Primordial non-Gaussianities from string theory: multifield inflation with non-standard actions

> Sébastien Renaux-Petel (APC, Paris)

> > IAP, Paris, 21.09.09

I: Motivation

II : Inflation and non-Gaussianities

III : Generalized multifield inflation

IV : Multifield DBI inflation

I Motivation

Inflation

• A period of accelerated expansion before the radiation era that solves the problems of the 'standard' Hot Big-Bang model.

• Quasi exponential expansion $H \simeq cte$ $\epsilon = -\frac{H}{H^2} \ll 1$

Simplest implementation: single field with very flat potential.
 Its predictions perfectly match the observations:

 $\frac{\delta T}{T} = -\frac{\zeta}{5}$ — Primordial curvature perturbation:

- nearly scale invariant
- nearly adiabatic
- nearly Gaussian

More?

- Simplest models surprisingly difficult to embed in high-energy physics models (eta-problem).
- Many high energy physics models involve several scalar fields. If several scalar fields are light enough during inflation
 multifield inflation, changes a lot the predictions !
- D-brane action: non-standard kinetic terms.
- Alternatives: curvaton, ekpyrotic...
- They are all degenerate at the linear level.

More?

- Simplest models surprisingly difficult to embed in high-energy physics models (eta-problem)
- Many high energy physics models involve several scalar fields. If several scalar fields are light enough during inflation
 multi-field inflation, changes a lot the predictions !
- D-brane action: non-standard kinetic terms.
- Alternatives: curvaton, ekpyrotic...

How to discriminate amongst them?

More?

- Simplest models surprisingly difficult to embed in high-energy physics models (eta-problem)
- Many high energy physics models involve several scalar fields. If several scalar fields are light enough during inflation
 multi-field inflation, changes a lot the predictions !
- D-brane action: non-standard kinetic terms.
- Alternatives: curvaton, ekpyrotic...

How to discriminate amongst them?

NON GAUSSIANITIES

probe field interactions

Non-Gaussianities

Beyond the power spectrum: higher-order, connected, n-point functions.

3-point function, the bispectrum

Connected 4-point function of zeta, the trispectrum

$$\langle \zeta_{\mathbf{k}_1} \, \zeta_{\mathbf{k}_2} \, \zeta_{\mathbf{k}_3} \zeta_{\mathbf{k}_4} \rangle_c \equiv T_{\zeta}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{k}_4) (2\pi)^3 \delta^3(\sum_{\mathbf{i}} \mathbf{k}_{\mathbf{i}})$$

Sébastien Renaux-Petel, APC

k2

k3

11

The Bispectrum

 $B_{\zeta}(k_1,k_2,k_3)$

• Amplitude

Slow-roll single field $f_{NL} \sim 10^{-2}$ Planck accuracy $\Delta f_{NL} \sim 5$ Current constraints $f_{NL} = O(100)$

- Shape (largest for which triangles?) Babich et al (04) Fergusson & Shellard (08)
- Sign (more or less cold spots?)

Each feature can rule out large classes of models

• Scale-dependence (growing or shrinking on small scales?)

General idea

Beyond single field slow-roll inflation: multifield inflation, non standard kinetic terms, non-inflationary scenarios.

Predictions for cosmological observables, especially non-Gaussianities.

Outcome:

 General formalisms that can be used in a wide variety of situations.

• Applications to interesting early universe models: multifield DBI inflation, ekpyrotic scenarios.

Il Inflation and non-Gaussianities

Standard single-field inflation

$$S = \int d^4x \sqrt{-g} \left(-\frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right)$$

nov variable
$$v'' + \left(k^2 - \frac{z''}{z} \right) v = 0$$

Sasaki-Mukhanov variable

 $v = z\mathcal{R}$

• Harmonic oscillator with a timedependent frequency

$$v'' + \left(k^2 - 2a^2H^2\right)v \simeq 0$$

Multifield inflation $S = \int d^4x \sqrt{-g} \left(-\frac{1}{2} G_{IJ}(\phi) \partial^{\mu} \phi^I \partial_{\mu} \phi^J - V(\phi) \right)$

- Adiabatic / Entropy decomposition
- $\mathcal{R} = \frac{H}{\dot{\tau}} Q_{\sigma} \quad \dot{\sigma}^2 = G_{IJ} \dot{\phi}^I \dot{\phi}^J$

 Isocurvature perturbations decoupled from curvature perturbations

 Curvature perturbation is sourced by the isocurvature perturbation

• Single-field inflation with non-standard Lagrangian

$$P(X,\phi)$$
 with $X=-rac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi$

• Single-field inflation with non-standard Lagrangian

$$P(X,\phi)$$
 with $X=-rac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi$

Standard kinetic terms

 $P = X - V(\phi)$

• Single-field inflation with non-standard Lagrangian

$$P(X,\phi)$$
 with $X=-rac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi$

Standard kinetic terms

 $P = X - V(\phi)$

• Prototype example: DBI $P = -\frac{1}{f(\phi)} \left(\sqrt{1 - 2f(\phi)X} - 1 \right) - V(\phi)$

• Single-field inflation with non-standard Lagrangian

$$P(X,\phi)$$
 with $X=-rac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi$

Standard kinetic terms

 $P = X - V(\phi)$

- Prototype example: DBI
 P
- Perturbations:

with the speed of sound

$$= -\frac{1}{f(\phi)} \left(\sqrt{1 - 2f(\phi)X} - 1 \right) - V(\phi)$$
$$v'' + \left(\frac{c_s^2 k^2 - \frac{z''}{z}}{z} \right) v = 0$$
$$\frac{1}{c_s^2} \equiv 1 + \frac{2XP_{,XX}}{P_{,X}}$$

 $P = X - V(\phi)$

• Single-field inflation with non-standard Lagrangian

$$P(X,\phi)$$
 with $X=-rac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi$

Standard kinetic terms

• Prototype example: DBI P =

Perturbations:

with the speed of sound

$$\begin{aligned} &-\frac{1}{f(\phi)} \left(\sqrt{1-2f(\phi)X}-1\right) - V(\phi) \\ &v'' + \left(\frac{c_s^2 k^2 - \frac{z''}{z}}{z}\right) v = 0 \\ &\frac{1}{c_s^2} \equiv 1 + \frac{2XP_{,XX}}{P_{,X}} \end{aligned}$$

Amplifications at sound horizon crossing

 $c_s k = aH$

Non-Gaussianities from the δN formalism log (physical scale) M fields ϕ^A during scale of interest inflation Hubble Determine the number of e-folds $N(\phi_*^A)$ scale Quantum fluctuations $\bar{\phi}^A_* \to \bar{\phi}^A_* + Q^{\overline{A}}$ log a t_* Fluctuation in local e-folding number = curvature perturbation $\zeta = \delta N \equiv N(\bar{\phi}^A_* + Q^A(\mathbf{x})) - N(\bar{\phi}^A_*)$ Sasaki, Stewart (1996) **Taylor expansion** Sasaki, Tanaka (1998) Lyth et al. (2005) $\zeta = N_A Q^A + \frac{1}{2} N_{AB} Q^A Q^B + \frac{1}{6} N_{ABC} Q^A Q^B Q^C + \dots$

Origin of the bispectrum $\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle = N_A N_B N_C \langle Q_{\mathbf{k}_1}^A Q_{\mathbf{k}_2}^B Q_{\mathbf{k}_3}^C \rangle$

 $\langle \zeta_{\mathbf{k}_1} \, \zeta_{\mathbf{k}_2} \, \zeta_{\mathbf{k}_3} \rangle = N_A N_B N_C \langle Q_{\mathbf{k}_1}^A \, Q_{\mathbf{k}_2}^B \, Q_{\mathbf{k}_3}^C \rangle$

NG of the fields around horizon $\sum_{k_1 \sim k_2 \sim k_3}^{\infty} B^{ABC} (k_1, k_2, k_3)$

Suppressed by the flatness of the potentialMaldacena (03)in slow-roll single and multifield modelsLidsey,Seery(05)

Important for models with non standard kinetic terms Chen et al (06)

$$\langle \zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}} \rangle = N_{A} N_{B} N_{C} \langle Q_{\mathbf{k}_{1}}^{A} Q_{\mathbf{k}_{2}}^{B} Q_{\mathbf{k}_{3}}^{C} \rangle$$

$$NG \text{ of the fields around horizon}_{\text{crossing } k_{1}} \sim k_{2} \sim k_{3} \qquad \overset{\sim}{B^{ABC}(k_{1}, k_{2}, k_{3})}$$

$$+ \frac{1}{2} N_{A} N_{B} N_{CD} \langle Q_{\mathbf{k}_{1}}^{A} Q_{\mathbf{k}_{2}}^{B} (Q^{C} \star Q^{D})_{\mathbf{k}_{3}} \rangle + 2 \text{ perms}$$

$$\langle \zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}} \rangle = N_{A} N_{B} N_{C} \langle Q_{\mathbf{k}_{1}}^{A} Q_{\mathbf{k}_{2}}^{B} Q_{\mathbf{k}_{3}}^{C} \rangle$$
NG of the fields around horizon crossing $k_{1} \sim k_{2} \sim k_{3}$ $B^{ABC}(k_{1}, k_{2}, k_{3})$

$$+ \frac{1}{2} N_{A} N_{B} N_{CD} \langle Q_{\mathbf{k}_{1}}^{A} Q_{\mathbf{k}_{2}}^{B} (Q^{C} \star Q^{D})_{\mathbf{k}_{3}} \rangle + 2 \text{ perms}$$
Superhorizon nonlinear relation between zeta and the fields $k_{3} \ll k_{1} \sim k_{2}$

$$\log \text{ (physical scale)}$$

$$\int \frac{\log (\text{physical scale})}{t_{*}} \log a \text{ Sébastien Renaux-Petel, APC}$$

$$\langle \zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}} \rangle = N_{A} N_{B} N_{C} \langle Q_{\mathbf{k}_{1}}^{A} Q_{\mathbf{k}_{2}}^{B} Q_{\mathbf{k}_{3}}^{C} \rangle$$

$$NG of the fields around horizon crossing $k_{1} \sim k_{2} \sim k_{3}$

$$H \frac{1}{2} N_{A} N_{B} N_{CD} \langle Q_{\mathbf{k}_{1}}^{A} Q_{\mathbf{k}_{2}}^{B} (Q^{C} \star Q^{D})_{\mathbf{k}_{3}} \rangle + 2 \text{ perms}$$

$$Because \zeta = cte \text{ on large scales in single field inflation, important only for multiple field models } log (physical scale)$$

$$Iog (physical scale)$$

$$Iog (physical scale)$$

$$Iog a \text{ Sebastien Renaux-Petel, APC}$$$$

The shape of the bispectrum, summary

Equilateral type (quantum)

Non standard kinetic terms: DBI inflation, Ghost inflation, low sound speed models.

Local type (classical)

Multiple fields:

- Multifield inflation
- Curvaton
- Ekpyrotic
- ···Sébastien Renaux-Petel, APC

III Generalized multifield inflation

 $ds^{2} = h^{-1/2}(y^{K})g_{\mu\nu}dx^{\mu}dx^{\nu} + h^{1/2}(y^{K})G_{IJ}(y^{K})dy^{I}dy^{J}$

First try Easson at al (07); Huang et al (07) $S = \int d^4x \sqrt{-g} \left[-\frac{1}{f} \left(\sqrt{1 + fG_{IJ} \partial_\mu \phi^I \partial^\mu \phi^J} - 1 \right) - V(\phi) \right]$

Not correct... but motivates generalized multifield inflation.

Generalized multifield inflation $S = \int d^4x \sqrt{-g} P(X, \phi^I) \quad \text{with} \quad X = -\frac{1}{2} G_{IJ} \partial_\mu \phi^I \partial^\mu \phi^J$ Langlois, S RP (08)

Calculation of the full second-order action (ADM formalism)

$$S_{(2)} = \frac{1}{2} \int dt \, d^3x \, a^3 \left[\left(P_X G_{IJ} + P_{,XX} \dot{\phi_I} \dot{\phi_J} \right) \mathcal{D}_t Q^I \mathcal{D}_t Q^J - \frac{P_X}{a^2} G_{IJ} \partial_i Q^I \partial^i Q^J \right. \\ \left. - M_{IJ} Q^I Q^J + 2P_{,XJ} \dot{\phi_I} Q^J \mathcal{D}_t Q^I \right] \,,$$

Kinetic term

$$\begin{aligned} G_{IJ} + \frac{P_{,XX}}{P_{,X}} \dot{\phi}_I \dot{\phi}_J &= (G_{IJ} - e_I^{\sigma} e_J^{\sigma}) + \frac{1}{c_s^2} e_I^{\sigma} e_J^{\sigma} \\ e_I^{\sigma} \propto \dot{\phi}_I, \qquad \frac{1}{c_s^2} &\equiv 1 + \frac{2XP_{,XX}}{P_{,X}} \end{aligned}$$

Adiabatic / entropy modes

• Adiabatic d.o.f., parallel to the field trajectory

Propagation speed: C_s

• Entropy d.o.f's, orthogonal to the field trajectory

Propagation speed:

• Very simple equations of motion for the canonically normalized fields:

$$v_{\sigma}'' - \xi v_s' + \left(c_s^2 k^2 - \frac{z''}{z}\right) v_{\sigma} - \frac{(z\xi)'}{z} v_s = 0.$$

$$v_s'' + \xi v_{\sigma}' + \left(k^2 - \frac{\alpha''}{\alpha} + a^2 \mu_s^2\right) v_s - \frac{z'}{z} \xi v_{\sigma} = 0.$$

• Very simple equations of motion for the canonically normalized fields:

$$\xi = 0 \qquad v_{\sigma}'' + \left(c_s^2 k^2 - \frac{z''}{z}\right) v_{\sigma} = 0.$$
$$v_s'' + \left(k^2 - \frac{\alpha''}{\alpha} + a^2 \mu_s^2\right) v_s = 0.$$

• Very simple equations of motion for the canonically normalized fields:

$$v_{\sigma}'' - \xi v_s' + \left(c_s^2 k^2 - \frac{z''}{z}\right) v_{\sigma} - \frac{(z\xi)'}{z} v_s = 0.$$

$$v_s'' + \xi v_{\sigma}' + \left(k^2 - \frac{\alpha''}{\alpha} + a^2 \mu_s^2\right) v_s - \frac{z'}{z} \xi v_{\sigma} = 0.$$

• Very simple equations of motion for the canonically normalized fields:

$$v''_{\sigma} - \xi v'_{s} + \left(c_{s}^{2}k^{2} - \frac{z''}{z}\right)v_{\sigma} - \frac{(z\xi)'}{z}v_{s} = 0.$$
$$v''_{s} + \xi v'_{\sigma} + \left(k^{2} - \frac{\alpha''}{\alpha} + a^{2}\mu_{s}^{2}\right)v_{s} - \frac{z'}{z}\xi v_{\sigma} = 0.$$

• Coupling: one parameter. Lots of intuition in a wide variety of situations.

• Huge work: very simple equations of motion for the canonically normalized fields:

$$v_{\sigma}'' - \xi v_s' + \left(c_s^2 k^2 - \frac{z''}{z}\right) v_{\sigma} - \frac{(z\xi)'}{z} v_s = 0.$$

$$v_s'' + \xi v_{\sigma}' + \left(k^2 - \frac{\alpha''}{\alpha} + a^2 \mu_s^2\right) v_s - \frac{z'}{z} \xi v_{\sigma} = 0.$$

• Coupling: one parameter. Lots of intuition in a wide variety of situations.

R is generically non constant on large scales, even if the trajectory is straight!

 $\begin{array}{ll} \mbox{Generalized multifield inflation}\\ S=\int d^4x \sqrt{-g}\,P(X,\phi^I) & \mbox{with} & X=-\frac{1}{2}G_{IJ}\partial_\mu\phi^I\partial^\mu\phi^J \end{array}$

- Non-Gaussianities studied (although for $c_s \simeq 1$ only) Gao (08)
- Used in the context of curvaton, quintessence...
 Li et al (08), Sur et al (08)
- A precise model? At some point, it was believed that multifield DBI inflation does the job.

Easson at al (07); Huang et al (07)

Not quite..., with important observational consequences.

IV Multifield DBI inflation

DBI action

Dirac-Born-Infeld action: Nambu-Goto action (neglecting bulk and gauge fields)

$$L_{DBI} = -\frac{1}{f} \sqrt{-\det\left(g_{\mu\nu} + f G_{IJ} \partial_{\mu} \phi^{I} \partial_{\nu} \phi^{J}\right)}$$

$$S = \int d^4x \sqrt{-g} \left(\frac{M_p^2}{2} R^{(4)} - \frac{1}{f} \left(\sqrt{\mathcal{D}} - 1 \right) - V(\phi^I) \right)$$
with
$$\mathcal{D} = \det \left(\delta_{\nu}^{\mu} + f G_{IJ} \partial^{\mu} \phi^I \partial_{\nu} \phi^J \right)$$

Background : homogeneous fields

$$\mathcal{D} = 1 - f G_{IJ} \dot{\phi^I} \dot{\phi^J}$$

DBI action

Multiple inhomogeneous fields

Lorentz covariance allows to consider

$$X^{IJ} = -\frac{1}{2}\partial^{\mu}\phi^{I}\partial_{\mu}\phi^{J} \qquad X^{J}_{I} = G_{IK}X^{KJ}$$

$$\mathcal{D} = 1 - 2fG_{IJ}X^{IJ} + 4f^2X_I^{[I}X_J^{J]} - 8f^3X_I^{[I}X_J^JX_K^{K]} + 16f^4X_I^{[I}X_J^JX_K^KX_L^{L]}$$

Terms which vanish for:

- one field
- multiple homogeneous fields.

Essential for perturbations $P(X^{IJ}, \phi^K)$

Langlois, S R-P, Steer, Tanaka (08) Arroja et al (08) Gao et al (09)

DBI action

$$P = -\frac{1}{f(\phi^I)} \left(\sqrt{1 - 2f(\phi^I)\tilde{X}} - 1 \right) - V(\phi^I)$$

where X and \tilde{X} differ only by spatial gradients

Generalized multifield inflation very useful

$$\implies v_{\sigma}'' - \xi v_{s}' + \left(c_{s}^{2}k^{2} - \frac{z''}{z}\right)v_{\sigma} - \frac{(z\xi)'}{z}v_{s} = 0,$$
$$v_{s}'' + \xi v_{\sigma}' + \left(c_{s}^{2}k^{2} - \frac{\alpha''}{\alpha} + a^{2}\mu_{s}^{2}\right)v_{s} - \frac{z'}{z}\xi v_{\sigma} = 0.$$

All modes propagate at the common speed of sound. Intuitive geometrical understanding Mizuno et al (09)

Isocurvature perturbations

$$v_{\sigma} \simeq v_s$$

$$\mathcal{P}_{Q_s} = \left(\frac{H}{2\pi c_s}\right)^2$$

$$\bigcirc \qquad Q_s \simeq \frac{1}{c_s} Q_\sigma$$

Enhancement of isocurvature perturbations

Primordial spectra

Curvature perturbation

$$\mathcal{P}_{\mathcal{R}_*} = \frac{1}{8\pi^2 \epsilon c_s} \left(\frac{H}{M_P} \right)^2 \bigg|_{kc_s = aH}$$

[same as single-field k-inflation: Garriga & Mukhanov (99)]

- In the multi-field case, ${\cal R}$ can evolve on large scales

$$\mathcal{R} = \mathcal{R}_* + T_{\mathcal{RS}}\mathcal{S}_* \quad \left[\mathcal{S} = c_s \frac{H}{\dot{\sigma}}Q_s\right] \quad \mathcal{P}_{\mathcal{R}} = (1 + T_{\mathcal{RS}}^2)\mathcal{P}_{\mathcal{R}_*} = \frac{\mathcal{P}_{\mathcal{R}_*}}{\cos^2\Theta}$$

• Tensor modes

Feeding of curvature perturbation by entropy perturbations

$$\mathcal{P}_{\mathcal{T}} = \left(\frac{2H^2}{\pi^2}\right)_{k=aH} \quad \Rightarrow$$

$$r = \frac{\mathcal{P}_{\mathcal{T}}}{\mathcal{P}_{\mathcal{R}}} = 16\epsilon c_s \cos^2\Theta$$

Non-Gaussianities : influence of isocurvature perturbations

• Third order action

$$S_3^{(\text{main})} = \int dt d^3x \left\{ \frac{a^3}{2c_s^5 \dot{\sigma}} \left[\dot{Q}_{\sigma}^3 + c_s^2 \dot{Q}_{\sigma} \dot{Q}_s^2 \right] - \frac{a}{2c_s^3 \dot{\sigma}} \left[\dot{Q}_{\sigma} (\nabla Q_{\sigma})^2 + c_s^2 \dot{Q}_{\sigma} (\nabla Q_s)^2 - 2c_s^2 \dot{Q}_s \nabla Q_{\sigma} \nabla Q_s) \right] \right\}$$

- Shape of $f_{\rm NL}$ unaltered
- Amplitude $f_{NL}^{(\text{equil})} = -\frac{35}{108}\frac{1}{c_s^2}\frac{1}{1+T_{\mathcal{P}S}^2} = -\frac{35}{108}\frac{1}{c_s^2}\cos^2\Theta$

Equilateral non-Gaussianities reduced by entropy perturbations Very important for model-building

Multifield DBI inflation ctd

 Calculation of the spectral index, running of non-Gaussianities.

Langlois, S.RP, Steer, Tanaka (08)

- New consistency relation.
- Bulk fields (NS-NS and R-R) and gauge field on the brane included.

Langlois, S.RP,Steer (09)

- Revisited gravitational waves constraints on DBI inflation.
- Loop corrections. Gao & Xu (09)

Multifield DBI inflation

- Radial D-brane motion and D-brane angular fluctuations.
- End of inflation:

 $d(D3,\overline{D3})= \ {\rm string} \ {\rm length}$

Lyth, Riotto (06) Leblond, Shandera (06)

The trispectrum

The quantum trispectrum

 $T_{\zeta} = N_A N_B N_C N_D \langle Q^A(\mathbf{k}_1) Q^B(\mathbf{k}_2) Q^C(\mathbf{k}_3) Q^D(\mathbf{k}_4) \rangle_c + \dots$

Connected 4-point function of the fields around horizon crossing (quantum)

Similar to f_{NL}^{eq} for the bispectrum

Mizuno et al (09)

The local trispectrum

$$T_{\zeta} = \dots + N_{AB} N_{CD} N_E N_F \left[C^{BD}(k_{13}) C^{AE}(k_3) C^{CF}(k_4) + 11 \text{ perms} \right] \\ + N_{ABC} N_D N_E N_F \left[C^{AD}(k_2) C^{BE}(k_3) C^{CF}(k_4) + 3 \text{ perms} \right] + \dots \\ 2 \\ \text{where} \quad \langle Q_{\mathbf{k}}^A Q_{\mathbf{k}'}^B \rangle = C^{AB}(k) (2\pi)^3 \delta^3(\mathbf{k} + \mathbf{k}')$$

Superhorizon nonlinear evolution, (classical)

Combined local and equilateral non-Gaussianities in the trispectrum

 $T_{\zeta} = \ldots + N_{AB}N_C N_D N_E \left[C^{AC}(k_1) B^{BDE}(k_{12}, k_3, k_4) + 11 \text{ perms} \right]$

has always been neglected

Combined local and equilateral non-Gaussianities in the trispectrum

$$T_{\zeta} = \ldots + N_{AB} N_C N_D N_E \left[C^{AC}(k_1) B^{BDE}(k_{12}, k_3, k_4) + 11 \text{ perms} \right]$$

Superhorizon nonlinear evolution, (classical) Field three-point function (quantum)

Requires light fields other than the inflaton and with non standard kinetic terms

Multifield DBI inflation

All quantities appeared in lower order correlation functions

Combined local and equilateral NG in the trispectrum from multifield DBI

• Momentum-dependence, 6-dim parameter space

Conclusions

- Non-Gaussianities: key-discriminant amongst early universe scenarios.
- My work so far:

Early universe physics models from high energy physics Gaussianities

- Cosmological perturbation theory
 - Very general formalisms
 - Observable predictions

Future work

