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A factor of 2 in distance 

 The early universe is well described by a model 

which is homogeneous and isotropic, contains 
only ordinary matter and evolves according to 

general relativity. 

 However, such a model underpredicts the 

distances measured in the late universe by a 
factor of 2. 

 This is interpreted as faster expansion. 

 There are three possibilities: 

 1) There is matter with negative pressure. 

 2) General relativity does not hold. 

 3) The universe is not homogeneous and isotropic. 
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Backreaction 

 The average evolution of an inhomogeneous 

and/or anisotropic spacetime is not the same 
as the evolution of the corresponding smooth 

spacetime. 

 At late times, non-linear structures form, and 

the universe is only statistically homogeneous 

and isotropic, on scales above 100 Mpc. 

 Finding the model that describes the average 

evolution of the clumpy universe was termed 
the fitting problem by George Ellis in 1983.  
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Backreaction, exactly 

 Consider a dust universe. The Einstein equation is 

 
 The dynamics can be written in terms of the gradient  

 

 

 The scalar part of the Einstein equation is: 

 

 

 

 

 

 Here θ is the expansion rate, ρ is the energy density, σ2≥0 
is the shear, ω2≥0 is the vorticity and (3)R is the spatial 
curvature. We take ω2=0. 
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 The Buchert equations (1999): 

 

 

 

 

 

 

 Here 

 

 The backreaction variable is 

 

 

 The average expansion can accelerate, even 

though the local expansion decelerates. 

 The FRW equations: 
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Understanding acceleration 

 The average expansion rate can increase, because the 
fraction of volume occupied by faster regions grows. 

 Structure formation involves overdense regions slowing 
down and underdense regions decelerating less. 

 Acceleration can be explicitly demonstrated using a toy 
model with one overdense and one underdense region. 

 

 

 

 

 

 

 Expansion slows down as the overdense region becomes 
important, then accelerates as the void takes over. 
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Towards reality 

 Acceleration due to structures is possible:  

is it realised in the universe? 

 The non-linear evolution is too complex to 

follow exactly. 

 Because the universe is statistically 
homogeneous and isotropic, a statistical 

treatment is sufficient. 

 We can evaluate the expansion rate with 

an evolving ensemble of regions. 
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The peak model 

 We start from a FRW background of dust with an 

initial Gaussian linear density field. 

 We identify structures with spherical isolated peaks 

of the smoothed density field. (BBKS 1986) 

 We keep the smoothing threshold fixed at σ(t,R)=1, 

which gives the time evolution R(t). 

 Each peak expands like a separate FRW universe. 

 The peak number density as a function of time is 

determined by the primordial power spectrum and 

the transfer function. 

 We take a scale-invariant spectrum with CDM 

transfer function.  
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Ht as a function of time (in Gyr, with teq=50 000 yr) 

 

 The expansion rate is 

 

 There are no parameters to adjust. 

 

 Consider two approximate transfer functions. 

 Bonvin and Durrer              BBKS (with fb=0.2) 
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Light propagation 

 The average expansion rate is evaluated on 

the spatial hypersurface of proper time. 

 Most cosmological observations are made 

along the past lightcone, and measure the 

redshift and the luminosity distance. 

 In a general spacetime, these quantities are 

not determined only by expansion. 

 However, in a statistically homogeneous and 

isotropic dust space, the average expansion 

rate does give the redshift and the distance. 
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The redshift 

 The redshift+1 is proportional to the photon energy: 

    where 

 

 The change of the energy along the null geodesic is 

 

 

 

 

 

 Assuming statistical homogeneity and isotropy, the 
redshift is given by the scale factor: 
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The distance 

 The exact angular diameter distance is given by 

 

 

 from which we get for the average 

 

 

 Due to conservation of mass,  

 

 Apart from the null geodesic shear, the distance 
equation in terms of H is the same as in FRW ΛCDM. 

 The spatial curvature enters only via H, so the CMB is 
consistent with large spatial curvature. 

 Unless H is the same as in the FRW ΛCDM model, the 
relation between the expansion rate and the distance is 
different than in the FRW case. 
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Conclusion 

 Observations of the late universe are inconsistent 
with a homogeneous and isotropic model with 
ordinary matter and gravity. 

 FRW models do not include non-linear structures. 

 The Buchert equations show that the average 
expansion of a clumpy dust space can accelerate. 

 The acceleration has been understood physically. 

 The expansion rate Ht has been found to rise by the 
right order of magnitude around 105 teq.  

 The relationship of the average expansion rate to 
distance observations has been determined. 

 Much work remains to be done to get detailed 
predictions with quantified errors. 


