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Black Holes

Black holes are classical solutions of the equations of
motion of general theory of relativity, possibly coupled to
other fields, e.g. electromagnetic fields.

Their gravitational attraction is so large that even light
cannot escape a black hole.

Thus they behave as perfect black bodies at zero
temperature.



In quantum theory this picture of the black hole gets
modified.

Hawking

A black hole is not completely black, but gives out black
body radiation at a definite temperature.

T =
~

2πkB c
κ

kB: Boltzmann’s constant ~: Planck’s constant

c: velocity of light

κ: acceleration due to gravity at the horizon of the black
hole.



One also finds that, in its interaction with other objects a
black hole behaves as a thermal object with definite
temperature, entropy etc.

Hawking, Bekenstein 70’s

In particular its entropy is given by the simple formula:

SBH =
kB c3

4GN~
A

A: Area of the event horizon

GN: Newton’s gravitational constant



For ordinary objects the entropy of a system has a
microscopic interpretation.

We fix the macroscopic parameters (e.g. total electric
charge, energy etc.) and count the number of quantum
states – known as microstates – each of which has the
same values for the macroscopic parameters.

dmicro: number of such microstates

Smicro = ln dmicro

Question: Does the entropy of a black hole have a similar
statistical interpretation?



Does the entropy of a black hole have a similar statistical
interpretation?

Answering this question in the affirmative is essential for
any consistent theory of quantum gravity.

Otherwise we can throw in a pure quantum state to form a
black hole, and after the black hole evaporates completely,
it comes out as a thermal (mixed) state.

– violation of the laws of quantum mechanics.
Hawking



In order to investigate the statistical origin of black hole
entropy we need a quantum theory of gravity.

We shall carry out our investigation in string theory – the
theory that attempts to give a unified description of gravity
and all other interactions and also of all matter.

In all subsequent discussion we shall choose units in
which

~ = 1, c = 1, kB = 1



A brief introduction to the basic ideas of string theory

Fundamental constituents of matter are different
vibrational states of a string.



Some features of string theory

1. Typical size of a string ∼ 10−33 cm.

This is much smaller than the length scale that can be
probed by any present day experiment

2. String theory automatically contains a quantum theory
of gravity coupled to other fields.

3. String theory is consistent only in (9+1) dimensional
space-time.

6 of the extra dimensions must curl up to become small
compact dimensions.



4. Even though the theory is unique, it can exist in many
different stable and metastable phases.

– related to different ways of curling up the extra
dimensions.

The various physical parameters, like the particle masses,
their interaction etc. vary from one phase to another just
as the physical properties of H2O differ in ice, water and
steam.

As a result, without knowing precisely which phase of
string theory describes the part of the universe we live in,
we cannot directly compare string theory to experiments.



Given this situation it would seem that until we can find the
right phase of string theory which describes our world,
there cannot be any further progress.

However this is not quite correct.

There are some issues which are universal, and appear in
all phases of string theory.

For example, the issues involving black holes exist in all
phases of string theory in which there is gravity,
irrespective of whether that particular phase describes the
world we live in.

Thus we can address the issues involving black hole
thermodynamics in string theory without having to identify
which phase of the theory we live in.



Strategy: Choose a convenient phase in which the
dynamics of string theory is best understood.

Try to develop a statistical understanding of the various
thermodynamic results on black holes in that phase.

Convenient phases: supersymmetric phases

– have a symmetry that relates bosonic states to fermionic
states.

One advantage of such a choice of phase is that such
phases are stable phases unlike most of the
non-supersymmetric phases which are metastable.



Many aspects of black hole thermodynamics have been
studied in such supersymmetric phases of the theory, but
we shall focus our attention on one particular aspect.

– entropy of the black hole in the zero temperature limit
(supersymmetric, extremal black holes).

Advantage: Such a black hole is a stable state of the
theory.



Strategy:

1. Identify a supersymmetric black hole carrying a certain
set of electric charges {Qi} and magnetic charges {Pi} and
calculate its entropy SBH(Q, P) using the
Bekenstein-Hawking formula.

Note: since we are considering a generic phase of string
theory, it may have more that one Maxwell field and hence
multiple charges.



2. Identify some supersymmetric microscopic
configuration in string theory carrying the same set of
charges.

These will include the fundamental strings but also other
objects in string theory which are required for consistency
of string theory.

Calculate the number dmicro(Q, P) of these states.

3. Compare Smicro ≡ ln dmicro(Q, P) with SBH(Q, P).



Initial attempts focussed on states which can be regarded
as being made only of the fundamental string states.

t’Hooft; Susskind

This yielded partial success but not full success.

One could match Smicro and SBH up to an undetermined
normalization constant.

A.S.

Full success came by including more complicated
configurations in string theory.

Strominger, Vafa



For a class of supersymmetric extremal black holes in
string theory one indeed finds a match:

A/4GN = ln dmicro

dmicro: degeneracy of microstates

This formula is quite remarkable since it relates a
geometric quantity in black hole space-time to a counting
problem that does not make any direct reference to black
holes.



The Bekenstein-Hawking formula is an approximate
formula that holds in classical general theory of relativity.

While string theory gives a theory of gravity that reduces
to Einstein’s theory when gravity is weak, there are
corrections.

Thus the Bekenstein-Hawking formula for the entropy
works well only when gravity at the horizon is weak.

Typically this requires the charges to be large.



The calculation on the microscopic side also simplifies
when the charges are large.

Instead of doing exact counting of quantum states, we can
use approximate methods which give the result for large
charges.



For ordinary systems, thermodynamics provides an
approximate description that becomes exact in the limit of
large volume.

Is the situation with black holes similar, ı.e. they only
capture the information about the system in the limit of
large size?

Or, could it be that the relation A/4GN = ln dmicro is an
approximation to an exact result?

Our goal will be to search for an exact formula to which the
above is an approximation



In order to address this issue we have to work on two
fronts.

1. Count the number of microstates to greater accuracy.

2. Calculate black hole entropy to greater accuracy.

We can then compare the two to see if they agree beyond
the large charge limit.

In the rest of this talk I shall describe the progress on both
fronts.



Progress in microscopic counting
In a class of phases of string theory, known as N=4 and
N=8 supersymmetric string theories in four dimensions,
one now has a complete understanding of the microscopic
degeneracies of supersymmetric black holes.

Typically such theories have multiple Maxwell fields.

⇒ the black hole is characterized by multiple electric and
magnetic charges, collectively denoted by (Q, P).

The degeneracy is expressed as a function dmicro(Q, P) of
the charges.

Dijkgraaf, Verlinde, Verlinde; Shih, Strominger, Yin;
David, Jatkar, A.S.; Dabholkar, Gaiotto, Nampuri; · · ·



In these theories dmicro(Q, P) is expressed as Fourier
expansion coefficients of some well-known functions, e.g.
Jacobi theta functions, Igusa cusp forms etc.

⇒ ‘experimental data’ to be explained by a ‘theory of black
holes’.

In the large charge limit these degeneracies agree with the
exponential of the Bekenstein-Hawking entropy of black
holes carrying the same set of charges



Example: Degeneracies of a class of supersymmetric
states in an N = 4 supersymmetric string theory as a
function of two functions of charges D1 and D2

D1 D2 degeneracy dmicro ln dmicro SBH = π
√

D1D2

2 2 50064 10.82 6.28

4 4 32861184 17.31 12.57

6 4 632078672 20.26 15.39

8 4 9337042944 22.96 17.77

10 4 113477152800 25.45 19.87



In a systematic comparison we do not compare numbers,
but compare the asymptotic expansions for large charges.

On the microscopic side we have a completely systematic
algorithm for finding this asymptotic expansion for this
special class of theories.

In the previous example we have, for large D1, D2:

ln dmicro = π
√

D1D2 − 12 log(2D1/D2)− 48 log η(i
√

D1/D2) + · · ·

η: Dedekind function

Similar formulæ are now known in many other theories.



In order to explain the difference between ln dmicro and the
Bekenstein-Hawking entropy we need to understand
corrections to the Bekenstein-Hawking formula.

This is the problem we shall now address.



In string theory there are two types of corrections to the
Bekenstein-Hawking formula.

1. Stringy corrections to the classical equations of motion
of general relativity.

– These originate from the fact that strings are extended
objects and not point particles.

2. Quantum corrections.

We would like to look for an exact formula for the black
hole entropy taking into account both types of corrections.

These are necessary if we want to compute the black hole
entropy away from the large charge limit.



Stringy corrections to the Bekenstein-Hawking formula can
be computed using a generalization of this formula due to
Wald.

What about quantum corrections?

We now have a concrete proposal for systematically
computing quantum corrections to the entropy of a zero
temperature black hole. A.S.

This proposal is routed in AdS2/CFT1 correspondence,
and gives us back Wald’s formula in the classical limit.

This in principle allows us to calculate systematically all
the corrections to the black hole entropy.



What is AdS2?

Take a three dimensional space labelled by coordinates
(x, y, z) and metric

ds2 = dx2 − dy2 − dz2

AdS2 may be regarded as a two dimensional Lorentzian
space embedded in this 3-dimensional space via the
relation:

x2 − y2 − z2 = −a2

a: some constant giving the radius of AdS2.

This space has an SO(2,1) isometry.



x2 − y2 − z2 = −a2

Introduce independent coordinates (η, t):

x = a sinh η cosh t, y = a cosh η, z = a sinh η sinh t

dx2 − dy2 − dz2 = a2(dη2 − sinh2 η dt2)

Define: r = cosh η

ds2 = a2
[

dr2

r2 − 1
− (r2 − 1)dt2

]
, r ≥ 1



Why AdS2?

All known black holes develop an AdS2 factor in their near
horizon geometry in the extremal limit.

– time translation symmetry gets enhanced to SO(2, 1) in
the near horizon limit.



Reissner-Nordstrom solution in D = 4:

ds2 = −(1− ρ+/ρ)(1− ρ−/ρ)dτ2

+
dρ2

(1− ρ+/ρ)(1− ρ−/ρ)

+ρ2(dθ2 + sin2 θdφ2)

Define

2λ = ρ+ − ρ−, t =
λ τ

ρ2
+

, r =
2ρ− ρ+ − ρ−

2λ

and take λ → 0 limit keeping r, t fixed.

ds2 = ρ2
+

[
−(r2 − 1)dt2 +

dr2

r2 − 1

]
+ ρ2

+(dθ2 + sin2 θdφ2)

AdS2 × S2



Postulate: Any extremal black hole has an AdS2 factor /
SO(2, 1) isometry in the near horizon geometry.

– partially proved

Kunduri, Lucietti, Reall; Figueras, Kunduri, Lucietti, Rangamani

The full near horizon geometry takes the form AdS2 × K

K: some compact space.



Proposal:

The exact degeneracy of an extremal black hole is given by
the path integral of string theory over the near horizon
AdS2 × K geometry of the black hole.

Consistency checks:

1. In the classical limit this reduces to the exponential of
the Wald entropy.

2. This proposal follows naturally from the AdS2/CFT1
correspondence.



Many features of the microscopic formula has been
reproduced by this proposed formula for the quantum
black hole entropy.

More detailed tests are underway.



Summary

String theory has come a long way to explaining black hole
thermodynamics and thereby resolving an outstanding
problem in quantum gravity.

I have described only one aspect of the study of black
holes in string theory.

We hope that eventually these studies will help us
understand better not only black holes but also string
theory.


