

The cusp problem

- Simulations of clustering CDM halos (e.g. Diemand et al) predict a central cusp $\rho \propto r^{\gamma}$, with $\gamma > 1$
- Feedback from the baryons makes the problem worse
- Angular momentum transfer from the bar not enough
- Bulk gas motions?
- Accretion of substructures?
- Other solutions?
- Hiding cusps by triaxiality of the halo? No

ESO79-G14 (Gentile et al. 2004)

The Burkert halo

- A halo with a central constant density core
- 2 parameters: a central density ρ₀ and a core radius r₀ at which the DM density reaches 1/4 of its central value
- Zero slope at the center and -3 log slope in the outskirts

$$\rho_{\rm dm} = \rho_0 r_0^3 / [(r + r_0)(r^2 + r_0^2)]$$

A scaling relation for DM

A constant dark matter halo surface density in galaxies

F. Donato^{1*}, G. Gentile^{2,3}, P. Salucci⁴, C. Frigerio Martins⁵, M. I. Wilkinson⁶, G. Gilmore⁷, E. K. Grebel⁸, A. Koch⁹, R. Wyse¹⁰

What does it mean?

- The parameters are degenerate with the stellar M/L ratio but this is taken into account in the error bars: difficult to lower them without a better knowledge of stellar pops
- The product
 - $\rho_0 r_0 = 141^{+82} M_*/pc^2$
- The mean DM surface density inside $r_0 = 72^{+42} M_*/pc^2$

- The gravity due to DM at $r_0 = 3.2^{+1.8} 1.2 10^{-9} \text{ cm/s}^2$
- Very intriguing... (see also Kormendy & Freeman 2004)

A similar relation for baryons!

The gravity due to *baryons* at $r_0 = 5.7 + 3.8 - 2.8 \ 10^{-10} \ cm/s^2$ or log $g_b(r_0) = -9.24 + 0.3 - 0.22$ Gentile, Famaey, Zhao & Salucci, Nature, 461, 627

What does it mean?

- The DM-to-baryonic ratio is universal within r₀
- It does not mean that the total ratio is universal
- It does not mean that the baryonic surface density is constant (misconception known as Freeman's law): the central surface density of baryons varies by 4 orders of magnitude

What does it mean?

- The larger r₀ of larger and more luminous galaxies compensate for their larger baryonic surface densities
- For a galaxy of a given « baryonic scale-length », the central baryonic surface density is correlated with r₀ and anti-correlated with the central DM volume density ρ₀
 - Unknown fine-tuned process in galaxy formation?

Rp = maximum of the baryonic rot curve

An example

UGC 9179

Vc = 90 km/s

Baryonic surf. den. within Rp

 $= 8.7 \text{ M}_{*}/\text{pc}^2$

 $r_0 = 3.5 \text{ kpc} \Longrightarrow \log g_b(r_0) = -9.27$

UGC 7323

Vc = 90 km/s

Baryonic surf. den. within Rp

 $= 38.9 \text{ M}_{*}/\text{pc}^2$

 $r_0 = 9.7 \text{ kpc} \Longrightarrow \log g_b(r_0) = -9.05$

Mass Discrepancy vs Acceleration

At r₀, the acceleration from the DM is always the same: it is a natural consequence of the Mass Discrepancy-Acceleration relation that the acceleration from baryons is then the same and vice-versa

McGaugh 2004; Tiret & Combes 2008

 $a_0 = 1.2 \text{ x } 10^{-8} \text{ cm/s}^2$

MOND

 $\mu (g/a_0) g = g_{\text{N bar}} \quad \text{where } a_0 \sim cH_0 \sim c\Lambda^{1/2}$ $\mu (V^2/ra_0) V^2/r = g_{\text{N bar}}$ with $\mu(x) = x \text{ for } x \ll 1$ $\mu(x) = 1 \text{ for } x \gg 1$

MOND

- OK for the Milky Way TVC (Famaey & Binney 2005, McGaugh 2008)
- No cusp problem + explains the RC wiggles following the baryons
- Tully-Fisher relation (observed with small scatter): $V_{\infty}^{4} = GM_{bar}a_{0}$
- Predicts that the discrepancy always appear at V²/r ~ a_0 => in LSB where $\Sigma \ll a_0/G$
- Explains why young Tidal Dwarf Galaxies exhibit a Mass Discrepancy in NGC 5291 (Bournaud et al. 2007, Gentile et al. 2007)
- Predicts the correct order of magnitude for the local galactic escape speed (Famaey, Bruneton & Zhao 2007)
 - Could be:

a) fundamental property of DM (e.g. Blanchet, Zhao)
b) modification of « inertia » (Milgrom 1994)
c) modification of gravity
d) all of the above

MOND => acceleration due to the « dark matter » is :

 $g_{dm} = [1 - \mu] g$ with typically a *maximum* acceleration of the order of $0.3a_0$ (depends on μ)

- For a Burkert halo to produce the same maximum acceleration as MOND, one gets naturally the Donato scale g_{DM}(r₀) ~ 3 x 10⁻⁹ cm/s²
- However, the MOND « DM » profile ≠ the Burkert profile, so this doesn't happen at the same baryonic gravity
- Fixing a Burkert halo such that the maximum acceleration due to DM happens at the GFZS scale g_{bar}(r₀) ~ 6 x 10⁻¹⁰ cm/s² and such that the MOND mass discrepancy is reproduced at r₀ yields a very similar profile to the MOND one

Conclusion

- The core radius in any galaxy = the radius where the mass discrepancy is of the order of 5
- This always happens at the same gravity produced by the baryonic component g_{bar} ~ 6 x 10⁻¹⁰ cm/s²
- This is linked with the success of the MOND phenomenology on galaxy scales
- The MOND phenomonelogy has to be understood (one way or the other: baryon-DM intreractions, modified gravity) in order to get a better understanding of the dark sector in galaxies