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Spectral index and  Running

One
 

of the key goal of cosmology is to probe the nature of 
the primordial perturbations, for instance to seek support 
for the inflationary cosmology.

–
 

Parameters of interest: nS
 

, α ≡ dns
 

/dlnk, r, …
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General point of view
In these papers, we carry out model selection forecasting 
for the Planck satellite, focussing on its ability to measure 
the scalar spectral index ns and its running α. For this 
purpose, we are considering the three following models:

–
 

M0

 

) A flat, Harrison-Zel’dovich model with a cosmological constant.
Parameters: ΩB

 

, Ωcdm

 

, τ, h, AS

–
 

M1

 

) The same as M0

 

, except allowing nS

 

to vary in the range of
0.8 -

 
1.2.

–
 

M2

 

) The same as M1

 

, except allowing α
 

to vary in the range of
-0.1 -

 
0.1.
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Bayesian model selection technique

•
 

To evaluate the models under assumption, we 
determine their evidence:

E(M) ≡
 

P(D|M) = ∫
 

dθ
 

P(D|θ,M) P(θ|M),

•
 

The integral is calculated using a nested 
sampling algorithm developed by                   
P. Mukherjee, D. Parkinson and A.R. Liddle.
Website: www.cosmonest.org

PriorLikelihood



Which model is preferred ?
•

 
Finally, in order to compare the models in pairs, we consider 
the Bayes factor:

Bij

 

≡
 

E(Mi

 

) / E(Mj

 

) , for i,j = 0,1,2 (i ≠
 

j)

•
 

We use the Jeffreys’ scale to determine the significance of any 
difference in evidence between the two models:

ln Bij

 

< 1
 

=>
 

not worth more than a bare mention
1 < ln Bij

 

< 2.5
 

=>
 

substantial
2.5 < ln Bij

 

< 5
 

=>
 

strong to very strong
5 < ln Bij

 

=>
 

decisive



WMAP3 vs the Planck satellite
•

 
WMAP3 has measured nS = 0.958 ±

 
0.016, which excludes HZ 

at the 95% level of confidence. However, a statistical approach 
is still necessary to decisively exclude it.

•
 

In a companion paper (astro-ph/0605003) D. Parkinson,         
P. Mukherjee and A.R. Liddle arrive to the conclusion, for 
WMAP3 data:

ln B01

 

= -0.34 ±
 

0.26

•
 

Planck, on an other hand, will measure ns

 

with the greatest 
precision ever:

±
 

0.005 !!



Tensor  perturbations
•

 
In presence of tensor perturbations WMAP3 has 
measured, for a power-law model, nS = 0.984

•
 

… and if the running is included in the model,          
nS = 1.16 ±

 
0.10

 
and

 
α

 
= -0.085 ±

 
0.043.

•
 

The “Intermediate Inflation”
 

model, V ∂
 

φ-β, gives  
nS = 1 and r > 0 providing β

 
= 2, to first order in 

slow-roll (J. Barrow & A. Liddle).

•
 

To first order,                            and               . 
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Tensor  perturbations

0.9 0.95 1 1.05 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n
s

r 0.
00

2

WMAP

β=2

β=4

β=1

Trajectories
 

for different
 

values of
 

the
 

parameter
 

β

 
in the

 
nS

 

-r
 

plane, to first-order
 

in slow-roll.

(J. Barrow, A. Liddle, and
 

C. Pahud)



Simulating Planck data
•

 
Our aim is to plot the Bayes factor using datasets 
generated as a function of the parameters of interest, 
nS

 

and α.
Datasets generated with the best-fit WMAP data with 
nS

 

in the range of 0.8-1.2 and α
 

between
 

-0.1 and
 

0.1.

•
 

In doing so, we uncover the regions of this parameters 
space in which Planck would be able to decisively 
select between the models, and also those regions 
where the comparison would be inconclusive.



The three models

•
 

M0

 

= 5 basic parameters = HZ

•
 

M1

 

= 5 basic parameters + nS

 

= VARYn

•
 

M2

 

= 5 basic parameters + nS

 

+ α
 

= VARYn
 

α

nS
 

(k) = nS
 

(k0
 

) + α
 

ln ( k/k0 )

with the pivot scale k0 = 0.05 Mpc-1



Results: Spectral index

The horizontal lines indicate where the comparison becomes 
‘strong’ (dashed) and ‘decisive’ (solid) on the Jeffreys’ scale.

HZ preferredInconclusive Inconclusive
VARYn 
preferred

VARYn 
preferred



Spectral index and its running

The contour lines represent different steps in the Jeffreys’ scale. From the plot centres, the 
levels are 2.5, 0, -2.5, -5 in the left and right panels, with the centre panel contours starting at 5.

ln B01 ln B02 ln B12



Running of spectral index

The horizontal lines indicate where the comparison becomes 
‘strong’ (dashed) and ‘decisive’ (solid) on the Jeffreys’ scale.

VARYn

preferred
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VARYnα
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Three-way model comparison

False-colour RGB plot, with Red = HZ, 
Green = VARYn and Blue = VARYnα

Sector plot, with White = HZ,               
Grey = VARYn and Black = VARYnα



Conclusions
•

 
Model selection analyses complement the usual parameter 
error forecasts, and can robustly identify the need for new fit 
parameters.

•
 

It is not as easy to rule out nS

 

=1 as suggested by parameter 
error forecasts. If HZ is the true model, VARYn will be 
strongly disfavoured, but not decisively.

•
 

If VARYn is the true model, it will be strongly, but not 
decisively, preferred over VARYnα. However, nS

 

away from 
[0.986, 1.014] is needed to strongly favour VARYn over HZ.

•
 

Finally, suppose VARYnα
 

is the true model, the alternatives 
will be only ruled out if the true value satisfies ⏐α⏐>0.02. 
WMAP3 gives at the 95% level of confidence –0.17<α<+0.01.
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General point of view
•

 
We consider a class of inflationary models with small 
oscillations

 
imprinted on an otherwise smooth inflaton

 potential.

•
 

These oscillations are manifest as oscillations in the power 
spectrum for

 
primordial perturbations, which then give rise to 

oscillating departures from the standard CMB power spectrum.

•
 

We quantify the smallest detectable oscillations
 

in the CMB 
power spectrum, and thus the smallest detectable amplitude of 
oscillations in the inflaton

 
potential.
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Introduction
•

 
CMB experiments continue to be consistent with the simplest 
predictions of inflationary models, even if the data become 
increasingly precise.

•
 

Many parameters like
AS

 

, nS

 

, AT

 

, …

can now be used to constrain the parameters space of the 
inflaton

 
potential. The simplest model being

•
 

However it is worth asking whether the CMB data, present or 
future, can be used to constrain more complicated forms of the 
potential.

PL
622 108 with  ,

2
1)( MmmV −×≅= πφφ



Motivation
•

 
Oscillations in the primordial power spectrum arising from a 
step in the inflaton

 
potential:

–
 

L. Covi
 

et al. (Phys. Rev. D 74, 2006)
–

 
J. Hamann

 
et al. (arXiv:astro-ph/0701380)

•
 

Oscillations in the primordial power spectrum coming from a 
rapid phase transition in multiple-fields models:
–

 
P. Hunt and S. Sarkar

 
(Phys. Rev. D 70, 2004 & arXiv:0706.2443)

•
 

Oscillations in the inflaton
 

potential in natural-inflation 
models, constrained from existing data:
–

 
X. Wang et al. (Int. J. Mod. Phys. D 14, 2005)



The oscillating model
•

 
The inflationary background dynamics is governed by the 
Friedmann

 
and the Klein-Gordon equations (8πG = c = h

 
= 1) 

•
 

We consider then sinusoidal fluctuations on the quadratic 
smooth potential

•
 

The power spectrum PR of the primordial curvature perturbation 
is expressed with the horizon-crossing approximation
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Primordial and matter spectra
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Primordial power spectrum (left) and matter power spectrum (right) of the smooth 
inflaton

 
potential (solid) and oscillating potential (dashed). The latter's parameters 

are [α, β] = [5 ×
 

10-4, 3 ×
 

10-2] in order to clearly show their effect.
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CMB spectrum
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The CMB power spectrum corresponding to the models shown in the 
previous plots.  The WMAP3 data are superimposed. The error bars

 include both the cosmic variance and instrumental noise.



Detectability
•

 
We perform an estimate of the smallest oscillation amplitude α

 that will be detectable with Planck.  To do so, we suppose that 
each multipole

 
moment l can be measured with a standard 

error

where Nl

 

is the contribution from the detector noise.

•
 

We then estimate the error to α
 

by
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Smallest detectable amplitude

The smallest detectable amplitude σα

 

as a function of β, for Planck. 
An amplitude α

 
= 5 ×

 
10-5

 

has been chosen for the analysis.
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Conclusions & Future work

•
 

Despite the constraint due to the cosmic variance, very small 
oscillations O(10-6) may still be detectable by future 
experiments, like Planck, if they do exist.

•
 

Our results are only slightly improved when the polarization 
and temperature-polarization power spectra are included.

•
 

A marginalization over all the parameters in our model should 
bring some extra information.

•
 

A comparison with WMAP3 through a MCMC analysis would 
be interesting to consider as well.
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