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Angular power spectrum from the WMAP 5-year dataa

The WMAP 5-year data for the CMB TT angular power spectrum (the black dots with
error bars) and the theoretical, best fit ΛCDM model with a power law primordial spec-
trum (the solid red curve). Note the outliers near the multipoles ` = 2, 22 and 40.

aG. Hinshaw et. al., Astrophys. J. Suppl. 180, 225 (2009).
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Evolution of modes in the inflationary scenarioa
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Plots of the physical wavelength λP [= (λ0 a)] (the green lines) and the Hubble radius
dH (= H−1) (in blue) illustrating as to how inflation allows us to bring the modes inside
the Hubble radius at a suitably early time.

aE. W. Kolb and M. S. Turner, The Early Universe, (Addison-Wesley Publishing Company, 1990), Fig. 8.4; T. Padmanab-

han, Structure Formation in the Universe (Cambridge University Press, Cambridge, 1993), Fig. 10.1.
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This talk is based on

F R. K. Jain, P. Chingangbam and L. Sriramkumar, On the evolution of tachyonic
perturbations at super Hubble scales, JCAP 0710, 003 (2007).

F R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, Punctu-
ated inflation and the low CMB multipoles, JCAP 0901, 009 (2009).

F R. K. Jain, P. Chingangbam, L. Sriramkumar and T. Souradeep, The tensor-to-scalar
ratio in punctuated inflation, arXiv:0904.2518v1 [astro-ph.CO].
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1 Does the primordial spectrum contain

features?



Do we require lower power at large scales?

The following scalar power spectrum with a sharp cut off at kc ' 3× 10−4 Mpc−1:

PS(k) = 0, k ≤ kc,

= AS

(
k
k0

)(nS−1)

, k > kc,

was found to improve the fit to the WMAP 3-year data by ∆χ2
eff ' 1, with respect to

the best fit power law primordial spectruma.

aD. Spergel et al., Astrophys. J. Suppl. 170, 377 (2007).
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Reconstructing the primordial spectrum

The ‘recovered’ primordial spectrum (the blue-dotted line), assuming the standard
background ΛCDM model. The recovered spectrum improves the fit to the WMAP
3-year data by ∆χ2

eff ' 15, with respect to the best fit power law spectruma.
aA. Shafieloo, T. Souradeep, P. Manimaran, P. K. Panigrahi and R. Rangarajan, Phys. Rev. D 75, 123502 (2007).
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Does the primordial spectrum contain other features?

A primordial spectrum ‘reconstructed’ in 15 bins between k = 0 and k = 0.15 Mpc−1

using the WMAP 3-year data. The vertical bars indicate the 68% (in red) and 95%
(in orange) constraints, about the peak likelihood values (marked as black diamonds).
Such a spectrum was found to improve the fit to the 3-year WMAP data by ∆χ2

eff ' 22a.
aD. Spergel et al., Astrophys. J. Suppl. 170, 377 (2007).
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2 Generating features in the primordial

spectrum



2.1 Key equations and quantities



A couple of words on the notation

F We shall set c, ~, as well as the Planck mass, viz. MP = (8πG)−(1/2), to unity.

F We shall denote differentiation with respect to the cosmic and the conformal times
by an overdot and an overprime, respectively.
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Essential equations and quantities

For the case of inflation driven by the canonical scalar field, say, φ, the curvature and
the tensor perturbationsRk and Uk satisfy the differential equations

R′′k + 2 (z′/z) R′k + k2Rk = 0 and U ′′k + 2H U ′k + k2 Uk = 0,

where z = (aφ′/H), with a being the scale factor, andH = (a′/a).

The scalar and the tensor power spectra, viz. PS(k) and PT(k), are given by

PS(k) =
(
k3

2π2

)
|Rk|2 and PT(k) = 2

(
k3

2π2

)
|Uk|2,

with the amplitudesRk and Uk evaluated, in general, in the super-Hubble limit.

Finally, the tensor-to-scalar ratio r is defined as follows:

r(k) ≡
(
PT(k)
PS(k)

)
.
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2.2 Deviations from slow roll inflation and

features in the primordial spectrum



Characterizing deviations from slow roll inflation

Recall that, for the case of the canonical scalar field, the first two Hubble slow roll
parameters are given by

ε = −

(
Ḣ

H2

)
and δ =

(
φ̈

H φ̇

)
,

where H = (ȧ/a) is the standard Hubble parameter.

The quantity (z′/z) that appears in the differential equation for the curvature pertur-
bation Rk can be expressed in terms of the above two Hubble slow roll parameters as
followsa: (

z′

zH

)
= (1 + ε+ δ) .

Note that, during slow roll inflation (i.e. when ε� 1 and δ � 1), the quantity (z′/zH)
remains close to unity.

aSee, for example, S. M. Leach and A. R. Liddle, Phys. Rev. D 63, 043508 (2001); S. M. Leach, M. Sasaki, D. Wands and

A. R. Liddle, ibid. 64, 023512 (2001); R. K. Jain, P. Chingangbam and L. Sriramkumar, JCAP 0710, 003 (2007).
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A specific examplea
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The evolution of the quantity (z′/zH) plotted as a function of the number of e-folds N
for the tachyonic potential V (T ) = V0

(
1 + V1 T

4
)
. Note that the quantity becomes

negative for a little less than three e-folds between N of 58 and 61.

aR. K. Jain, P. Chingangbam and L. Sriramkumar, JCAP 0710, 003 (2007).
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Evolution of the curvature and the entropy perturbationsa
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The evolution of the amplitude of the curvature (on the left) and the entropy (on the
right) perturbations plotted as a function of the number of e-foldsN for the modes with
wave numbers k = 0.03 (in blue) and k = 0.1 (in red). The vertical lines delineate the
regime where (z′/z) is negative. The arrows indicate the time at which the modes leave
the Hubble radius.

aR. K. Jain, P. Chingangbam and L. Sriramkumar, JCAP 0710, 003 (2007).
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The power spectrum at Hubble exit and at super Hubble scalesa
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Plots of the scalar power spectrum evaluated at the end of inflation (in blue) and soon
after the modes leave the Hubble radius (in green). The vertical lines indicate the modes
that leave the Hubble scale during the period of fast roll. Note that the two spectra
differ for modes that leave the Hubble radius just before the fast roll regime.

aR. K. Jain, P. Chingangbam and L. Sriramkumar, JCAP 0710, 003 (2007).
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2.3 Fitting the low quadrapole, and the outliers

near ` = 22 and 40



Suppressing the power at the largest scales

F Within the inflationary scenario, a variety of single and two field models have been
constructed to produce a drop in power at the largest scales today so as to provide
a better fit to the low quadrapolea.

F However, in the single field inflationary models, in order to produce such a spec-
trum, many of the scenarios either assume a specific pre-inflationary regime, say, a
radiation dominated epochb, or special initial conditions for the background scalar
field, such as an initial period of fast rollc, or special initial states for the perturba-
tionsd.

aSee, for instance, B. Feng and X. Zhang, Phys. Lett. B 570, 145 (2003); R. Sinha and T. Souradeep, Phys. Rev. D 74, 043518

(2006).
bSee, for example, D. Boyanovsky, H. J. de Vega and N. G. Sanchez, Phys. Rev. D 74, 123006 (2006); ibid 74, 123007 (2006);

B. A. Powell and W. H. Kinney, Phys. Rev. D 76, 063512 (2007).
cSee, for instance, C. R. Contaldi, M. Peloso, L. Kofman and A. Linde, JCAP 0307, 002 (2003); J. M. Cline, P. Crotty and

J. Lesgourgues, JCAP 0309, 010 (2003).
dL. Sriramkumar and T. Padmanabhan, Phys. Rev. D 71, 103512 (2005).
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Spectra due to a pre-inflationary, radiation dominated phasea

The scalar power spectrum in a model with a pre-inflationary radiation dominated
epoch (on the left) and the corresponding CMB TT angular power spectrum (on the
right). The modified scalar spectrum was found to improve the fit to the WMAP 3-year
data by ∆χ2

eff ' 2, with respect to the standard power law case.

aB. A. Powell and W. H. Kinney, Phys. Rev. D 76, 063512 (2007).
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Spectra in an initially fast rolling inflationary model

The scalar power spectrum in the chaotic
[i.e. (m2 φ2)] inflation model with an ini-
tial period of fast roll (bottom panel), and
the corresponding CMB TT angular power
spectrum (the second panel from the bot-
tom). The scalar spectrum was found to
improve the fit to the WMAP 1-year data
by ∆χ2

eff ' 4, with respect to the best fit
power law spectruma.
aC. R. Contaldi, M. Peloso, L. Kofman and A. Linde, JCAP

0307, 002 (2003).
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Drawbacks of these approaches

F Evidently, these models assume either a specific pre-inflationary phase or special
initial conditions for the inflaton.

F Also, these models impose the initial conditions on the perturbations when the
largest scales are outside the Hubble radius during the pre-inflationary or the fast
roll regime.

F Moreover, though a very specific pre-inflationary phase such as the radiation dom-
inated epoch may allow what can be considered as natural (i.e. Minkowski-like)
initial conditions for the perturbations even at super-Hubble scales, choosing to
impose initial conditions for a small subset of modes when they are outside the
Hubble radius, while demanding that such conditions be imposed on the rest of
the modes at sub-Hubble scales, is highly unsatisfactory.

Ideally, it would be preferable to produce the desired power spectrum during an in-
flationary epoch without invoking any specific pre-inflationary phase or special initial
conditions for the inflaton. Also, one would like to impose the standard Bunch-Davies
initial conditions on all the modes when they are well inside the Hubble radius.
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Inducing fast roll in the chaotic inflation model
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The evolution of the quantity (z′′/zH2) (on the left) and the first three Hubble slow roll
parameters (on the right) in the following ‘modified’ chaotic inflation potentiala:

V (φ) =
(
m2 φ2

2

) [
1− c tanh

(
φ− b
d

)]
.

aL. Covi, J. Hamann, A. Melchiorri, A. Slosar and I. Sorbera, Phys. Rev. D 74, 083509 (2006); J. Hamann, L. Covi, A. Mel-

chiorri and A. Slosar, Phys. Rev. D 76, 023503 (2007).
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The scalar and the CMB angular power spectrum
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The CMB TT angular spectrum (on the right) resulting from the primordial spectrum
with features (on the left)a. The dashed line (on the right) corresponds to the spectrum
arising from the standard power law model and the solid line refers to best fit model
which improves the fit by ∆χ2

eff ' 7 with respect to the standard model.
aSee L. Covi, J. Hamann, A. Melchiorri, A. Slosar and I. Sorbera, Phys. Rev. D 74, 083509 (2006); for a more recent

discussion, see M. J. Mortonson, C. Dvorkin, H. V. Peiris and W. Hu, Phys. Rev. D 79, 103519 (2009).
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3 Punctuated inflation



3.1 The model and background dynamics



Motivations

F Our aim is to consider a single field model of inflation that leads to a suppression
of the power on large scales without the need for any special initial conditions on
either the background or the perturbations.

F Also, we would like to arrive at the desired power spectrum using an inflaton po-
tential that does not contain any ad hoc, sharp feature.
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The model

F We find that the form of the potentials motivated by a class of certain minimal
supersymmetric extensions of the standard model provide us with the desired be-
haviora.

F These large field models allow a period of fast roll sandwiched between two stages
of slow roll inflation.

F The first phase of slow roll inflation allows us to impose the standard Bunch-Davies
initial conditions on the modes which exit the Hubble radius during the subsequent
fast roll regime, an epoch due to which the curvature perturbations on the super-
Hubble scales are suppressed.

F The second slow roll phase lasts for 60 or more e-folds, thereby allowing us to
overcome the standard horizon problem associated with the hot big bang model.

aSee, R. Allahverdi, J. Garcia-Bellido, K. Enqvist and A. Mazumdar, Phys. Rev. Lett. 97, 191304 (2006); R. Allahverdi,

K. Enqvist, J. Garcia-Bellido, A. Jokinen and A. Mazumdar, JCAP 0706, 019 (2007); J. C. B. Sanchez, K. Dimopoulos and

D. H. Lyth, JCAP 0701, 015 (2007); R. Allahverdi, A. Mazumdar and T. Multamaki, arXiv:0712.2031 [astro-ph].

L. Sriramkumar Punctuated inflation and the low CMB multipoles



The effective potentiala

The effective potential that we shall consider is given by

V (φ) =
(
m2/2

)
φ2 −

(√
2λ (n− 1)m/n

)
φn + (λ/4) φ2(n−1),

where n > 2 is an integer. This potential has a point of inflection at

φ0 =
[

2m2

(n− 1)λ

] 1
2 (n−2)

.

aR. Allahverdi, K. Enqvist, J. Garcia-Bellido, A. Jokinen and A. Mazumdar, JCAP 0706, 019 (2007).
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Illustration of the effective potential
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The inflaton potential for the case of n = 3. The solid line corresponds to the values
for the potential parameters that provide the best fit to the WMAP 5-year data. The
dashed lines correspond to values that are 1-σ away from the best fit ones. The black
dots denote the points of inflection.
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Phase portrait in the n = 3 casea
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The phase portrait of the scalar field in the case of n = 3 and for the best fit values of
the parameters m and λ used in the last figure. The arrow points to the attractor. Note
that all the trajectories quickly approach the attractor. We find that such a behavior is
exhibited by higher values of n (such as, for example, n = 4, 6) as well.

aR. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 0901, 009 (2009).
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3.2 The scalar and the tensor power spectra



Evolution of the friction term
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The evolution of background quantity (z′/zH) has been plotted for the cases of n = 3
(the solid line) and n = 4 (the dashed line). We have chosen parameters that provide
the best fit to the WMAP 5-year data. Evidently, the n = 3 case departs from slow roll
when 7 . N . 15, while the departure occurs during 4 . N . 12 in the case of n = 4.
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Evolution in the ε-δ plane

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

δ

ε

The evolution of the scalar field has been plotted (as the solid black line) in the plane
of the first two Hubble slow roll parameters ε and δ in the case of n = 3. The black
dots have been marked at intervals of one e-fold, while the dashed line corresponds to
ε = −δ. Note that ε > 1 during 8 < N < 9. In other words, during the fast roll, inflation
is actually interrupted for about a e-fold.
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Power spectra for the n = 3 and n = 4 cases
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The scalar power spectrum PS(k) (the solid line) and the tensor power spectrum PT(k)
(the dashed line) have been plotted as a function of the wavenumber k for the cases of
n = 3 (on the left) and n = 4 (on the right). We have chosen the same values for the
potential parameters as in the earlier figures. Moreover, we should emphasize that we
have arrived at these spectra by imposing the standard, Bunch-Davies, initial condition
on all the modes.
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3.3 Comparison with the WMAP 5-year data



Datasets and packages used
F Datasets used: WMAP 5-year dataa (TT as well as TE)

F Packages used:

G CAMBb: To compute the CMB angular power spectrum for a given inflationary
perturbation spectrum

G COSMOMCc: To explore the cosmological parameter space using the Markov
Chain Monte Carlo method for a given set of priors

G WMAP 5th year likelihood coded: To compute the χ2
eff for a given model

The reference model we shall compare with is the standard ΛCDM model with a power
law primordial spectrum. Also, since, in our model, r < 10−4 over scales of cosmologi-
cal interest, we shall ignore the contributions due to the tensors in our analysis. Further,
we shall ignore gravitational lensing when computing the CMB angular power spec-
trum using CAMB.

ahttp://lambda.gsfc.nasa.gov
bhttp://camb.info
chttp://cosmologist.info/cosmomc
dhttp://lambda.gsfc.nasa.gov
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The parameters in our model and the priors
Model Parameter Lower limit Upper limit

Ωb h
2 0.005 0.1

Common Ωc h
2 0.001 0.99

parameters θ 0.5 10.0

τ 0.01 0.8

Reference log
ˆ
1010 AS

˜
2.7 4.0

model nS 0.5 1.5

log
ˆ
1010m2˜

−9.0 −8.0

Our model φ0 1.7 2.3

a0 0.1 2.0

The priors on the various parameters describing the reference ΛCDM model with a power law

primordial spectrum and our model. While the first four background cosmological parameters

are common for both the models, the fifth and the sixth parameters describe the power law pri-

mordial spectrum of the reference model. In our model, we have traded off the scalar amplitude

AS for m and the spectral index nS for φ0. The additional parameter in our model, viz. a0, repre-

sents the value of the scale factor at N = 0 and it essentially identifies the location of the cut-off

in the power spectrum.
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Likelihood distributions for the n = 3 case

The one-dimensional mean (the solid lines) and marginalized (the dashed lines) likelihood curves

for the input as well as the derived parameters in the n = 3 case.
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Joint constraints on the parameters in the n = 3 case
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The 1-σ and 2-σ two-dimensional joint constraints on the different input and derived
parameters in the n = 3 case.
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The best fit values of the parameters in the n = 3 casea

Parameter Reference model Our model

Ωb h
2 0.02242 0.02146

Ωc h
2 0.1075 0.12051

θ 1.0395 1.03877

τ 0.08695 0.07220

log
ˆ
1010AS

˜
3.0456 —

nS 0.9555 —

log
ˆ
1010m2

˜
— −8.3509

φ0 — 1.9594

a0 — 0.31439

The mean values of the various parameters that describe the reference model and our
model. We find that the n = 3 case provides a better fit to the data than the reference
model with an improvement in χ2

eff of about 6.
aR. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar and T. Souradeep, JCAP 0901, 009 (2009).
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The CMB angular power spectrum for the best fit values
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The CMB TT angular power spectrum for the best fit values in the n = 3 case (the
dashed line) and the best fit power law, reference model (the solid line). Visually, it
is evident that our model fits the data better than the standard power law case at the
lower multipoles. Also, note that there is hardly any difference between the angular
spectrum from our model and the power law spectrum at the higher multipoles.
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4 The tensor-to-scalar ratio in

punctuated inflation



The tensor-to-scalar ratio in the MSSM motivated models

0.00001 0.0001 0.001 0.01 0.1
1×10

-8

1×10
-7

1×10
-6

0.00001

0.0001

0.001

0.01

0.1

1

10

100

r(k)

k

The tensor-to-scalar ratio r for the cases of n = 3 (the solid line) and n = 4 (the dashed
line) plotted as a function of the wavenumber k. These plots have been drawn for the
same choice of parameters as in the earlier figures. Note that, in spite of the rise at
larger wavelengths, the tensor-to-scalar ratio remains smaller than 10−4 for modes of
cosmological interest. It should also be pointed out that there exists a small range of
mode for which r > 1.
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Evolution of the scalar and the tensor amplitudes when r > 1
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The evolution of the amplitudes of the curvature perturbation Rk (in blue) and the tensor per-
turbation Uk (in red) has been plotted as a function of the number of e-folds N for the best fitting
n = 3, MSSM case. These perturbations correspond to the mode k = 10−5 Mpc−1, and the
arrow denotes the time when the mode leaves the Hubble radius. Notice that, as expected, the
tensor amplitude freezes at its value near Hubble exit. In contrast, the amplitude of the curvature
perturbation is suppressed on super-Hubble scales.
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r in a hybrid, punctuated inflationary modela
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Left: The scalar power spectrum PS(k) (the solid black line) and the tensor power spec-
trum PT(k) (the dashed black line) have been plotted for a hybrid inflation model de-
scribed by the potential V (φ) = (M4/4)

(
1 +B φ4

)
.

Right: The corresponding tensor-to-scalar ratio r(k).

aR. K. Jain, P. Chingangbam, L. Sriramkumar and T. Souradeep, arXiv:0904.2518v1 [astro-ph.CO].
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r in a tachyonic, punctuated inflationary model
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The scalar and the tensor power spectra as well as the corresponding tensor-to-scalar
ratio in a tachyonic, punctuated inflationary model. The potential describing the model
contains a point of inflection that has been introduced by hand.
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The effects on the B-modes of the CMBa
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The B-mode CMB angular power spectrum CBB
` for the best fit values of the n = 3

(the solid black line) and n = 4 (the dashed black line) MSSM motivated models. For
comparison, we have also plotted the CBB

` for a strictly scale invariant tensor spectrum
and a tensor-to-scalar ratio of r = 0.01 (the solid blue line), r = 2 × 10−8 (the solid red
line) and r = 10−7 (the dashed red line).

aR. K. Jain, P. Chingangbam, L. Sriramkumar and T. Souradeep, arXiv:0904.2518v1 [astro-ph.CO].
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5 Summary and prospects



Summary

F We have investigated the scalar and tensor spectra that arise in punctuated infla-
tion, i.e. a two stage slow roll inflationary scenario sandwiching an intermediate
period of fast roll.

F We find that the period of fast roll period produces a sharp drop in the scalar power
spectrum for the modes that leave the Hubble radius just before the second slow
roll phase. We also find that, if we choose our scales such that the drop in power
corresponds to the largest cosmological scales observable today, then the result-
ing scalar power spectrum provides a better fit to the recent WMAP data than the
conventional, nearly scale invariant, power law, primordial spectrum.

F We find that, in punctuated inflation, a drop in scalar power is always accompanied
by a rise in the tensor power. Interestingly, in such scenarios, there actually exists a
small range of modes for which the tensor-to-scalar ratio rises to well beyond unity.
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Prospects
F Recent analysis of the WMAP 5-year data seem to indicate that non-Gaussianities

may possibly be large. The parameter fNL that reflects the amplitude of the bi-
spectrum is found to be fNL = (38± 21), at 68% confidence levela.

F If forthcoming missions such as PLANCK detect a large level of non-Gaussianity,
then it can result in a substantial tightening in the constraints on the various in-
flationary models. For example, the canonical scalar field models that lead to a
nearly scale invariant primordial spectrum contain only a small amount of non-
Gaussianity and, hence, may cease to be viableb.

F However, it is known that primordial spectra with features can lead to reasonably
large non-Gaussianitiesc. Therefore, if the non-Gaussianity indeed proves to be
large, then either one has to reconcile with the fact that the primordial spectrum
contains features or one has to take non-canonical scalar field models such as, say,
D brane inflation models, seriouslyd.

aK. M. Smith, L. Senatore and M. Zaldarriaga, JCAP 0909, 006 (2009).
bJ. Maldacena, JHEP 05, 013 (2003).
cSee, for instance, X. Chen, R. Easther and E. A. Lim, JCAP 0706, 023 (2007).
dSee, for example, X. Chen, M.-x. Huang, S. Kachru and G. Shiu, JCAP 0701, 002 (2007).
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Thank you for your attention
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