Sciama effect.

19



Vector contribution

f equil
NL ! −0.84

Equilateral

Total derivative

ω′
in̂

i = −2i

3

[
p2
1(n̂ · "p2) + p2

2(n̂ · "p1)
("p1 + "p2)2

− n̂ · ("p1 + "p2)
2p2

1p
2
2 + (p2

1 + p2
2)("p1 · "p2)

("p1 + "p2)4

]
φ!p1φ!p2

• No real gauge independent separation between integrated/intrinsic

0.0 0.5 1.0

0.6

0.8

1.0

!0.01

0.00

0.01

r2

r3

r2r3BV

where δ"xe ≡ "xe− n̂De is the deviation from the background trajectory and we have used that Φ = φ

at first order.

In order to find δ"xe we must solve the spatial component of the geodesic equation. Since "∇φ is

already first-order we need to compute δ"xe at first-order only. Thus, equation (2.13) gives

P 0 dPi

dτ
= −2a2∂iφ(P 0)2 , (2.28)

where we have used that Φ + Ψ = 2φ at first order. This equation can be integrated using the

background relation P 0 ∝ 1/a2. The spatial gradient can be decomposed along and orthogonally to

the background photon trajectory. Since φ is time-independent, the component along the photon

trajectory is a total derivative. Furthermore, rising the spatial index with the first order metric and

then using P 0 ∝ (1 − 2φ)/a2 one obtains

dxi

dτ
=

P i

P 0
= −n̂i(1 + 2φ) + 2

∫ τo

τ
dτ ′∇i

‖φ , (2.29)

where we have defined ∇i
‖ ≡ (δij − n̂in̂j)∂j as the spatial gradient orthogonal to the line of sight3

and we have absorbed the dependence on φo in the first-order definition of n̂, n̂i ≡ −P i
o/P

0
o (1+2φo).

Integrating this equation and subtracting the background value n̂De, after an integration by parts

in the second integral one obtains the geodesic deviation

δ"xe = 2n̂

∫ τo

τe

dτφ − 2

∫ τo

τe

dτ(τ − τe)"∇‖φ . (2.30)

The first term on the right hand side, longitudinal to the line of sight, is the so-called Shapiro time-

delay. This effect was discussed in [29] and we will discard it from the following discussion. Indeed,

since the integral of φ tends to average to zero unless the mode wave-vector is orthogonal to the line

of sight, it gives a negligible contribution to the CMB anisotropy. The second term is the transverse

deviation from the background trajectory, responsible for the lensing effect [30].

Including the lensing effect by re-expressing Φe using eq. (2.27) and re-writing Φ in terms of φ

using the large-scale limit of eq. (2.4), i.e., Φ = φ + φ2 + ∂−2(∂jφ)2 − 3∂−4∂i∂j(∂iφ∂jφ), eq. (2.26)

can be finally written as

δT

T
(n̂) =

[

1

3
φ +

1

18
φ2 +

1

3
∂−2

(

(∂iφ)2 − 3∂−2∂i∂j(∂iφ∂jφ)
)

]

e

+

∫ τo

τe

dτ
(

Φ′ + Ψ′ + ω′
in̂

i −
1

2
γ′

ij n̂
in̂j

)

+
1

3
"α · "∇n̂φe , (2.31)

where "α is the deviation angle "α ≡ δ"xe/De = "xe/De − n̂, given from eq. (2.30) as

"α = −2

∫ τo

τe

dτ
τ − τe

τo − τe

"∇‖φ . (2.32)

3Notice that the direction perpendicular to the photon trajectory is parallel to the flat sky, so that, in our

notation, the gradient is parallel to the sky.
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Tensor contribution

Equilateral

1
2
γ′

ij n̂
in̂j = j2(|"p1 + "p2|τ)

10
τ

[
("p1 · "p2)2 − p2

1p
2
2

("p1 + "p2)4

(
1 +

(n̂ · ("p1 + "p2))2

("p1 + "p2)2

)

+
p2
1(n̂ · !p2)2 + p2

2(n̂ · !p1)2 − 2(!p1 · !p2)(n̂ · !p1)(n̂ · !p2)
(!p1 + !p2)4

]
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where δ"xe ≡ "xe− n̂De is the deviation from the background trajectory and we have used that Φ = φ

at first order.

In order to find δ"xe we must solve the spatial component of the geodesic equation. Since "∇φ is

already first-order we need to compute δ"xe at first-order only. Thus, equation (2.13) gives

P 0 dPi

dτ
= −2a2∂iφ(P 0)2 , (2.28)

where we have used that Φ + Ψ = 2φ at first order. This equation can be integrated using the

background relation P 0 ∝ 1/a2. The spatial gradient can be decomposed along and orthogonally to

the background photon trajectory. Since φ is time-independent, the component along the photon

trajectory is a total derivative. Furthermore, rising the spatial index with the first order metric and

then using P 0 ∝ (1 − 2φ)/a2 one obtains

dxi

dτ
=

P i

P 0
= −n̂i(1 + 2φ) + 2

∫ τo

τ
dτ ′∇i

‖φ , (2.29)

where we have defined ∇i
‖ ≡ (δij − n̂in̂j)∂j as the spatial gradient orthogonal to the line of sight3

and we have absorbed the dependence on φo in the first-order definition of n̂, n̂i ≡ −P i
o/P

0
o (1+2φo).

Integrating this equation and subtracting the background value n̂De, after an integration by parts

in the second integral one obtains the geodesic deviation

δ"xe = 2n̂

∫ τo

τe

dτφ − 2

∫ τo

τe

dτ(τ − τe)"∇‖φ . (2.30)

The first term on the right hand side, longitudinal to the line of sight, is the so-called Shapiro time-

delay. This effect was discussed in [29] and we will discard it from the following discussion. Indeed,

since the integral of φ tends to average to zero unless the mode wave-vector is orthogonal to the line

of sight, it gives a negligible contribution to the CMB anisotropy. The second term is the transverse

deviation from the background trajectory, responsible for the lensing effect [30].

Including the lensing effect by re-expressing Φe using eq. (2.27) and re-writing Φ in terms of φ

using the large-scale limit of eq. (2.4), i.e., Φ = φ + φ2 + ∂−2(∂jφ)2 − 3∂−4∂i∂j(∂iφ∂jφ), eq. (2.26)

can be finally written as

δT

T
(n̂) =

[

1

3
φ +

1

18
φ2 +

1

3
∂−2

(

(∂iφ)2 − 3∂−2∂i∂j(∂iφ∂jφ)
)

]

e

+

∫ τo

τe

dτ
(

Φ′ + Ψ′ + ω′
in̂

i −
1

2
γ′

ij n̂
in̂j

)

+
1

3
"α · "∇n̂φe , (2.31)

where "α is the deviation angle "α ≡ δ"xe/De = "xe/De − n̂, given from eq. (2.30) as

"α = −2

∫ τo

τe

dτ
τ − τe

τo − τe

"∇‖φ . (2.32)

3Notice that the direction perpendicular to the photon trajectory is parallel to the flat sky, so that, in our

notation, the gradient is parallel to the sky.
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Lensing

f local
NL = − cos(2θl̂1·l̂2)
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l2 → 0

where δ"xe ≡ "xe− n̂De is the deviation from the background trajectory and we have used that Φ = φ

at first order.

In order to find δ"xe we must solve the spatial component of the geodesic equation. Since "∇φ is

already first-order we need to compute δ"xe at first-order only. Thus, equation (2.13) gives

P 0 dPi

dτ
= −2a2∂iφ(P 0)2 , (2.28)

where we have used that Φ + Ψ = 2φ at first order. This equation can be integrated using the

background relation P 0 ∝ 1/a2. The spatial gradient can be decomposed along and orthogonally to

the background photon trajectory. Since φ is time-independent, the component along the photon

trajectory is a total derivative. Furthermore, rising the spatial index with the first order metric and

then using P 0 ∝ (1 − 2φ)/a2 one obtains

dxi

dτ
=

P i

P 0
= −n̂i(1 + 2φ) + 2

∫ τo

τ
dτ ′∇i

‖φ , (2.29)

where we have defined ∇i
‖ ≡ (δij − n̂in̂j)∂j as the spatial gradient orthogonal to the line of sight3

and we have absorbed the dependence on φo in the first-order definition of n̂, n̂i ≡ −P i
o/P

0
o (1+2φo).

Integrating this equation and subtracting the background value n̂De, after an integration by parts

in the second integral one obtains the geodesic deviation

δ"xe = 2n̂

∫ τo

τe

dτφ − 2

∫ τo

τe

dτ(τ − τe)"∇‖φ . (2.30)

The first term on the right hand side, longitudinal to the line of sight, is the so-called Shapiro time-

delay. This effect was discussed in [29] and we will discard it from the following discussion. Indeed,

since the integral of φ tends to average to zero unless the mode wave-vector is orthogonal to the line

of sight, it gives a negligible contribution to the CMB anisotropy. The second term is the transverse

deviation from the background trajectory, responsible for the lensing effect [30].

Including the lensing effect by re-expressing Φe using eq. (2.27) and re-writing Φ in terms of φ

using the large-scale limit of eq. (2.4), i.e., Φ = φ + φ2 + ∂−2(∂jφ)2 − 3∂−4∂i∂j(∂iφ∂jφ), eq. (2.26)

can be finally written as

δT

T
(n̂) =

[

1

3
φ +

1

18
φ2 +

1

3
∂−2

(

(∂iφ)2 − 3∂−2∂i∂j(∂iφ∂jφ)
)

]

e

+

∫ τo

τe

dτ
(

Φ′ + Ψ′ + ω′
in̂

i −
1

2
γ′

ij n̂
in̂j

)

+
1

3
"α · "∇n̂φe , (2.31)

where "α is the deviation angle "α ≡ δ"xe/De = "xe/De − n̂, given from eq. (2.30) as

"α = −2

∫ τo

τe

dτ
τ − τe

τo − τe

"∇‖φ . (2.32)

3Notice that the direction perpendicular to the photon trajectory is parallel to the flat sky, so that, in our

notation, the gradient is parallel to the sky.

9



Total bispectrum
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f local
NL = −1

6
− cos(2θ)

f equil
NL ! 3.13

Shape: total local equil lens

total 1.00 -0.17 0.41 0.98

local 1.00 0.30 0.03

equil 1.00 0.47

lens 1.00

Table 1: Cosines between different shapes of bispectra.

the equilateral bispectrum (3.19) taken with f equil
NL = 1. This yields

Btotal(1, 1, 1)

Bequil(1, 1, 1)
= 3.13 . (5.5)

Thus, the total bispectrum corresponds to f equil
NL = 3.13. As it is not vanishing in the squeezed limit,

its cosine with the equilateral shape will be smaller than unity. Indeed we find cos(Btotal · Bequil) =

0.41. Note that this value is larger than the cosine between local and equilateral shapes, i.e. 0.30.

Thus, the total bispectrum is “more equilateral” than the local one. Finally, to have a confirmation

that the lensing effect dominates the total bispectrum, we can compute the cosine between the total

signal and the lensing. This is cos(Btotal · Blens) = 0.98, which is very close to one. A summary of

the cosines in given in table 1.

It is important to stress that the shape associated with lensing, with an angle dependent squeezed

limit, represents another interesting template for the bispectrum, like the ones studied in [44, 45].

It would be interesting to put limits on this shape, even independently of lensing, as it is rather

orthogonal to the standard local and equilateral templates.

6 Conclusions

In this paper we have calculated, assuming perfect matter dominance, the complete CMB bispectrum

on large angular scales, larger than the Hubble radius at recombination, considering for the first time

all the relevant effects. Although our results give the exact bispectrum in a well defined physical

limit, there are many ways to improve our calculations to make them closer to the real universe.

One should include the recent dark energy domination and the early transition from radiation to

matter dominance, along the lines of [16]. This will give qualitative new phenomena, like the rather

large ISW-lensing correlation. Given that we are on large angular scales a full-sky treatment would

be more precise that our flat-sky expressions, although the results for the bispectrum will be much

more complicated and difficult to understand. Finally the small deviation from a scale invariant

spectrum should be included. Taking all this into account would give the correct prediction for our

universe of the large angle bispectrum.

30

where δ"xe ≡ "xe− n̂De is the deviation from the background trajectory and we have used that Φ = φ

at first order.

In order to find δ"xe we must solve the spatial component of the geodesic equation. Since "∇φ is

already first-order we need to compute δ"xe at first-order only. Thus, equation (2.13) gives

P 0 dPi

dτ
= −2a2∂iφ(P 0)2 , (2.28)

where we have used that Φ + Ψ = 2φ at first order. This equation can be integrated using the

background relation P 0 ∝ 1/a2. The spatial gradient can be decomposed along and orthogonally to

the background photon trajectory. Since φ is time-independent, the component along the photon

trajectory is a total derivative. Furthermore, rising the spatial index with the first order metric and

then using P 0 ∝ (1 − 2φ)/a2 one obtains

dxi

dτ
=

P i

P 0
= −n̂i(1 + 2φ) + 2

∫ τo

τ
dτ ′∇i

‖φ , (2.29)

where we have defined ∇i
‖ ≡ (δij − n̂in̂j)∂j as the spatial gradient orthogonal to the line of sight3

and we have absorbed the dependence on φo in the first-order definition of n̂, n̂i ≡ −P i
o/P

0
o (1+2φo).

Integrating this equation and subtracting the background value n̂De, after an integration by parts

in the second integral one obtains the geodesic deviation

δ"xe = 2n̂

∫ τo

τe

dτφ − 2

∫ τo

τe

dτ(τ − τe)"∇‖φ . (2.30)

The first term on the right hand side, longitudinal to the line of sight, is the so-called Shapiro time-

delay. This effect was discussed in [29] and we will discard it from the following discussion. Indeed,

since the integral of φ tends to average to zero unless the mode wave-vector is orthogonal to the line

of sight, it gives a negligible contribution to the CMB anisotropy. The second term is the transverse

deviation from the background trajectory, responsible for the lensing effect [30].

Including the lensing effect by re-expressing Φe using eq. (2.27) and re-writing Φ in terms of φ

using the large-scale limit of eq. (2.4), i.e., Φ = φ + φ2 + ∂−2(∂jφ)2 − 3∂−4∂i∂j(∂iφ∂jφ), eq. (2.26)

can be finally written as

δT

T
(n̂) =

[

1

3
φ +

1

18
φ2 +

1

3
∂−2

(

(∂iφ)2 − 3∂−2∂i∂j(∂iφ∂jφ)
)

]

e

+

∫ τo

τe

dτ
(

Φ′ + Ψ′ + ω′
in̂

i −
1

2
γ′

ij n̂
in̂j

)

+
1

3
"α · "∇n̂φe , (2.31)

where "α is the deviation angle "α ≡ δ"xe/De = "xe/De − n̂, given from eq. (2.30) as

"α = −2

∫ τo

τe

dτ
τ − τe

τo − τe

"∇‖φ . (2.32)

3Notice that the direction perpendicular to the photon trajectory is parallel to the flat sky, so that, in our

notation, the gradient is parallel to the sky.
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Squeezed limit, consistency check

• Lensing consistency relation:

C lensed
lS = ClS + iljLαi("lL)ClS

(
δij − 2

liSljS
l2S

)

〈alLC lensed
lS 〉 ∝ iljL〈alLαi

lL〉ClS

(
δij − 2

lilj
l2

)
− cos(2θ!lS ·!lL)

• A long wavelength mode today does not affect physical observables!

[Similar to consistency relation involving gravity 
waves, Maldacena ’02, Seery, Sloth, FV ’08] 

⇒

⇒ −1
6

On the right hand side of eq. (2.31), the subscript “e” means at the background position of the

emitted photon, n̂De. The first line of eq. (2.31) was found in [14]. It represents an intrinsic effect

due to the combination of the Doppler effect and the adiabatic temperature fluctuation of the plasma

at recombination. The second line contains the Rees-Sciama effect, due to the second-order time

evolution of the scalar potentials, and the effect of the time dependence of the vector and tensor

components of the metric. Finally, the last term in the second line of eq. (2.31) represents the lensing

effect. All these effects were discussed for a more general metric in [27, 28].

There is a nice way to check the factor φ2
e/18 in the expression (2.31) which, as we will see, is

important for the squeezed limit of the bispectrum [14]. Let us take the limit in which one of the

two Fourier modes of the initial conditions φe becomes infinitely long. This mode is still out of the

horizon today and therefore cannot affect any physical observable. Let us check that this is indeed

the case. When one of the wavevectors goes to zero, all the terms containing spatial derivatives in

the expression above vanish, as it is clear from the explicit form of the metric eqs. (2.4)–(2.7). One is

left only with the first two terms which, up to second order, it is useful to rewrite in an exponential

form [15] as
δT

T
(n̂) =

[

1

3
φ +

1

18
φ2

]

e

! eφe/3 − 1 . (2.33)

At first sight it looks that the constant mode can affect observations through the second order term,

which mixes a short mode with the constant one. This actually is not the case as the constant mode

also affects the average measured temperature. Indeed the well defined measurable quantity is given

by
To(n̂) − T̄o

T̄o
= eφe/3〈e−φe/3〉 − 1 . (2.34)

Now we see that indeed a constant contribution to φe cancels out: the quadratic term cancels with

the redefinition of the average temperature. Notice that this is only possible because of the exact

numerical coefficient 1/18 in front of the quadratic term.

In this way we also understand why the argument presented in [20] for the squeezed limit of the

3-point function is not correct. In that reference it is argued that a term like φ2
e/18, which induces

a correlation between short and long modes, cannot exist, as it would imply – as in eq. (2.33) – that

a mode which is still out of the horizon gives a measurable effect. What was neglected is that the

same mode would change the average of the measured temperature.

3 CMB bispectrum and its shape

In this section we will introduce the observables that we are going to study, in particular the CMB

bispectrum and its shape dependence. We will use the flat sky approximation. Even though this

approximation is not very good on the large angular scales (lower multipoles) where the Sachs-Wolfe

effect applies, the expressions that we will derive are much more transparent in this limit.

10

✓ 

✓ 

On the right hand side of eq. (2.31), the subscript “e” means at the background position of the

emitted photon, n̂De. The first line of eq. (2.31) was found in [14]. It represents an intrinsic effect

due to the combination of the Doppler effect and the adiabatic temperature fluctuation of the plasma

at recombination. The second line contains the Rees-Sciama effect, due to the second-order time

evolution of the scalar potentials, and the effect of the time dependence of the vector and tensor
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two Fourier modes of the initial conditions φe becomes infinitely long. This mode is still out of the

horizon today and therefore cannot affect any physical observable. Let us check that this is indeed

the case. When one of the wavevectors goes to zero, all the terms containing spatial derivatives in

the expression above vanish, as it is clear from the explicit form of the metric eqs. (2.4)–(2.7). One is

left only with the first two terms which, up to second order, it is useful to rewrite in an exponential

form [15] as
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At first sight it looks that the constant mode can affect observations through the second order term,

which mixes a short mode with the constant one. This actually is not the case as the constant mode

also affects the average measured temperature. Indeed the well defined measurable quantity is given

by
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Now we see that indeed a constant contribution to φe cancels out: the quadratic term cancels with

the redefinition of the average temperature. Notice that this is only possible because of the exact

numerical coefficient 1/18 in front of the quadratic term.

In this way we also understand why the argument presented in [20] for the squeezed limit of the

3-point function is not correct. In that reference it is argued that a term like φ2
e/18, which induces

a correlation between short and long modes, cannot exist, as it would imply – as in eq. (2.33) – that

a mode which is still out of the horizon gives a measurable effect. What was neglected is that the

same mode would change the average of the measured temperature.

3 CMB bispectrum and its shape

In this section we will introduce the observables that we are going to study, in particular the CMB

bispectrum and its shape dependence. We will use the flat sky approximation. Even though this

approximation is not very good on the large angular scales (lower multipoles) where the Sachs-Wolfe

effect applies, the expressions that we will derive are much more transparent in this limit.
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✓ Generalization of Sachs-Wolfe effect at 2nd order 

✓ Local contribution gives                                  ; corrects both Creminelli, Zaldarriaga 
and Bartolo, Matarrese, Riotto; check by physical arguments 

✓ Equilateral contribution gives                    : intrinsic and integrated effects physically 
indistinguishable

✓ Signal is very small, even for Planck. May be important to understand the contamination 
of primordial signal

✓ Future: 

• generalization to full-sky and RD + Lambda

• Squeezed limit with the short modes inside the horizon

Conclusion

f local
NL = −1

6
− cos(2θ)

f equil
NL ! 3.13





Computing the second-order metric 
[Boubekeur, Creminelli, Norena, FV ’08]  

• “Action approach to cosmological perturbation theory.”  A perfect, irrotational, barotropic 
fluid has the same symmetries as a scalar field with Lagrangian:

Warning!     is now a scalar field and 
not the gravitational potential! Sorry.

φ
! = const!

• Indeed: Perfect fluid

Barotropic Irrotational

• Around:

[Taub ’54; Shutz ’70; for a recent review see Dubovski, Gregoire, Nicolis, Rattazzi ‘05]



w = constant
• Constant equation of state: Example: relativistic fluid w = 1/3

• The Lagrangian is like k-inflation: we can study metric + fluid perturbations exactly as we 
do for inflation!

Calculation of the 3-pf in inflation Calculation of 2nd order metric in MD
[Maldacena ’02; Seery, Lidsey ’05; 
Chen et al. ’06; etc...]  

Including gravity:

• Dark matter = dust (far from shell crossing, it is a perfect, irrotational and barotropic fluid)

Subtlety: take carefully the limit w to 0



Let us start computing

• ADM formalism: solve constraints to get action for scalar + tensors

• Choose velocity orthogonal gauge (uniform-field):

[Maldacena ’02; 
Seery, Lidsey ’05; 
Chen et al. ’06; etc...]  

• Constraint equations:



Start simple: 1st order

• Solve the action (expand 1st order in            )

     is constant on large scales (also for a generic barotropic fluid)ζ

w ! 0!

•      sets the initial condition from inflation: everything in terms of the 
natural variable, no need to mach with inflation!
ζ0

• We have all the ingredients for the 1st order metric:

• Gauge tranformation to Poisson (Newtonian) gauge

• 2nd order action:



Not so simple (but straigtforward...): 2nd order
• Expanding the action at 3rd order (and after some work...):

[Seery, Lidsey ’05; 
Chen et al. ’06; etc...]  

• Field redefinition (new variable):

• Solve the action: 

• Have we finished? No, we need to solve constraints at 2nd order to obtain the metric:



Finally... the metric!
• Do the same for tensor contribution induced by scalars (no tensors at 1st order):

• The final metric in matter dominance:

• On large scales: ds2 = −dt2 + a2(t)e2ζ0("x)d!x2 , k " aH

• Initial condition already built in the formalism (we always worked with   ):ζ



Second-order metric in MD
• After a gauge transformation in the generalized Poisson gauge:

• Matches the metric found by Bartolo, Matarrese and Riotto

k ! aH ⇒ φ = −3
5
ζ0


