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General Picture: What do we Describe?

(from Andrei Linde)
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Stochastic Inflation I

Consider a free, minimally coupled, real scalar test field ϕ
with mass µ, in d-dimensional space-time with metric gµν .

Focus on de Sitter space-time:

(gµν) = diag
(
−1, a2(t), . . . , a2(t)

)
, a(t) = et , H

!
= 1

Split into long and short wavelengths:

ϕ = ϕL + ϕS

where

ϕS(t, x) =

∫
dd−1k Wκ

(
k

a(t)
− ε
)[

â(k) u(t, k) + H.c.
]

with Wκ
κ→0−−−→ Θ, where 0 < ε� 1.
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Stochastic Inflation II

Think of ϕS as generating a (quantum) bath in which ϕL evolves.
[Starobinsky ’85]

The field equation (�+ µ2)ϕ = 0 implies

(�+ µ2)ϕL = h

where h includes ϕS and is a Gaussian stochastic variable
 Gaussian random force ↔ random potential VD(ϕL)

This captures the leading-log[a(t)] contribution to ε, p, ....
[Woodard, et al. ’05]

So far so good...

Arbitrary interactions / non-linear noise potentials and gradient
terms?

 Use replica trick and Gaussian variational method! [F.K., Schwarz ’08]
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Disorder
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New Methods... from Statistical Physics

(from Kay Wiese)
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Ingredients

field ~u(x) ∈ RN , x ∈ Rd deformations

elastic energy H0[~u ] free part

disorder energy HD [~u ] impurities

Florian Kühnel Stochastic Inflation and Replica Field Theory



The System

Describe: Gibbs equilibrium at temperature T

P[~u ] =
1

Z
exp
{
− βH[~u ]

}
, β := 1/T

with partition function

Z =

∫
D[~u ] e−βH[~u ]

where (idealised)

H[~u ] := H0[~u ] +HD [~u ] =
1

2

∫
x

(
∇~u(x)

)2
+

∫
x
VD

(
x , ~u(x)

)
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Replica Trick

Observables are averages.

Average F = −T ln{Z} is complicated.

 Use replica trick

F = −T lim
n→0

1

n
ln
{
Zn
}

That means: compute

Zn =

∫ n∏
a=1

D[~ua] exp

{
−β

n∑
b=1

H[~ub]

}

for n ∈ N, and perform limit n→ 0 at the end.
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Cumulants

Suppose VD

(
x , ~ua(x)

)
is Gaussian distributed with

VD

(
x , ~ua(x)

)
= 0

VD

(
x , ~ua(x)

)
VD

(
y , ~ub(y)

)
= φ(x − y)R

(
~ua(x) · ~ub(y)

)
Special case I: φ(x − y) = δ(d−1)(x − y)  point-like disorder

(from Pierre Le Doussal)

Special case II: VD

(
~ua

)
∼ ~ua  R(~ua · ~ub) ∼ ~ua · ~ub
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Gaussian Variational Method

Any trial Hamiltonian H0 := 1
2

∑
ab

∫
k G−1

ab(k)~ua(k) · ~ub(−k)
implies

F ≤ F0 +
〈
H−H0

〉
H0

=: Fvar Feynman-Jensen

with F(0) := −T ln Tr
{

exp
{
− βH(0)

}}
Make the ansatz

G−1
ab(k) := G−1

0 (k) δab − σab

Use self-energy-matrix (σab) as a variational parameter.

One finds

σab(p) =

∫
x
φ(x) eipx R̂′

(∫
k
eikxGab(k)

)
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Application to Stochastic Inflation

Presented methods imply

G(t, k) = G0(t, k) + σ(t, k)G2
0(t, k)

 new dimensional reduction part↔

{
modelling “non-Gaussianity”!

violation of scale invariance!

This implies for the dimensionless
power spectrum

P(k) ∝ kd−1 G(k)
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Width of Filter Functions

Κ = 3�10-3

Κ = 1�10-3

Κ = 2�10-3
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Non-Linearity I

We had

G(t, k) = G0(t, k) + σ(t, k) G2
0(t, k)

Consider general field

ϕ := ϕ0 + gNL ϕ
2
0

for a Gaussian field ϕ0. Therefore:

G(t, k) = G0(t, k) + 3 g2
NL G2

0(t, k)

and thus

g2
NL(t, k) =

1

3
σ(t, k)
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Non-Linearity II

Μ = 0.6 H
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Non-Linearity III

Μ = 0.6 H

Μ = 0.1 H
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Angular Two-Point Function

Two-point correlation of observed CMB temperature fluctuations

C(θ) :=
〈
∆T(ê1) ∆T(ê2)

〉
θ

=
1

4π

∞∑
`=0

(2`+ 1) C` P`(cos θ)

Angle brackets represent average over all pairs of points on the sky.

C` is given through

C` =
4π

9

∫ ∞
0

dk

k

[
j`

(
2k

H0

)]2

P(k)
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No Large-Angle Correlation
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Interactions

Include now interactions,
specifically a ϕ4 self-coupling:

σab(k) = φ(k)− 8λGaa(k) δab

From which we determine P(k)

P(k) =
k3

G−1
0 (k) + 8λ k−3P(k)

+
k3 φ(k)[

G−1
0 (k) + 8λ k−3P(k)

]2
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Comparison
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Summary and Outlook

In this talk

Application of replica field theory to stochastic inflation

Cosmological dimensional reduction
→ deviation from scale invariance

Damping on large scales

Explain absence of large-angle correlation

Currently working on

Low-multipole suppression

Arbitrary potentials ↔ replica symmetry breaking [Bray, ...]

Relation to functional renormalisation group [Le Doussal, ...]

Open problem: Stochastic geometry
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