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Introduction

The study of the possible dynamical influence of (small)
inhomogeneities on the evolution of a cosmological
background has recently attracted considerable interest,
from both a theoretical and a phenomenological point of
view

One needs a well defined averaging procedure for
smoothing-out the perturbed (non-homogeneous)
geometric parameters.

The computation of these averages is affected in principle
by a well-known ambiguity due to the possible choice of
different “gauges”.
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Gauge freedom in a FRW universe, 1

Let us consider a cosmological background sourced by a scalar
field φ and described by the simple four-dimensional action

S =

∫
d4x
√
−g
[

R
16πG

− 1
2

gµν∂µφ∂νφ− V (φ)

]
with spatially flat FLRW background geometry

ds2 = −dt2 + a(t)2 δij dx idx j



Gauge freedom in a FRW universe, 2

The background fields {φ, gµν} can be expanded, up to second order, in the
non-homogeneous perturbations as follows:

φ(t , ~x) = φ(0)(t) + δφ(1)(t , ~x) + δφ(2)(t , ~x),

g00 = −1− 2α(1) − 2α(2), gi0 = −a
2

(
β

(1)
,i + B(1)

i

)
− a

2

(
β

(2)
,i + B(2)

i

)
,

gij = a2
[
δij

(
1− 2ψ(1) − 2ψ(2)

)
+ Dij (E (1) + E (2)) +

1
2

(
χ

(1)
i,j + χ

(1)
j,i + h(1)

ij

)
+

1
2

(
χ

(2)
i,j + χ

(2)
j,i + h(2)

ij

)]
,

where Dij = ∂i∂j − δij (∇2/3).
One obtains 11 degrees of freedom which are in part redundant.
To obtain a set of equations (Einstein equations + equation of motion of φ)
well defined, order by order, we have to set to zero two scalar perturbations
among δφ, α, β, ψ and E , and one vector perturbation between Bi and χi .



Gauge freedom in a FRW universe, 3

The choice of such variables is called a choice of gauge.

For the scalar sector (first or second order) we can have:
ψ = 0, E = 0 Uniform Curvature Gauge
β = 0, E = 0 Longitudinal Gauge
α = 0, β = 0 Synchronous Gauge
δφ = 0, β or ψ or E = 0 Uniform Field Gauge
etc.

We do not consider the vector sector, vector perturbations can
be neglected for our purpose. In particular, as we will see, all
first order vector inhomogeneities are vanishing (Mena,
Mulryne and Tavakol (2007)).
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Gauge trasformation vs Gauge Invariant variables, 1

How to connect differents gauge? Gauge trasformations!

General coordinate transformations (GCT)⇐⇒ Gauge
transformations (GT).

Consider, for example, a (typically non-homogeneous) scalar
field S(x). Under a GCT:

x → x̃ = f (x), x = f−1(x̃), S(x)→ S̃(x̃) = S(x)

Under the associated GT old and new fields are evaluated at
the same space-time point x and

S(x)→ S̃(x) = S(f−1(x)).
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Gauge trasformation vs Gauge Invariant variables, 2

To connect different gauge we need an infinitesimal gauge
transformation.
This can be parametrized by a first-order, εµ(1), and a
second-order, εµ(2), vector generator, and is given by (Bruni,
Matarrese, Mollerach, Sonego (1997)):

xµ → x̃µ = xµ + εµ(1) +
1
2

(
εµ(1),νε

ν
(1) + εµ(2)

)
.

and a tensor T changes as

T (1) → T̃ (1) = T (1) − Lε(1)
T (0),

T (2) → T̃ (2) = T (2) − Lε(1)
T (1) +

1
2

(
L2
ε(1)

T (0) − Lε(2)
T (0)

)



Gauge trasformation vs Gauge Invariant variables, 3

Request: Physics results should not depend on the gauge
chosen to describe these.

Answer: Gauge Invariant (GI) formalism (Bardeen (1980), for a
review see: Mukhanov, Feldman, Brandenberger(1992)).

Physically meaningful variable↔ GI variable.

A GI variable F is defined as a function of our perturbations
which takes always the same value independently of the gauge
chosen

F (δφ, α, β, .....)→ F (δφ̃, α̃, β̃, .....) = F (δφ, α, β, .....)
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Gauge trasformation vs Gauge Invariant variables, 4

Power Spectrum
The scalar power spectrum associated with a model of inflation
is defined using the GI curvature perturbation ξ. Such
perturbation is given, to first order, by

ξ(1) =
H
φ̇

Q(1) with Q(1) = δφ(1) +
φ̇

H

(
ψ(1) +

1
6
∇2E (1)

)
where Q(1) is the first order GI Mukhanov variable (Mukhanov
(1988)). So one obtains

Pζ(k) =
k3

2π2

(
H
φ̇

)2

|Qk |2



Gauge (non)-invariance of space-time integrals, 1

Consider now the space-time integral of a scalar S over a
four-dimensional region Ω defined in terms of a window function
WΩ:

F (S,Ω) =

∫
Ω(x)

d4x
√
−g(x) S(x) ≡

∫
M4

d4x
√
−g(x) S(x)WΩ(x).

The integral will be gauge invariant only if under a GT

WΩ(x)→ W̃Ω(x) = WΩ(f−1(x)),

F (S,Ω) is invariant under GT only if the region Ω itself changes
as a scalar under GT!
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Gauge (non)-invariance of space-time integrals, 2

In our (cosmological) case WΩ(x) can be represented as a
step-like window function, selecting a cylinder-like region with
temporal boundaries determined by the two space-like
hypersurfaces on which a function A(x) (with time-like gradient)
takes the constant values A1 and A2 and by the coordinate
condition B(x) < r0, where B(x) is a suitable function with
space-like gradient . More explicitly:

WΩ(x) = θ(A(x)− A1)θ(A2 − A(x))θ(r0 − B(x))

In this case the integral will be GI only if the functions A(x) and
B(x) are scalars.



Gauge (non)-invariance of space-time integrals, 3

For the cosmological backgrounds all fields are naturally of
quasi-homogeneous type, and their gradients are typically
time-like. In such a context we cannot covariantly define the
spatial boundaries for lack of appropriate fields at our disposal
and we have a non gauge invariant integral.

F̃ (S̃,Ω)− F (S,Ω) =

∫
M4

d4x
√
−g(x) S(x)∆WΩ(x)

where

∆WΩ(x) = θ(A(x)−A1)θ(A2−A(x)) [θ(r0 − B(f (x)))− θ(r0 − B(x))] .

The breaking of gauge invariance comes from the region r ∼ r0
and seems to go away for large enough volumes.



Covariant averaging prescription, 1

Depending on the context in which the backreaction is
considered, there are two types of averaging procedure: spatial
(or ensemble) average of classical variables, and (vacuum)
expectation values of quantized fields.

In both cases, ones has to face the problem of the gauge
dependence of the results.
Is it possible to define a gauge-invariant averaging prescription?

As first step we define a covariant averaging prescription.
A particular spatial volume average can be covariantly obtained
from the four-dimensional integrals discussed before simply by
using the following delta-like window function:

WΩ(x) = uµ∇µθ(A(x)− A0)θ(r0 − B(x))

with uµ = ∂µA
(−∂µA ∂νA gµν)1/2 .
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Covariant averaging prescription, 2

We define:

〈S〉A0,r0 =
F (S,Ω)

F (1,Ω)
=

∫
d4x
√
−g S uµ∇µθ(A(x)− A0)θ(r0 − B(x))∫

d4x
√
−g uµ∇µθ(A(x)− A0)θ(r0 − B(x))

and, in the time t̄ for which A is homogeneous (defined by t = h(̄t , ~x)), one
obtains

〈S〉A0,r0 =

∫
ΣA0

d3x
√
|γ(t0, ~x)| S(t0, ~x) θ(r0 − B(h(t0, ~x), ~x)∫

ΣA0
d3x

√
|γ(t0, ~x)| θ(r0 − B(h(t0, ~x), ~x))

where we have called t0 the time t̄ when A(0)(̄t) takes the constant values A0

and we are averaging on a section of the three-dimensional hypersurface
ΣA0 , hypersurface where A(x) = A0.
As seen, in the cosmological context we cannot covariantly define the spatial
boundaries for lack of appropriate fields at our disposal.
So we obtain gauge invariant average only in the limit of an infinite spatial
volume.
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Gauge (non)-invariant averaging and the present
cosmological evolution, 1

Inhomogeneities could affect in a non-trivial way the present
cosmological evolution.

Recent interpretations have tried to see the dark energy as the
“backreaction effect” of appropriately smoothed-out
inhomogeneities.

Averaging formalism (T. Buchert (2001))

〈S〉D =

∫
D d3x

√
|γ|S∫

D d3x
√
|γ|

used in different gauge as, for example, longitudinal gauge
(Rasanen (2004)) and synchronous gauge (Kolb, Matarrese
and Riotto (2006)).
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Gauge (non)-invariant averaging and the present
cosmological evolution, 2

The point that we want put in evidence is that the averaging
formalism above can be seen as a particular case of the
previous averaging prescription

〈S〉A0,r0 =

∫
ΣA0

d3x
√
|γ(t0, ~x)| S(t0, ~x) θ(r0 − B(h(t0, ~x), ~x))∫

ΣA0
d3x

√
|γ(t0, ~x)| θ(r0 − B(h(t0, ~x), ~x))

,

where D is defined by θ(r0 − B(h(t0, ~x), ~x)), if we take a scalar
A(x) which is homogeneous in the particular gauge chosen to
make the calculation.
In a realistic calculation of the BR effects of the
inhomogeneities, on the present cosmological evolution, this
region D can be as large as the Hubble radius, not more.
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Gauge (non)-invariant averaging and the present
cosmological evolution, 3

So, also if the different calculations in the literature can be seen as covariant
averaging prescriptions on different hypersurface calculated in a particular
gauge, they are not strictly gauge invariant.
In perturbation theory, up to second order, this non-gauge invariance can be
parametrized by the following formula

〈S̃〉A0,r0 − 〈S〉A0,r0 =

∫
ΣA0

d3x S
(1)
θ(r0 − B(t0, ~x))∫

ΣA0
d3x θ(r0 − B(t0, ~x))

∫
ΣA0

d3x ∂B
∂x i ε

i
(1) δ(r0 − B(t0, ~x))∫

ΣA0
d3x θ(r0 − B(t0, ~x))

−

∫
ΣA0

d3x S
(1) ∂B

∂x i ε
i
(1) δ(r0 − B(t0, ~x))∫

ΣA0
d3x θ(r0 − B(t0, ~x))

it is easy to see that this quantity goes to zero for r0 → +∞.
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Gauge (non)-invariant averaging and the present
universe, 4

Next step: to use this formula to evaluate the impact of the
problem on different approaches present in the literature to
study the BR of the inhomogeneities on the present
cosmological evolution =⇒Work in progress!
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Gauge invariant averaging for the quantum BR, 1

The prescription used for the BR on the present cosmological
evolution became gauge invariant in the limit of an infinite
spatial volume.
In this limit the step-like boundary disappears, and we obtain:

〈S〉A0 =

∫
ΣA0

d3x
√
|γ(t0, ~x)| S(t0, ~x)∫

ΣA0
d3x

√
|γ(t0, ~x)|

.

This results can be generalized to the quantum case.
Expectation values of quantum operators can be extensively
interpreted (and re-written) as spatial integrals weighted by the
integration volume V , according to the general prescription

〈. . . 〉 → V−1
∫

V
d3x (. . . ) ,

where V extends to all three-dimensional space.
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Gauge invariant averaging for the quantum BR, 2

In this way the above gauge invariant prescription becomes

〈S〉A0 =
〈
√
|γ(t0, ~x)| S(t0, ~x)〉
〈
√
|γ(t0, ~x)|〉

where it is important to note that the two entries of this ratio are
not separately gauge invariant, but the ratio itself, equivalent to
the above prescription, is indeed invariant.

Let us now present an explicit expansion (up to second order)
of the generalized average 〈S〉A0 in terms of conventional
averages defined in an arbitrary gauge. Expanding to second
order the previous expression we obtain

〈S〉A0 = S(0) + 〈S(2)〉+
1

(
√
|γ|)(0)

〈S(1)
(
√
|γ|)(1)〉
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Gauge invariant averaging for the quantum BR, 3
We can now express the transformed (barred) fields in terms of
the original (unbarred) fields, in a general gauge. Considering
the particular infinitesimal coordinate trasformation (see
previous slide) that connects t to t̄ , we can write the
transformed quantities in terms of A and of the unbarred fields
and get:
〈S〉A0 = S(0) + 〈∆(2)〉+

1(√
|γ|
)(0)
〈∆(1)

(√
|γ|
)(1)

〉 − 1
Ȧ(0)
〈A(1)Λ(1)〉

− 1
Ȧ(0)

∂t

(
ln
(√
|γ|
)(0)
)
〈A(1)∆(1)〉+

1
2

Λ(0)

(Ȧ(0))2
〈(A(1))2〉

where:

∆(i) = S(i) − Ṡ(0)

Ȧ(0)
A(i), i = 1, 2

Λ(0) = S̈(0) − Ṡ(0)

Ȧ(0)
Ä(0), Λ(1) = Ṡ(1) − Ṡ(0)

Ȧ(0)
Ȧ(1)

this depends on the scalar A but, for any given choice of A, is fully gauge
independent: 〈S̃〉A0 = 〈S〉A0 .



Gauge invariant averaging for the quantum BR, 4

Our result can be shown to pass several consistency checks. Suppose, for
instance, that S and A are related by an arbitrary function S = S(A). It is
easy to check that in such case our formula simply gives 〈S〉A0 = S(A0) as it
should be.
As a second check one may replace the scalar A by f (A), with f an arbitrary
function, and check that 〈S〉A0 does not change.

The gauge invariance of our proposal can be very useful: it allows to
compute the average in a gauge that has been conveniently chosen for other
purposes; it also allows to evaluate and compare the average of a scalar
S(x) on different hypersurfaces, defined by different A(x), while solving the
dynamics of the problem in a single gauge.

We should note, instead, that the result of the conventional average
procedure, i.e. 〈S〉 = 〈S(0) + S(1) + S(2)〉 = S(0) + 〈S(2)〉, is not gauge
invariant, even if this expression is computed in the barred coordinates,
because of the extra term proportional to 〈S(1)

(
√
|γ|)(1)〉.
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Volume Expansion Θ

A scalar quantity that could play a central role in the computation of
the backreaction is the volume expansion Θ of the observes defined
by the hypersurface A(x) = A0.

For a scalar field φ(x) dominated geometry, we can choose to
consider the set of observes which are comoving to the source of the
matter. This correspond to take A(x) = φ(x) and we have

Θ = ∇µuµ, uµ =
∂µφ

(−gαβ∂αφ∂βφ)
1/2 ,

with Θ = 3H for the unperturbed homogeneous geometry.

If we include perturbations, up to second order, and we compute the
average of Θ according to the standard prescription 〈Θ〉, the result is
notoriously gauge dependent.
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Growing-Curvature Cosmology, 1

Cosmological models based on string theory are characterized by a
complementary regime, with respect to the phase of standard
decreasing curvature, with a growing space-time curvature.
In these cosmology models one needs a way to go from the growing
space-time curvature to the standard decreasing curvature regime
avoiding a curvature singularity.

Does the quantum backreaction help us to go in the direction of a so
called “graceful exit”?

We consider a cosmological background sourced by a dilaton φ with
a four dimensional action in the Einstein frame given by

S =

∫
d4x
√
−g
[

R
16πG

− 1
2

gµν∂µφ∂νφ− V (φ)

]
with V (φ) = V0e±λ(φ−φ0) and where V0, λ and φ0 are constant
parameters (with λ > 0).
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Growing-Curvature Cosmology, 2

The background equations can be solved by a class of exact
“scaling” solution with two branches t < 0 and t > 0, and
classically disconnected by a curvature singularity at t = 0.
For the negative-time branch the solution can be written as

a = (−t/t1)p, φ = φ0 ∓
√

2p ln(−t/t1), t < 0.

with V0 6= 0, p = 2/λ2, and the constant t1 relate to V0 by
t2
1 V0 = p(3p − 1).

For V = 0 we obtain p = 1/3, t1 is arbitrary and we recover the
Einstein frame representation of standard pre-big bang (φ̇ > 0)
and ekpyrotic (φ̇ < 0) backgrounds.
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Growing-Curvature Cosmology, 3

Considering the Uniform Curvature Gauge ( ψ(1) = ψ(2) = 0,
E (1) = E (2) = 0 and χ(1)

i = χ
(2)
i = 0) we obtain for the first order

perturbation the following equation of motion (M2
pl = (8πG)−1):

α =
1

2M2
pl

φ̇

H
ϕ,

H
a
∇2β =

1
M2

pl

φ̇2

H
d
dt

(
H
φ̇
ϕ

)
ϕ̈+ 3Hϕ̇− 1

a2∇
2ϕ+ Vφφϕ = α̇φ̇− 2αVφ −

φ̇

2a
∇2β

∇2Bi = 0, ḧij + 3Hḣij −
1
a2∇

2hij = 0

where φ = φ(0), ϕ = δφ and we have neglected the suffix (1).



Growing-Curvature Cosmology, 4

The canonically normalized solutions in the Fourier space are
given by

ϕk =
1

a3/2

(
π

4H
p

p − 1

)1/2

H(1)
ν

(
p

p − 1
k

aH

)
hk = 2

√
2

1
a3/2

(
π

4H
p

p − 1

)1/2

H(1)
ν

(
p

p − 1
k

aH

)
with hk a polarization component in the Fourier space of hij .

By ∇2Bi = 0 we have that all vector inhomogeneities are
vanishing (Mena, Mulryne and Tavakol (2007)).

The others first order perturbation can be connected to ϕk by
using the above equations.
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Growing-Curvature Cosmology, 5

In a similar way we can find the equation of motion for the
second order perturbations.
For example we have

ϕ̈(2) + 3Hϕ̇(2) − 1
a2∇

2ϕ(2) +

[
Vφφ + 2

d
dt

(
3H +

Ḣ
H

)]
ϕ(2) = D

with D a bilinear function in the first order perturbations.

Making the v.e.v. of those second order equations we can
express the v.e.v. of second order perturbations (〈ϕ(2)〉,
〈α(2)〉,....) in function of the v.e.v. of bilinear quantities in the
first order perturbations (〈ϕ2〉, 〈ϕϕ̇〉,....).

The evaluation of the v.e.v. of bilinear quantities in the first
order perturbations involves a sum over momenta which is
plagued by ultraviolet divergencies.
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Growing-Curvature Cosmology, 6

For this V = 0 case we can try to evaluate the BR of the cosmological
perturbations on the background Hubble factor using the v.e.v. of the
expansion rate Θ.

Let us first show the gauge dependence of the naive prescription considering
the 〈Θ〉 for differents Uniform Field Gauge (UFG)-(see previous slide for
definition).
Working in the UFG fixed by β(1) = 0 = β(2) one obtains:

〈Θ〉UFGβ = 3H
[
1 +

45
8
〈Q(1) 2〉REN

M2
P

]
,

while in the UFG with E (1) = 0 = E (2) one obtains:

〈Θ〉UFGE = 3H
[
1− 3

4
〈Q(1) 2〉REN

M2
P

]
.

where the suffix REN denotes that the v.e.v. has been renormalized through
a suitable method.
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Growing-Curvature Cosmology, 7

These two results not only differ between each other, but also
differ from the one obtained with the gauge invariant
prescription with A = φ, which gives

〈Θ〉φ0 = 3H

[
1 +

15
8
〈Q(1) 2〉REN

M2
P

]

in any gauge.
It follows, in particular, that we cannot try to solve the problem
of the gauge dependence of the backreaction considering the
UFG as a privileged gauge, as often suggested in the literature
for the case of slow-roll inflation in the long-wavelength limit.
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Growing-Curvature Cosmology, 8

The results of the gauge invariant prescription used seems to
hinder a graceful exit from the growing curvature phase.
Is this true? Maybe not!

There are big problems related to the interpretation of the
results!!
Which is the right hypersurface A(x) = A0 to use?
Which is the right scalar variable to average to see the BR of
the perturbations on the background?

Possible solution: evaluation of the BR on the background
acceleration between two test particle which move on
neighboring geodesics. =⇒Work in progress!
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Conclusions

We have proposed a general formula for the classical or quantum
average of any scalar quantity, on hypersurfaces on which another
given scalar quantity is homogeneous.
Our non-trivial proposal is gauge-invariant in the quantum case and in
the classical one for averaging over all the 3-space volume.
The evaluation of the residual gauge dependence present in the
average prescription used in the literature, for the backreaction of the
inhomogeneities on the present cosmological evolution, is a key point to
investigate.
By using the quantum gauge invariant average proposed one can
approach in a gauge invariant way the backreaction problem in the early
universe.
Growing-curvature cosmology model is a perfect example to see the
problems associated with the choice of gauge for the naive v.e.v.
prescription.
To try to solve the residual interpretation problems, associated to the
calculation of the backreaction, one can try to deal with objects with a
solid physical meaning as the deviation between two geodesics.
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