# CMB bispectrum on large angular scales 

Filippo Vernizzi - IPhT, CEA Saclay<br>To appear (hopefully) tomorrow! with Lotfi Boubekeur, Paolo Creminelli, Guido D'Amico and Jorge Noreña (see also JCAP 0808: 028, 2008)

IAP, Paris, 4 Juin 2009

## WMAP map of the sky



## CMB spectrum

- If data are Gaussian, they are fully characterized by the power spectrum (FT of 2-pf):

$$
\left\langle\frac{\Delta T}{T}(\hat{n}) \frac{\Delta T}{T}\left(\hat{n}^{\prime}\right)\right\rangle \quad \Rightarrow \quad C_{l} \equiv \sum_{m}\left\langle a_{l m} a_{l^{\prime} m^{\prime}}\right\rangle \delta_{l l^{\prime}} \delta_{m m^{\prime}}
$$



## Large scales

- Scales larger than Hubble radius at decoupling. Dominant effect: gravitational second-order effects
- Low multipoles:




## Sachs-Wolfe effect

$$
\frac{\Delta T}{T}(\hat{n})=\frac{1}{3} \Phi\left(\vec{x}_{\mathrm{dec}}\right) \quad \quad[\text { Sachs-Wolfe '67] }
$$

- Adiabatic I.C.
- Matter dominance only
- Large angles: gravity only, no sub-Hubble plasma physics

Physically consistent limit: the calculation is exact if recombination takes place much after equality, there is no Lambda and the universe is so old that observed scales are infinitely larger than Hubble radius at recombination


## Sachs-Wolfe calculation

$$
\frac{\Delta T}{T}(\hat{n})=\frac{1}{3} \Phi\left(\vec{x}_{\mathrm{dec}}\right) \quad[\text { Sachs-Wolfe '67] }
$$

Because of Liouville's theorem: $\quad T_{o}(\hat{n})=\frac{\omega_{o}}{\omega_{e}} T_{e}\left(\vec{x}_{e}\right)$
Perturbed metric in conformal time: $d s^{2}=a^{2}(\tau)\left[-(1+2 \Phi(\vec{x})) d \tau^{2}+(1-2 \Phi(\vec{x})) d \vec{x}^{2}\right]$
cf linear Poisson eq: $\quad \nabla^{2} \Phi=4 \pi G \rho(t) a^{2}(t) \delta(t, \vec{x})$

- Photon redshift: $\frac{\omega_{o}}{\omega_{e}}=\frac{a_{e}}{a_{o}} \sqrt{\frac{g_{00}\left(\vec{x}_{e}\right)}{g_{00}\left(\vec{x}_{o}\right)}}=\frac{a_{e}}{a_{o}}\left(1+\Phi_{e}-\Phi_{o}\right)$
- Intrinsic anisotropy (adiabatic I.C.): $T_{e} \propto \tilde{t}_{e}^{-2 / 3}=[t(1+\Phi)]_{e}^{-2 / 3} \propto \frac{1}{a_{e}}\left(1-\frac{2}{3} \Phi_{e}\right)$



## Power spectrum

- Sachs-Wolfe effect: $\frac{\Delta T}{T}(\hat{n})=\frac{1}{3} \Phi\left(\vec{x}_{\mathrm{dec}}\right)$
- Flat-sky approximation: not very good on large angular scales; however simpler and more transparent expressions

$$
a_{\vec{l}}=\int d^{2} \vec{m} \frac{\delta T}{T}(\hat{n}) e^{-i \vec{l} \cdot \vec{m}}
$$

- Power spectrum in flat sky:

$$
\left\langle a_{\vec{l}} a_{\overrightarrow{l^{\prime}}}\right\rangle=(2 \pi)^{2} \delta\left(\vec{l}+\vec{l}^{\prime}\right) C_{l}
$$

- Use the power spectrum of gravitational potential

$$
\left\langle\Phi_{\vec{k}} \Phi_{\vec{k}^{\prime}}\right\rangle \propto \delta\left(\vec{k}+\vec{k}^{\prime}\right) \frac{1}{k^{3}} \quad \Rightarrow \quad C_{l} \propto \frac{1}{l^{2}}
$$



## Power spectrum

- If data are Gaussian, they are fully characterized by the power spectrum (FT of 2-pf):

$$
\left\langle\frac{\Delta T}{T}(\hat{n}) \frac{\Delta T}{T}\left(\hat{n}^{\prime}\right)\right\rangle \quad \Rightarrow \quad C_{l} \propto \frac{1}{l^{2}}
$$



## Beyond Gaussianity

## $\sim 10^{6}$ pixels



## Bispectrum

- Deviation from Gaussianity are imprinted in the bispectrum (FT of 3-pf)

$$
\left\langle\frac{\Delta T}{T}\left(\hat{n}_{1}\right) \frac{\Delta T}{T}\left(\hat{n}_{2}\right) \frac{\Delta T}{T}\left(\hat{n}_{3}\right)\right\rangle \quad \Rightarrow \quad\left\langle a_{l_{1} m_{1}} a_{l_{2} m_{2}} a_{l_{3} m_{3}}\right\rangle=\left(\begin{array}{ccc}
\ell_{1} & \ell_{2} & \ell_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right) B_{l_{1} l_{2} l_{3}}
$$

- Flat sky:

$$
\left\langle a_{\vec{l}_{1}} a_{\vec{l}_{2}} a_{\vec{l}_{3}}\right\rangle=(2 \pi)^{3} \delta\left(\vec{l}_{1}+\vec{l}_{2}+\vec{l}_{3}\right) B\left(\vec{l}_{1}, \overrightarrow{l_{2}}, \vec{l}_{3}\right)
$$

- The bispectrum is a function of 6 parameters: -2 from translational, - I from rotational, - I from scale invariance $=\underline{2}$ independent parameters

For instance: $r_{2} \equiv l_{2} / l_{1} ; \quad r_{3} \equiv l_{3} / l_{1} ; \quad 1-r_{3} \leq r_{2} \leq r_{3} \quad$ [Babich, Creminelli, Zaldarriaga '04]


- Squeezed: $\quad l_{2} \rightarrow 0$

- Equilateral: $l_{1}=l_{2}=l_{3}$



## Primordial non-Gaussianities

- Simple, single field slow-roll inflation predicts very small non-Gaussianities [Maldacena '02]
- Other models predict larger non-Gaussianities:
$\checkmark$ Local shape non-Gaussianity, generated on super-Hubble scales (curvaton, modulated reheating, new ekpyrosis...):

$$
\begin{aligned}
\Phi(\vec{x}) & =\phi_{g}(\vec{x})-f_{\mathrm{NL}}^{\text {local }} \phi_{g}^{2}(\vec{x}) \\
\left\langle\Phi_{\vec{k}_{1}} \Phi_{\vec{k}_{2}} \Phi_{\vec{k}_{3}}\right\rangle & \propto \delta\left(\vec{k}_{1}+\vec{k}_{2}+\vec{k}_{3}\right) \frac{1}{k_{1}^{3} k_{2}^{3}}+\text { perms } \quad \Rightarrow \quad \text { Maximized in squeezed limit }
\end{aligned}
$$

- Bispectrum: $\quad B \propto f_{\mathrm{NL}}^{\text {local }}\left(\frac{1}{l_{1}^{2} l_{2}^{2}}+\frac{1}{l_{1}^{2} l_{3}^{2}}+\frac{1}{l_{2}^{2} l_{3}^{2}}\right)$

$$
\propto f_{\mathrm{NL}}^{\text {local }} \frac{1}{l_{1}^{4}}\left(\frac{1}{r_{2}^{2}}+\frac{1}{r_{3}^{2}}+\frac{1}{r_{2}^{2} r_{3}^{2}}\right)
$$

- Squeezed: $l_{2} \rightarrow 0$




## Primordial non-Gaussianities

$\checkmark$ Equilateral shape non-Gaussianity, generated at Hubble-crossing (DBI, ghost inflation...):
[Babich, Creminelli, Zaldarriaga '04]
$\left\langle\Phi_{\vec{k}_{1}} \Phi_{\vec{k}_{2}} \Phi_{\vec{k}_{3}}\right\rangle \propto \delta\left(\vec{k}_{1}+\vec{k}_{2}+\vec{k}_{3}\right)\left(-\frac{1}{2 k_{1}^{3} k_{2}^{3}}-\frac{1}{3 k_{1}^{2} k_{2}^{2} k_{3}^{2}}-\frac{1}{k_{1} k_{2}^{2} k_{3}^{3}}+\right.$ perms $)$
Divergences removed by cancellation in the squeezed limit

- Bispectrum: $\quad B \propto f_{\mathrm{NL}}^{\text {equil }} \cdot \frac{1}{l_{1}^{4}} \cdot F\left(r_{2}, r_{3}\right)$



## Shape matters



- Signal/noise is (2d): $(S / N)^{2}=\frac{1}{\pi} \int \frac{d^{2} l_{2} d^{2} l_{3}}{(2 \pi)^{2}} \frac{B\left(\vec{l}_{1}, \vec{l}_{2}, \vec{l}_{3}\right)^{2}}{6 C_{l_{1}} C_{l_{2}} C_{l_{3}}} \quad$ [Hu '00]
$(S / N)^{2} \propto \int d r_{2} d r_{3}\left[\frac{r_{2}^{3 / 2} r_{3}^{3 / 2}}{\left(2 r_{2}^{2}+2 r_{3}^{2}+2 r_{2}^{2} r_{3}^{2}-1-r_{2}^{4}-r_{3}^{4}\right)^{1 / 4}} B\left(1, r_{2}, r_{3}\right)\right]^{2} \longrightarrow r_{2} r_{3} B\left(1, r_{2}, r_{3}\right)$
- We can define a scalar product between shapes:

$$
\begin{gathered}
B_{1} \cdot B_{2} \equiv \frac{1}{\pi} \int \frac{d^{2} l_{2} d^{2} l_{3}}{(2 \pi)^{2}} \frac{B_{1}\left(\vec{l}_{1}, \vec{l}_{2}, \vec{l}_{3}\right) B_{2}\left(\vec{l}_{1}, \vec{l}_{2}, \vec{l}_{3}\right)}{6 C_{l_{1}} C_{l_{2}} C_{l_{3}}} \\
\cos \left(B_{1}, B_{2}\right) \equiv \frac{B_{1} \cdot B_{2}}{\sqrt{B_{1} \cdot B_{1}} \sqrt{B_{2} \cdot B_{2}}}
\end{gathered}
$$

- Very important to constrain non-Gaussianities!

Ex: $\cos \left(B_{\text {local }} \cdot B_{\text {equil }}\right)=0.30$

## Constraints on non-Gaussianities

- Current constraints on "local" and "equilateral" non-Gaussianity from WMAP data:
$\checkmark$ Local type: $\Phi(\vec{x})=\phi_{g}(\vec{x})-f_{\mathrm{NL}}^{\text {local }} \phi_{g}^{2}(\vec{x})$

$$
-4<f_{\mathrm{NL}}^{\text {local }}<80 \quad(95 \% \mathrm{CL})
$$

[Smith, Senatore, Zaldarriaga '09]

$\checkmark$ Equilateral type:

$$
\begin{gathered}
-151<f_{\mathrm{NL}}^{\text {equil }}<253 \quad(95 \% \mathrm{CL}) \\
\text { [Komatsu et al.'08] }
\end{gathered}
$$



- Future constrains with perfect CMB experiment (including polarization):

$$
\left|f_{\mathrm{NL}}^{\text {local }}\right|<1.8 \quad(95 \% \mathrm{CL})
$$

We expect a plethora of second order effects $\sim\left(10^{-5}\right)^{2}$ even in absence of primordial non-Gaussianities: experiments are getting close to them!

## CMB bispectrum from $2^{\text {nd }}$ order perts

- Complete calculation is extremely challenging: $2^{\text {nd }}$ order Boltzmann equations on all scales
- On sub-Hubble scales at recombination people focussed on particular effects:
$\checkmark$ Dark matter non-linearities on short scales [Bernardeau, Pitrou, Uzan '08; Bartolo, Riotto '08]

$$
\frac{\delta T}{T}=\frac{\delta T_{r e c}}{T_{r e c}}+\Phi \quad \Rightarrow \quad f_{\mathrm{NL}}^{\text {equil }} \sim 10
$$

$\checkmark$ Perturbed recombination [Senatore,Tassev, Zaldarriaga '09; Khatri, Wandelt '09]

$$
\frac{\delta n_{e}}{n_{e}} \approx \frac{\dot{n}_{e}}{n_{e}} \delta t \approx 5 \frac{\delta n_{b}}{n_{b}} \quad \Rightarrow \quad f_{\mathrm{NL}}^{\text {local }} \sim 4
$$

- On super-Hubble scales we are reduced to a $2^{\text {nd }}$ order GR problem:
[Pyne, Carroll 00; Mollerach, Matarrese '97; Bartolo, Matarrese, Riotto '04]

$$
\frac{\delta T}{T}=\frac{1}{3} \phi+F_{\mathrm{NL}}(\phi \star \phi) \quad \Rightarrow \quad\left\langle\frac{\delta T}{T} \frac{\delta T}{T} \frac{\delta T}{T}\right\rangle=\frac{1}{9} F_{\mathrm{NL}}\langle\phi \phi(\phi \star \phi)\rangle+\mathrm{perms}
$$

## Separate universe

- On large scales the metric reads:

$$
d s^{2}=-d t^{2}+a^{2}(t) e^{2 \zeta_{0}(\vec{x})} d \vec{x}^{2}, \quad k \ll a H
$$

- If only one clock (adiabatic perturbations): $\zeta$ is conserved on super-Hubble scales
- Primordial non-Gaussianity are encoded in $\zeta$


- We assume there is no primordial non-Gaussianity (e.g., single field inflation)

$$
\left\langle\zeta_{0}\left(\vec{x}_{1}\right) \zeta_{0}\left(\vec{x}_{2}\right) \zeta_{0}\left(\vec{x}_{3}\right)\right\rangle=0
$$

## Any guess? Squeezed limit

- Squeezed limit (separation of scales): effect of a very long wavelength mode on the 2-pf:
[Maldacena, ${ }^{\text {02] }}$

$$
\left\langle a_{\vec{l}_{L}} a_{\vec{l}_{S}} a_{-\vec{l}_{S}}\right\rangle \propto\left\langle\zeta_{l_{L}} C_{l_{S}}\right\rangle
$$

- Consistency relation: if a long mode is out of the horizon today it should not affect physical observables

[Creminelli, Zaldarriaga, '04]

$$
\left\langle a_{\vec{l}_{L}} a_{\vec{l}_{S}} a_{-\vec{l}_{S}}\right\rangle \rightarrow 0 \quad f_{\mathrm{NL}}^{\text {local }}=0
$$

- Second-order calculation keeping only scalar perts. [Bartolo, Matarrese, Riotto, '04]

$$
\frac{\Delta T}{T}=\frac{1}{3} \Phi_{\mathrm{dec}}+\frac{1}{18} \Phi_{\mathrm{dec}}^{2} \quad \Rightarrow \quad f_{\mathrm{NL}}^{\text {local }}=-\frac{1}{6} \quad \checkmark
$$

## Second-order metric in MD

$$
\begin{array}{r}
\mathrm{d} s^{2}=a^{2}(\tau)\left\{-(1+2 \Phi) \mathrm{d} \tau^{2}+2 \omega_{i} \mathrm{~d} x^{i} \mathrm{~d} \tau+\left[(1-2 \Psi) \delta_{i j}+\gamma_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\} \\
\omega_{i, i}=0 \text { and } \gamma_{i i}=0=\gamma_{i j, i}
\end{array}
$$

- Second-order metric is time-dependent: non-linear coupling of the dark matter (subHubble Newtonian regime) and generation of vector (non-vortical) and tensor modes

$$
\begin{aligned}
\Phi= & \phi+\left[\phi^{2}+\partial^{-2}\left(\partial_{j} \phi\right)^{2}-3 \partial^{-4} \partial_{i} \partial_{j}\left(\partial_{i} \phi \partial_{j} \phi\right)\right] \\
& +\frac{2}{21 a^{2} H^{2}} \partial^{-2}\left[2\left(\partial_{i} \partial_{j} \phi\right)^{2}+5\left(\partial^{2} \phi\right)^{2}+7 \partial_{i} \phi \partial_{i} \partial^{2} \phi\right], \\
\Psi= & \phi-\left[\phi^{2}+\frac{2}{3} \partial^{-2}\left(\partial_{i} \phi\right)^{2}-2 \partial^{-4} \partial_{i} \partial_{j}\left(\partial_{i} \phi \partial_{j} \phi\right)\right] \\
& +\frac{2}{21 a^{2} H^{2}} \partial^{-2}\left[2\left(\partial_{i} \partial_{j} \phi\right)^{2}+5\left(\partial^{2} \phi\right)^{2}+7 \partial_{i} \phi \partial_{i} \partial^{2} \phi\right], \\
\omega_{i}= & -\frac{8}{3 a H} \partial^{-2}\left[\partial^{2} \phi \partial_{i} \phi-\partial^{-2} \partial_{i} \partial_{j}\left(\partial^{2} \phi \partial_{j} \phi\right)\right], \\
\gamma_{i j}= & -20\left(\frac{1}{3}-\frac{j_{1}(k \tau)}{k \tau}\right) \partial^{-2} P_{i j k l}^{\mathrm{TT}}\left(\partial_{k} \phi \partial_{l} \phi\right) .
\end{aligned}
$$

$$
\frac{1}{a^{2} H^{2}} \propto a
$$

in matter dominance
$\nabla^{2} \Phi(t, \vec{x})=4 \pi G \rho(t) a^{2}(t) \delta(t, \vec{x})$
[Bartolo, Matarrese, Riotto '06;
Boubekeur, Creminelli, Norena, FV '08]

- Gaussian initial condition: $\quad k \ll a H \quad \Rightarrow \quad \phi=-\frac{3}{5} \zeta_{0} \quad$ Gaussian variable


## Sachs-Wolfe at second order

$$
\begin{gathered}
\mathrm{d} s^{2}=a^{2}(\tau)\left\{-(1+2 \Phi) \mathrm{d} \tau^{2}+2 \omega_{i} \mathrm{~d} x^{i} \mathrm{~d} \tau+\left[(1-2 \Psi) \delta_{i j}+\gamma_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\} \\
T(\hat{n})=\frac{\omega_{o}}{\omega_{e}} T_{e}\left(\vec{x}_{e}\right)
\end{gathered}
$$

- Photon redshift:

$$
\frac{\omega_{o}}{\omega_{e}}=\frac{a_{e}}{a_{o}} \sqrt{\frac{1+2 \Phi_{e}}{1+2 \Phi_{o}}}\left[1+\int_{\tau_{e}}^{\tau_{o}} \mathrm{~d} \tau\left(\Phi^{\prime}+\Psi^{\prime}+\omega_{i}^{\prime} \hat{n}^{i}-\frac{1}{2} \gamma_{i j}^{\prime} \hat{n}^{i} \hat{n}^{j}\right)\right]
$$

- Intrinsic anisotropy (adiabatic I.C.): $\quad T_{e} \propto \tilde{t}_{e}^{-2 / 3}=\left[t(1+2 \Phi)^{1 / 2}\right]_{e}^{-2 / 3} \propto \frac{1}{a_{e}}\left(1+2 \Phi_{e}\right)^{-1 / 3}$
- Lensing: $\quad T_{e}\left(\vec{x}_{e}\right)=T_{e}\left(\hat{n}\left(\tau_{o}-\tau_{e}\right)\right)-\vec{\alpha} \cdot \vec{\nabla}_{\hat{n}} T_{e}$

$$
\vec{\alpha}=-2 \int_{\tau_{e}}^{\tau_{o}} \mathrm{~d} \tau \frac{\tau-\tau_{e}}{\tau_{o}-\tau_{e}} \vec{\nabla} \vec{\nabla}_{\perp} \phi
$$



## Sachs-Wolfe at second order

$$
\begin{gathered}
\mathrm{d} s^{2}=a^{2}(\tau)\left\{-(1+2 \Phi) \mathrm{d} \tau^{2}+2 \omega_{i} \mathrm{~d} x^{i} \mathrm{~d} \tau+\left[(1-2 \Psi) \delta_{i j}+\gamma_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\} \\
T(\hat{n})=\frac{\omega_{o}}{\omega_{e}} T_{e}\left(\vec{x}_{e}\right)
\end{gathered}
$$

- Photon redshift:

$$
\frac{\omega_{o}}{\omega_{e}}=\frac{a_{e}}{a_{o}} \sqrt{\frac{1+2 \Phi_{e}}{1+2 \Phi_{o}}}\left[1+\int_{\tau_{e}}^{\tau_{o}} \mathrm{~d} \tau\left(\Phi^{\prime}+\Psi^{\prime}+\omega_{i}^{\prime} \hat{n}^{i}-\frac{1}{2} \gamma_{i j}^{\prime} \hat{n}^{i} \hat{n}^{j}\right)\right]
$$

- Intrinsic anisotropy (adiabatic I.C.): $\quad T_{e} \propto \tilde{t}_{e}^{-2 / 3}=\left[t(1+2 \Phi)^{1 / 2}\right]_{e}^{-2 / 3} \propto \frac{1}{a_{e}}\left(1+2 \Phi_{e}\right)^{-1 / 3}$
- Lensing: $\quad T_{e}\left(\vec{x}_{e}\right)=T_{e}\left(\hat{n}\left(\tau_{o}-\tau_{e}\right)\right)-\vec{\alpha} \cdot \vec{\nabla}_{\hat{n}} T_{e}$

$$
\vec{\alpha}=-2 \int_{\tau_{e}}^{\tau_{o}} \mathrm{~d} \tau \frac{\tau-\tau_{e}}{\tau_{o}-\tau_{e}} \vec{\nabla} \perp \phi
$$

$$
\begin{aligned}
\frac{\delta T}{T}(\hat{n}) & =\left[\frac{1}{3} \phi+\frac{1}{18} \phi^{2}+\frac{1}{3} \partial^{-2}\left(\left(\partial_{i} \phi\right)^{2}-3 \partial^{-2} \partial_{i} \partial_{j}\left(\partial_{i} \phi \partial_{j} \phi\right)\right)\right]_{e} \\
& +\int_{\tau_{e}}^{\tau_{o}} \mathrm{~d} \tau\left(\Phi^{\prime}+\Psi^{\prime}+\omega_{i}^{\prime} \hat{n}^{i}-\frac{1}{2} \gamma_{i j}^{\prime} \hat{n}^{i} \hat{n}^{j}\right)+\frac{1}{3} \vec{\alpha} \cdot \vec{\nabla}_{\hat{n}} \phi_{e}
\end{aligned}
$$

## "Intrinsic" contribution

$$
\begin{aligned}
\frac{\delta T}{T}(\hat{n}) & =\left[\frac{1}{3} \phi+\frac{1}{18} \phi^{2}+\frac{1}{3} \partial^{-2}\left(\left(\partial_{i} \phi\right)^{2}-3 \partial^{-2} \partial_{i} \partial_{j}\left(\partial_{i} \phi \partial_{j} \phi\right)\right)\right]_{e} \\
& +\int_{\tau_{e}}^{\tau_{o}} \mathrm{~d} \tau\left(\Phi^{\prime}+\Psi^{\prime}+\omega_{i}^{\prime} \hat{n}^{i}-\frac{1}{2} \gamma_{i j}^{\prime} \hat{n}^{i} \hat{n}^{j}\right)+\frac{1}{3} \vec{\alpha} \cdot \vec{\nabla}_{\hat{n}} \phi_{e}
\end{aligned}
$$

- Local contribution: $f_{\mathrm{NL}}^{\text {local }}=-\frac{1}{6}$
- k-dependent Kernel: $\left[\frac{1}{3} \frac{\vec{p}_{1} \cdot \vec{p}_{2}}{\left(\vec{p}_{1}+\vec{p}_{2}\right)^{2}}-\frac{p_{1}^{2} p_{2}^{2}+\left(p_{1}^{2}+p_{2}^{2}\right)\left(\vec{p}_{1} \cdot \vec{p}_{2}\right)+\left(\vec{p}_{1} \cdot \vec{p}_{2}\right)^{2}}{\left(\vec{p}_{1}+\vec{p}_{2}\right)^{4}}\right] \phi_{\vec{p}_{1}} \phi_{\vec{p}_{2}}$

$$
\begin{aligned}
& B^{\text {intr }}=\frac{2 A^{2}}{9\left(2 \pi \sqrt{2} l_{1}^{4}\right.} \int_{-\infty}^{+\infty} \mathrm{d} y_{1} \mathrm{~d} y_{2}\left[\frac { 1 } { ( y _ { 1 } ^ { 2 } + r _ { 1 } ^ { 2 } ) ^ { 3 / 2 } ( y _ { 2 } ^ { 2 } + r _ { 2 } ^ { 2 } ) ^ { 3 / 2 } } \left(\frac{2 y_{1} y_{2}+r_{3}^{2}-r_{1}^{2}-r_{2}^{2}}{6\left(\left(y_{1}+y_{2}\right)^{2}+r_{3}^{2}\right)}\right.\right. \\
& \left.\left.-\frac{4\left(y_{1}^{2}+r_{1}^{2}\right)\left(\hat{y}_{2}^{2}+r_{2}^{2}\right)+2\left(y_{1}^{2}+r_{1}^{2}+y_{2}^{2}+r_{2}^{2}\right)\left(2 y_{1} y_{2}+r_{3}^{2}-r_{1}^{2}-r_{2}^{2}\right)+\left(2 y_{1} y_{2}+r_{3}^{2}-r_{1}^{2}-r_{2}^{2}\right)^{2}}{4\left(\left(y_{1}+y_{2}\right)^{2}+r_{3}^{2}\right)^{2}}\right)+2 \text { cyclic }\right] \\
& \quad \text { scale invariant }
\end{aligned}
$$

## "Intrinsic" contribution

$$
\begin{aligned}
\frac{\delta T}{T}(\hat{n}) & =\left[\frac{1}{3} \phi+\frac{1}{18} \phi^{2}+\frac{1}{3} \partial^{-2}\left(\left(\partial_{i} \phi\right)^{2}-3 \partial^{-2} \partial_{i} \partial_{j}\left(\partial_{i} \phi \partial_{j} \phi\right)\right)\right]_{e} \\
& +\int_{\tau_{e}}^{\tau_{o}} \mathrm{~d} \tau\left(\Phi^{\prime}+\Psi^{\prime}+\omega_{i}^{\prime} \hat{n}^{i}-\frac{1}{2} \gamma_{i j}^{\prime} \hat{n}^{i} \hat{n}^{j}\right)+\frac{1}{3} \vec{\alpha} \cdot \vec{\nabla}_{\hat{n}} \phi_{e}
\end{aligned}
$$

- Local contribution: $f_{\mathrm{NL}}^{\text {local }}=-\frac{1}{6}$
[Bartolo, Matarrese, Riotto '04]
- k-dependent Kernel: $\quad f_{\mathrm{NL}}^{\text {equil }} \simeq 1.21$



## Integrated effects

$$
\begin{aligned}
\frac{\delta T}{T}(\hat{n}) & =\left[\frac{1}{3} \phi+\frac{1}{18} \phi^{2}+\frac{1}{3} \partial^{-2}\left(\left(\partial_{i} \phi\right)^{2}-3 \partial^{-2} \partial_{i} \partial_{j}\left(\partial_{i} \phi \partial_{j} \phi\right)\right)\right]_{e} \\
& +\int_{\tau_{e}}^{\tau_{o}} \mathrm{~d} \tau\left(\Phi^{\prime}+\Psi^{\prime}+\omega_{i}^{\prime} \hat{n}^{i}-\frac{1}{2} \gamma_{i j}^{\prime} \hat{n}^{i} \hat{n}^{j}\right)+\frac{1}{3} \vec{\alpha} \cdot \vec{\nabla}_{\hat{n}} \phi_{e}
\end{aligned}
$$

- We are correlating integrated effects with the last scattering surface: naively they are suppressed by gradients on large scales

Eg, Newtonian second-order evolution: $\Phi(t)=\Psi(t) \propto a(t)$

$$
\Phi^{\prime}+\Psi^{\prime}=-\tau \frac{4\left(\vec{p}_{1} \cdot \vec{p}_{2}\right)^{2}+10 p_{1}^{2} p_{2}^{2}+7\left(p_{1}^{2}+p_{2}^{2}\right)\left(\vec{p}_{1} \cdot \vec{p}_{2}\right)}{21\left(\vec{p}_{1}+\vec{p}_{2}\right)^{2}} \phi_{\vec{p}_{1}} \phi_{\vec{p}_{2}}
$$



## Integrated effects

$$
\begin{array}{r}
\frac{\delta T}{T}(\hat{n})=\left[\frac{1}{3} \phi+\frac{1}{18} \phi^{2}+\frac{1}{3} \partial^{-2}\left(\left(\partial_{i} \phi\right)^{2}-3 \partial^{-2} \partial_{i} \partial_{j}\left(\partial_{i} \phi \partial_{j} \phi\right)\right)\right]_{e} \\
+\int_{\tau_{e}}^{\tau_{o}} \mathrm{~d} \tau\left(\Phi^{\prime}+\Psi^{\prime}+\omega_{i}^{\prime} \hat{n}^{i}-\frac{1}{2} \gamma_{i j}^{\prime} \hat{n}^{i} \hat{n}^{j}\right)+\frac{1}{3} \vec{\alpha} \cdot \vec{\nabla}_{\hat{n}} \phi_{e}
\end{array}
$$

- We are correlating integrated effects with the last scattering surface: naively they are suppressed by gradients on large scales
- But correlation with the last scattering surface does not decay instantaneously!



## Integrated effects

$$
\begin{array}{r}
\frac{\delta T}{T}(\hat{n})=\left[\frac{1}{3} \phi+\frac{1}{18} \phi^{2}+\frac{1}{3} \partial^{-2}\left(\left(\partial_{i} \phi\right)^{2}-3 \partial^{-2} \partial_{i} \partial_{j}\left(\partial_{i} \phi \partial_{j} \phi\right)\right)\right]_{e} \\
+\int_{\tau_{e}}^{\tau_{o}} \mathrm{~d} \tau\left(\Phi^{\prime}+\Psi^{\prime}+\omega_{i}^{\prime} \hat{n}^{i}-\frac{1}{2} \gamma_{i j}^{\prime} \hat{n}^{i} \hat{n}^{j}\right)+\frac{1}{3} \vec{\alpha} \cdot \vec{\nabla}_{\hat{n}} \phi_{e}
\end{array}
$$

- We are correlating integrated effects with the last scattering surface: naively they are suppressed by gradients on large scales

Eg, Newtonian second-order evolution: $\Phi(t)=\Psi(t) \propto a(t)$

$$
\Phi^{\prime}+\Psi^{\prime}=-\tau \frac{4\left(\vec{p}_{1} \cdot \vec{p}_{2}\right)^{2}+10 p_{1}^{2} p_{2}^{2}+7\left(p_{1}^{2}+p_{2}^{2}\right)\left(\vec{p}_{1} \cdot \vec{p}_{2}\right)}{21\left(\vec{p}_{1}+\vec{p}_{2}\right)^{2}} \phi_{\vec{p}_{1}} \phi_{\vec{p}_{2}}
$$

- Integrated terms are of the same order as the others!

$$
k \tau_{*} \approx \frac{l}{\tau_{o}} \cdot \frac{\tau_{o}}{l}=1
$$



## Rees-Sciama effect

$$
\begin{aligned}
\frac{\delta T}{T}(\hat{n}) & =\left[\frac{1}{3} \phi+\frac{1}{18} \phi^{2}+\frac{1}{3} \partial^{-2}\left(\left(\partial_{i} \phi\right)^{2}-3 \partial^{-2} \partial_{i} \partial_{j}\left(\partial_{i} \phi \partial_{j} \phi\right)\right)\right]_{e} \\
& +\int_{\tau_{e}}^{\tau_{o}} \mathrm{~d} \tau\left(\Phi^{\prime}+\Psi^{\prime}+\omega_{i}^{\prime} \hat{n}^{i}-\frac{1}{2} \gamma_{i j}^{\prime} \hat{n}^{i} \hat{n}^{j}\right)+\frac{1}{3} \vec{\alpha} \cdot \vec{\nabla}_{\hat{n}} \phi_{e}
\end{aligned}
$$

$f_{\mathrm{NL}}^{\text {equil }} \simeq 0.74$
Equilateral


## Vector contribution

$$
\begin{gathered}
\frac{\delta T}{T}(\hat{n})=\left[\frac{1}{3} \phi+\frac{1}{18} \phi^{2}+\frac{1}{3} \partial^{-2}\left(\left(\partial_{i} \phi\right)^{2}-3 \partial^{-2} \partial_{i} \partial_{j}\left(\partial_{i} \phi \partial_{j} \phi\right)\right)\right]_{e} \\
+\int_{\tau_{e}}^{\tau_{o}} \mathrm{~d} \tau\left(\Phi^{\prime}+\Psi^{\prime}+\omega_{i}^{\prime} \hat{n}^{i}-\frac{1}{2} \gamma_{i j}^{\prime} \hat{n}^{i} \hat{n}^{j}\right)+\frac{1}{3} \vec{\alpha} \cdot \vec{\nabla}_{\hat{n}} \phi_{e} \\
\omega_{i}^{\prime} \hat{n}^{i}=-\frac{2 i}{3}\left[\frac{p_{1}^{2}\left(\hat{n} \cdot \vec{p}_{2}\right)+p_{2}^{2}\left(\hat{n} \cdot \vec{p}_{1}\right)}{\left(\vec{p}_{1}+\vec{p}_{2}\right)^{2}}-\hat{n} \cdot\left(\vec{p}_{1}+\vec{p}_{2}\right) \frac{2 p_{1}^{2} p_{2}^{2}+\left(p_{1}^{2}+p_{2}^{2}\right)\left(\vec{p}_{1} \cdot \vec{p}_{2}\right)}{\left(\vec{p}_{1}+\vec{p}_{2}\right)^{4}}\right] \phi_{\vec{p}_{1}} \phi_{\vec{p}_{2}} \\
\text { Total derivative }
\end{gathered}
$$

- No real gauge independent separation between integrated/intrinsic
$f_{\mathrm{NL}}^{\text {equil }} \simeq-0.84$
Equilateral



## Tensor contribution

$$
\begin{aligned}
& \frac{\delta T}{T}(\hat{n})=\left[\frac{1}{3} \phi+\frac{1}{18} \phi^{2}+\frac{1}{3} \partial^{-2}\left(\left(\partial_{i} \phi\right)^{2}-3 \partial^{-2} \partial_{i} \partial_{j}\left(\partial_{i} \phi \partial_{j} \phi\right)\right)\right]_{e} \\
& \quad+\int_{\tau_{e}}^{\tau_{o}} \mathrm{~d} \tau\left(\Phi^{\prime}+\Psi^{\prime}+\omega_{i}^{\prime} \hat{n}^{i}-\frac{1}{2} \gamma_{i j}^{\prime} \hat{n}^{i} \hat{n}^{j}\right)+\frac{1}{3} \vec{\alpha} \cdot \vec{\nabla}_{\hat{n}} \phi_{e} \\
& \begin{array}{l}
\frac{1}{2} \gamma_{i j}^{\prime} \hat{n}^{i} \hat{n}^{j}= \\
+\frac{j_{2}\left(\left|\vec{p}_{1}+\vec{p}_{2}\right| \tau\right) \frac{10}{\tau}\left[\frac{\left(\vec{p}_{1} \cdot \vec{p}_{2}\right)^{2}-p_{1}^{2} p_{2}^{2}}{\left(\vec{p}_{1}+\vec{p}_{2}\right)^{4}}\left(1+\frac{\left(\hat{n} \cdot\left(\vec{p}_{1}+\vec{p}_{2}\right)\right)^{2}}{\left(\vec{p}_{1}+\vec{p}_{2}\right)^{2}}\right)\right.}{2}+p_{2}^{2}\left(\hat{n} \cdot \vec{p}_{1}\right)^{2}-2\left(\vec{p}_{1} \cdot \vec{p}_{2}\right)\left(\hat{n} \cdot \vec{p}_{1}\right)\left(\hat{n} \cdot \vec{p}_{2}\right) \\
\left(\vec{p}_{1}+\vec{p}_{2}\right)^{4}
\end{array} \phi_{\vec{p}_{1}} \phi_{\vec{p}_{2}}
\end{aligned}
$$

$f_{\mathrm{NL}}^{\text {equil }} \simeq-0.61$
Equilateral


## Lensing

$$
\begin{aligned}
\frac{\delta T}{T}(\hat{n}) & =\left[\frac{1}{3} \phi+\frac{1}{18} \phi^{2}+\frac{1}{3} \partial^{-2}\left(\left(\partial_{i} \phi\right)^{2}-3 \partial^{-2} \partial_{i} \partial_{j}\left(\partial_{i} \phi \partial_{j} \phi\right)\right)\right]_{e} \\
& +\int_{\tau_{e}}^{\tau_{o}} \mathrm{~d} \tau\left(\Phi^{\prime}+\Psi^{\prime}+\omega_{i}^{\prime} \hat{n}^{i}-\frac{1}{2} \gamma_{i j}^{\prime} \hat{n}^{i} \hat{n}^{j}\right)+\frac{1}{3} \vec{\alpha} \cdot \vec{\nabla}_{\hat{n}} \phi_{e}
\end{aligned}
$$

$f_{\mathrm{NL}} \propto \frac{\overrightarrow{l_{2}} \cdot \overrightarrow{l_{3}}}{l_{2}^{2} l_{3}^{2}}\left(\frac{1}{l_{2}^{2}}+\frac{1}{l_{3}^{2}}\right)+2$ perms

$$
f_{\mathrm{NL}}^{\text {local }}=-\cos \left(2 \theta_{\hat{l}_{1} \cdot \hat{l}_{2}}\right) \quad l_{2} \rightarrow 0
$$




## Total bispectrum

$$
\begin{aligned}
\frac{\delta T}{T}(\hat{n}) & =\left[\frac{1}{3} \phi+\frac{1}{18} \phi^{2}+\frac{1}{3} \partial^{-2}\left(\left(\partial_{i} \phi\right)^{2}-3 \partial^{-2} \partial_{i} \partial_{j}\left(\partial_{i} \phi \partial_{j} \phi\right)\right)\right]_{e} \\
& +\int_{\tau_{e}}^{\tau_{o}} \mathrm{~d} \tau\left(\Phi^{\prime}+\Psi^{\prime}+\omega_{i}^{\prime} \hat{n}^{i}-\frac{1}{2} \gamma_{i j}^{\prime} \hat{n}^{i} \hat{n}^{j}\right)+\frac{1}{3} \vec{\alpha} \cdot \vec{\nabla}_{\hat{n}} \phi_{e}
\end{aligned}
$$

$$
\cos \left(B_{X} \cdot B_{Y}\right)
$$

$$
\begin{aligned}
& f_{\mathrm{NL}}^{\text {local }}=-\frac{1}{6}-\cos (2 \theta) \\
& f_{\mathrm{NL}}^{\text {equil }} \simeq 3.13
\end{aligned}
$$

| Shape: | total | local | equil | lens |
| :---: | :---: | :---: | :---: | :---: |
| total | 1.00 | -0.17 | 0.41 | 0.98 |
| local |  | 1.00 | 0.30 | 0.03 |
| equil |  |  | 1.00 | 0.47 |
| lens |  |  |  | 1.00 |




## Squeezed limit, consistency check

- A long wavelength mode today does not affect physical observables!

$$
\begin{aligned}
\frac{\delta T}{T}(\hat{n})= & {\left[\frac{1}{3} \phi+\frac{1}{18} \phi^{2}\right]_{e} \simeq e^{\phi_{e} / 3}-1 \Rightarrow \frac{T_{o}(\hat{n})-\bar{T}_{o}}{\bar{T}_{o}}=\frac{e^{\phi_{e} / 3}}{\left\langle e^{\phi_{e} / 3}\right\rangle}-1 } \\
& \Rightarrow-\frac{1}{6} \sqrt{ }
\end{aligned}
$$

- Lensing consistency relation:
[Similar to consistency relation involving gravity waves, Maldacena '02, Seery, Sloth, FV '08]

$C_{l_{S}}^{\text {lensed }}=C_{l_{S}}+i l_{L}^{j} \alpha^{i}\left(\vec{l}_{L}\right) C_{l_{S}}\left(\delta_{i j}-2 \frac{l_{S}^{i} l_{S}^{j}}{l_{S}^{2}}\right)$
$\left\langle a_{l_{L}} C_{l_{S}}^{\text {lensed }}\right\rangle \propto i l_{L}^{j}\left\langle a_{l_{L}} \alpha_{l_{L}}^{i}\right\rangle C_{l_{S}}\left(\delta_{i j}-2 \frac{l_{i} l_{j}}{l^{2}}\right) \longleftarrow-\cos \left(2 \theta_{\vec{l}_{S} \cdot \vec{l}_{L}}\right)$


## Conclusion

$\sqrt{ }$ Generalization of Sachs-Wolfe effect at $2^{\text {nd }}$ order
$\sqrt{ }$ Local contribution gives $f_{\mathrm{NL}}^{\text {local }}=-\frac{1}{6}-\cos (2 \theta)$; corrects both Creminelli, Zaldarriaga and Bartolo, Matarrese, Riotto; check by physical arguments
 indistinguishable
$\sqrt{ }$ Signal is very small, even for Planck. May be important to understand the contamination of primordial signal
$\sqrt{ }$ Future:

- generalization to full-sky and RD + Lambda
- Squeezed limit with the short modes inside the horizon


## Computing the second-order metric

[Boubekeur, Creminelli, Norena, FV '08]

- "Action approach to cosmological perturbation theory." A perfect, irrotational, barotropic fluid has the same symmetries as a scalar field with Lagrangian:
[Taub '54; Shutz '70; for a recent review see Dubovski, Gregoire, Nicolis, Rattazzi '05]

$$
\mathcal{L}=P(X), \quad X \equiv-\partial_{\mu} \phi \partial^{\mu} \phi
$$

Warning! $\phi$ is now a scalar field and not the gravitational potential! Sorry.


- Indeed: $\quad T_{\mu \nu}=2 P^{\prime}(X) \partial_{\mu} \phi \partial_{\nu} \phi+P(X) g_{\mu \nu} \quad$ Perfect fluid
$\rho(X)=2 P^{\prime} X-P, \quad p(X)=P \quad$ Barotropic $\quad u_{\mu}=\frac{\partial_{\mu} \phi}{\sqrt{X}} \quad$ Irrotational
- Around: $\quad \phi=c t$

$$
\mathcal{L}=P^{\prime}\left(c^{2}\right)\left[\dot{\delta \phi}^{2}-(\nabla \delta \phi)^{2}\right]+2 P^{\prime \prime}\left(c^{2}\right) c^{2} \dot{\delta \phi^{2}}
$$

$$
c_{s}^{2}=\left.\frac{P^{\prime}(X)}{P^{\prime}(X)+2 X P^{\prime \prime}(X)}\right|_{X=c^{2}}=\left.\frac{p^{\prime}(X)}{\rho^{\prime}(X)}\right|_{X=c^{2}}=\frac{d p}{d \rho}
$$

## w = constant

- Constant equation of state:
$p=w \rho \quad \longrightarrow \quad X^{\frac{1+w}{2 w}}, \quad w \neq 0$
Example: relativistic fluid $w=1 / 3$
$\mathcal{L}=X^{2}=\left(-\partial_{\mu} \phi \partial^{\mu} \phi\right)^{2}$

Including gravity: $\quad \partial_{\mu}\left[\sqrt{-g} P^{\prime}(X) \partial^{\mu} \phi\right]=0 \quad \longrightarrow \quad \rho \propto \dot{\phi}^{\frac{1+w}{w}} \propto a^{-3(1+w)}$

- The Lagrangian is like k-inflation: we can study metric + fluid perturbations exactly as we do for inflation!

Calculation of the 3-pf in inflation $\longleftrightarrow$ Calculation of 2nd order metric in MD [Maldacena '02; Seery, Lidsey '05;
Chen et al. ${ }^{\text {'06; }}$ etc....]

- Dark matter = dust (far from shell crossing, it is a perfect, irrotational and barotropic fluid) Subtlety: take carefully the limit w to 0


## Let us start computing

$$
S=\frac{1}{2} \int \mathrm{~d}^{4} x \sqrt{-g}[R+2 P(X)] \quad P=X^{\frac{1+w}{2 w}}, \quad w \neq 0
$$

- ADM formalism: solve constraints to get action for scalar + tensors

$$
\begin{gathered}
d s^{2}=-N^{2} d t^{2}+h_{i j}\left(d x^{i}+N^{i} d t\right)\left(d x^{j}+N^{j} d t\right) \\
S=\frac{1}{2} \int \mathrm{~d} t \mathrm{~d}^{3} x \sqrt{h}\left[N\left(R^{(3)}+2 P\right)+N^{-1}\left(E_{i j} E^{i j}-E^{2}\right)\right] \quad E_{i j} \equiv \frac{1}{2}\left(\dot{h}_{i j}-\nabla_{i} N_{j}-\nabla_{j} N_{i}\right)
\end{gathered}
$$

- Choose velocity orthogonal gauge (uniform-field):

$$
\begin{gathered}
\delta \phi=0, \quad h_{i j}=a^{2} e^{2 \zeta} \hat{h}_{i j}, \quad \hat{h}_{i j}=\delta_{i j}+\gamma_{i j}+\frac{1}{2} \gamma_{i l} \gamma_{l j}+\ldots \\
\operatorname{det} \hat{h}=1, \quad \gamma_{i i}=0, \quad \partial_{i} \gamma_{i j}=0
\end{gathered}
$$

- Constraint equations: $\quad \nabla_{i}\left[N^{-1}\left(E_{j}^{i}-\delta_{j}^{i} E\right)\right]=0$,

$$
R^{(3)}+2 P-4 X P^{\prime}-\frac{1}{N^{2}}\left(E_{i j} E^{i j}-E^{2}\right)=0
$$

$N_{i} \equiv \partial_{i} \psi+N_{T i}$
$\partial_{i} N_{T i}=0$
$N=1+\delta N$

## Start simple: ${ }^{\text {st }}$ order

$$
\begin{array}{rlrl}
\delta N & =\frac{\dot{\zeta}}{H}, \quad N_{T i}=0 & \bullet \text { 2nd order action: } & \epsilon \equiv-\frac{\dot{H}}{H^{2}}=\frac{3}{2}(1+w) \\
\psi & =-\frac{\zeta}{H}+\frac{a^{2} \epsilon}{w} \partial^{-2} \dot{\zeta} & \quad S_{2}=\int \mathrm{d} t \mathrm{~d}^{3} x a^{3} \frac{\epsilon}{w}\left[\dot{\zeta}^{2}-\frac{w}{a^{2}}(\partial \zeta)^{2}\right]
\end{array} \quad \zeta \text { is constant on large scales (also for a generic barotropic fluid) }
$$

- Solve the action (expand Ist order in $\mathrm{w} \rightarrow 0$ )

$$
\zeta=\zeta_{0}+\frac{2 w}{5 a^{2} H^{2}} \partial^{2} \zeta_{0}+\mathcal{O}\left(w^{2}\right) \quad \delta N=0, \quad \psi=-\frac{2}{5} \frac{\zeta_{0}}{H}
$$

- $\zeta_{0}$ sets the initial condition from inflation: everything in terms of the natural variable, no need to mach with inflation!
- We have all the ingredients for the Ist order metric:

$$
d s^{2}=-d t^{2}-\frac{4}{5 H} \partial_{i} \zeta_{0} d t d x^{i}+a^{2}\left(1+2 \zeta_{0}\right) d \vec{x}^{2}
$$

- Gauge tranformation to Poisson (Newtonian) gauge

$$
d s^{2}=-(1+2 \Phi) d t^{2}+a^{2}(1-2 \Psi) d \vec{x}^{2} \quad \Phi=\Psi=-\frac{3}{5} \zeta_{0}
$$

## Not so simple

- Expanding the action at 3rd order (and after some work...):
[Seery, Lidsey '05;
Chen et al. '06; etc...]

$$
\begin{aligned}
S_{3}= & \int \mathrm{d} t \mathrm{~d}^{3} x a^{3} \frac{\epsilon}{w}\left[\frac{2}{3}\left(\frac{1}{w}-1\right) \frac{\dot{\zeta}_{n}^{3}}{H}+\frac{3}{2}\left(3-\frac{1}{w}\right) \zeta_{n} \dot{\zeta}_{n}^{2}+\frac{1}{2 a^{2}}(5+w) \zeta_{n}\left(\partial_{i} \zeta_{n}\right)^{2}\right. \\
& \left.-\left(2-\frac{\epsilon}{2}\right) \frac{\epsilon}{w} \dot{\zeta}_{n} \partial_{i} \zeta_{n} \partial_{i} \partial^{-2} \dot{\zeta}_{n}+\frac{\epsilon^{2}}{4 w} \partial^{2} \zeta_{n}\left(\partial_{i} \partial^{-2} \dot{\zeta}_{n}\right)^{2}\right] .
\end{aligned}
$$

- Field redefinition (new variable):

$$
\begin{aligned}
\zeta_{n}=\zeta-f(\zeta) \quad f(\zeta)= & \frac{1}{w H} \zeta \dot{\zeta}+\frac{1}{4 a^{2} H^{2}}\left[-\left(\partial_{i} \zeta\right)^{2}+\partial^{-2} \partial_{i} \partial_{j}\left(\partial_{i} \zeta \partial_{j} \zeta\right)\right] \\
& +\frac{\epsilon}{2 H^{2} w}\left[\partial_{i} \zeta \partial_{i} \partial^{-2} \dot{\zeta}-\partial^{-2} \partial_{i} \partial_{j}\left(\partial_{i} \zeta \partial_{j} \partial^{-2} \dot{\zeta}\right)\right] .
\end{aligned}
$$

- Solve the action: $\quad \zeta=\zeta_{0}-\frac{1}{5 a^{2} H^{2}} \partial^{-2} \partial_{i} \partial_{j}\left(\partial_{i} \zeta_{0} \partial_{j} \zeta_{0}\right)$
- Have we finished? No, we need to solve constraints at 2nd order to obtain the metric:

$$
\begin{array}{rlrl}
\delta N_{2} & =\frac{w}{5 a^{2} H^{2}}\left[\left(\partial \zeta_{0}\right)^{2}-4 \zeta_{0} \partial^{2} \zeta_{0}\right] & \psi_{2} \\
& -\frac{2 w}{175 a^{4} H^{4}}\left[3\left(\partial^{2} \zeta_{0}\right)^{2}+14 \partial_{i} \zeta_{0} \partial_{i} \partial^{2} \zeta_{0}+4\left(\partial_{i} \partial_{j} \zeta_{0}\right)^{2}\right]+\mathcal{O}\left(w^{2}\right) & & N_{T i}
\end{array}
$$

## Finally... the metric!

- Do the same for tensor contribution induced by scalars (no tensors at Ist order):

$$
\gamma_{i j}=-\frac{4}{5}\left[9\left(\frac{1}{3}-\frac{j_{1}(k \tau)}{k \tau}\right) \partial^{-2}+\frac{1}{5 a^{2} H^{2}}\right] P_{i j k l}^{\mathrm{TT}}\left(\partial_{k} \zeta_{0} \partial_{l} \zeta_{0}\right)
$$

- The final metric in matter dominance:

$$
\begin{aligned}
g_{00}= & -1+\frac{4}{25 a^{2} H^{2}}\left(\partial_{i} \zeta_{0}\right)^{2} \\
g_{0 i}= & -\frac{1}{5 H} \partial_{i}\left[2 \zeta_{0}-\partial^{-2}\left(\partial_{j} \zeta_{0}\right)^{2}+3 \partial^{-4} \partial_{j} \partial_{k}\left(\partial_{j} \zeta_{0} \partial_{k} \zeta_{0}\right)\right. \\
& \left.-\frac{4}{5 a^{2} H^{2}} \partial^{-2}\left(\frac{3}{7}\left(\partial^{2} \zeta_{0}\right)^{2}+\partial_{i} \zeta_{0} \partial_{i} \partial^{2} \zeta_{0}+\frac{4}{7}\left(\partial_{i} \partial_{j} \zeta_{0}\right)^{2}\right)\right] \\
& -\frac{4}{5} \frac{1}{H} \partial^{-2}\left[\partial_{i} \zeta_{0} \partial^{2} \zeta_{0}-\partial^{-2} \partial_{i} \partial_{j}\left(\partial_{j} \zeta_{0} \partial^{2} \zeta_{0}\right)\right] \\
g_{i j}= & a^{2} \exp [2 \zeta(t)] \delta_{i j}+a^{2} \gamma_{i j} \\
& \zeta(t)=\zeta_{0}-\frac{1}{5 a^{2} H^{2}} \partial^{-2} \partial_{k} \partial_{l}\left(\partial_{k} \zeta_{0} \partial_{l} \zeta_{0}\right)
\end{aligned}
$$

- On large scales: $\quad d s^{2}=-d t^{2}+a^{2}(t) e^{2 \zeta_{0}(\vec{x})} d \vec{x}^{2}, \quad k \ll a H$
- Initial condition already built in the formalism (we always worked with $\zeta$ ):


## Second-order metric in MD

- After a gauge transformation in the generalized Poisson gauge:

$$
\begin{aligned}
& \mathrm{d} s^{2}= a^{2}(\tau)\left\{-(1+2 \Phi) \mathrm{d} \tau^{2}+2 \omega_{i} \mathrm{~d} x^{i} \mathrm{~d} \tau+\left[(1-2 \Psi) \delta_{i j}+\gamma_{i j}\right] \mathrm{d} x^{i} \mathrm{~d} x^{j}\right\} \\
& \omega_{i, i}=0 \text { and } \gamma_{i j, i}=0=\gamma_{i i} \\
& \Phi= \phi+\left[\phi^{2}+\partial^{-2}\left(\partial_{j} \phi\right)^{2}-3 \partial^{-4} \partial_{i} \partial_{j}\left(\partial_{i} \phi \partial_{j} \phi\right)\right] \\
&+\frac{2}{21 a^{2} H^{2}} \partial^{-2}\left[2\left(\partial_{i} \partial_{j} \phi\right)^{2}+5\left(\partial^{2} \phi\right)^{2}+7 \partial_{i} \phi \partial_{i} \partial^{2} \phi\right], \\
& \Psi= \phi-\left[\phi^{2}+\frac{2}{3} \partial^{-2}\left(\partial_{i} \phi\right)^{2}-2 \partial^{-4} \partial_{i} \partial_{j}\left(\partial_{i} \phi \partial_{j} \phi\right)\right] \\
&+\frac{2}{21 a^{2} H^{2}} \partial^{-2}\left[2\left(\partial_{i} \partial_{j} \phi\right)^{2}+5\left(\partial^{2} \phi\right)^{2}+7 \partial_{i} \phi \partial_{i} \partial^{2} \phi\right], \\
& \omega_{i}=-\frac{8}{3 a H} \partial^{-2}\left[\partial^{2} \phi \partial_{i} \phi-\partial^{-2} \partial_{i} \partial_{j}\left(\partial^{2} \phi \partial_{j} \phi\right)\right], \\
& \gamma_{i j}=-20\left(\frac{1}{3}-\frac{j_{1}(k \tau)}{k \tau}\right) \partial^{-2} P_{i j}^{\mathrm{TT}}\left(\partial_{k} \phi \partial_{l} \phi\right), \quad k \ll a H \quad \Rightarrow \quad \phi=-\frac{3}{5} \zeta_{0}
\end{aligned}
$$

- Matches the metric found by Bartolo, Matarrese and Riotto

