### Exploring dark energy models with linear perturbations: Fluid vs scalar field

### Masaaki Morita (Okinawa Natl. College Tech., Japan)

Beautiful ocean view from my laboratory in Henoko, Okinawa

Futenma Air Base will really move to this sea...?

That I

1. Present Status of Observational Cosmology

Recent cosmological observations have revealed two main features of the universe:

• High-z type la supernovae

late-time acceleration of cosmic expansion

• Cosmic Microwave Background by WMAP Satellite the universe is almost spatially flat

> Dark Energy (DE) – 70 % Dark Matter (DM) – 25 %

#### Almost all components of the universe is unknown

### Composition of the Cosmos

Dark

Energy: ~70%











Dark energy: ~70%

Heavy elements: 0.03%

neutrinos: 0.3%

Stars: 0.5%

Free hydrogen and helium: 4%

Dark matter: ~25%

September 11, 2008

Seminar at IAP, 2008

Dark

Matter:

~25%







### A Revolution in Cosmology





- Physical substance of DE and DM
- Cosmic coincidence problem

### 2. Theoretical Basics

Einstein eq.  $G_{\mu\nu} = 8 \pi G T_{\mu\nu}$ 

$$H^{2} := \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3}\rho , \quad \frac{\ddot{a}}{a} = \frac{-4\pi G}{3}(\rho + 3P)$$

for a homogeneous and isotropic universe (spatially flat)

For acceleration of cosmic expansion,  $\rho + 3P < 0$ 

### violation of Strong Energy Condition

Eq. of motion 
$$\nabla_{\mu} T^{\mu}_{\nu} = 0$$
  
 $\dot{\rho} + 3 H (\rho + P) = 0$   
 $\rho \propto a^{-3(1+w)}, \quad w := P/\rho$   
 $a \propto t^{2/[3(1+w)]}$  (for const w)  
For the acceleration,  $w < -\frac{1}{3}$ 

### Many possible models of Dark Energy

- Dynamical DE with a standard scalar field (quintessence)
- K-essence with a non-canonical scalar field
- Phantom field with a negative kinetic term
- (Generalized) Chaplygin gas  $P = -A \rho^{-\alpha}$ a fluid model unifying DE and DM
- *f*(*R*)-gravity (modified gravity)

. . .

# (a) Standard scalar field model (quintessence) $S = \int d^{4}x \sqrt{-g} \left[ -\frac{1}{2} g^{\mu\nu} \nabla_{\mu} \varphi \nabla_{\nu} \varphi - V(\varphi) \right]$ $\rho = \frac{1}{2} \dot{\varphi}^{2} + V(\varphi) \quad , \quad P = \frac{1}{2} \dot{\varphi}^{2} - V(\varphi)$

$$w = \frac{P}{\rho} = \frac{\dot{\varphi}^2 / 2 - V}{\dot{\varphi}^2 / 2 + V}$$

Similar to inflation, but the potential has the form of inverse power law

$$V(\varphi) \propto \varphi^{-n} \quad (n > 0)$$

Seminar at IAP, 2008

# (b) General scalar field model (k-essence) including non-canonical kinetic terms

$$S = \int d^{4}x \sqrt{-g} p(\varphi, X) ; \qquad X = -\frac{1}{2}g^{\mu\nu}\nabla_{\mu}\varphi\nabla_{\nu}\varphi$$
$$T^{\text{scalar}}_{\mu\nu} = p_{,X}\nabla_{\mu}\varphi\nabla_{\nu}\varphi + pg_{\mu\nu}$$
$$\square$$
$$T^{\text{fluid}}_{\mu\nu} = (\rho + p)u_{\mu}u_{\nu} + pg_{\mu\nu}$$
$$\rho = 2X p_{,X} - p ; \qquad u_{\mu} = \frac{\nabla_{\mu}\varphi}{(2X)^{1/2}}$$

e.g. 
$$p(\varphi, X) = K(\varphi) X + L(\varphi) X^2$$

Seminar at IAP, 2008

(c)(Generalized) Chaplygin Gas  
Kamenshchik et al (2001), Bento et al (2002), ...  
$$P = -A \rho^{-\alpha}$$

 $\dot{\rho} + 3 H(\rho + P) = 0 \rightarrow \rho = (A + B a^{-3(1+\alpha)})^{1/(1+\alpha)}$ 

early time  $P \approx 0$  late time  $P \approx -\rho$ 

Fluid models unifying DE and DM interesting possibility to solve the coincidence problem

But... strongly constrained from structure formaion and CMB



# The End of Unification?

FIG. 1. UDM solution for perturbations as function of wavenumber, k. From top to bottom, the curves are GCG models with  $\alpha = -10^{-4}$ ,  $-10^{-5}$ , 0 (ACDM),  $10^{-5}$  and  $10^{-4}$ , respectively. The data points are the power spectrum of the 2df galaxy redshift survey.

#### Linear power spectrum in Chaplygin gas models Sandvik et al, PRD 69 (2004) 123524

A generalized Chaplygin gas model is *equivalent* to a type of quintessence models:

fluid scalar field  $P = -A \rho^{-\alpha} \qquad \bigvee \qquad V(\phi) = (A^{1/2}/2)(\cosh \alpha \phi + (\cosh \alpha \phi)^{-1})$ 

## These two give the same cosmic expansion. **zeroth-order dynamics**

But how is the linear **perturbation dynamics**?

The difference of the perturbation dynamics may give a clue to distinguish the physical substance of DE.

What we want to do:

Compare the linear perturbation dynamics under the same background dynamics

between fluid and scalar field DE models

### 3. Perturbations in dark energy cosmology

### Model: Einstein gravity + DE (fluid or scalar field) + pressureless matter

$$G^{\mu}_{\nu} = 8\pi G \left( T^{\mu}_{(f)\nu} + T^{\mu}_{(m)\nu} \right)$$
$$T^{\mu\nu}_{(f)} = \left( \rho_{f} + P_{f} \right) u^{\mu}_{(f)} u^{\nu}_{(f)} + P_{f} g_{\mu\nu}$$

or 
$$G^{\mu}_{\nu} = 8 \pi G \left( T^{\mu}_{(\phi)\nu} + T^{\mu}_{(m)\nu} \right)$$
$$T^{(\phi)}_{\mu\nu} = p_{,X} \nabla_{\mu} \varphi \nabla_{\nu} \varphi + p g_{\mu\nu}$$

Longitudinal gauge:

$$ds^{2} = -(1+2\Phi)dt^{2} + a^{2}(1-2\Phi)\gamma_{ij}dx^{i}dx^{j}$$

Perturbed Einstein tensor

$$\delta G_{0}^{0} = 2 \frac{k^{2}}{a^{2}} \Phi + 6 H (H \Phi + \dot{\Phi})$$
  

$$\delta G_{i}^{0} = 2 (H \Phi + \dot{\Phi})_{,i}$$
  

$$\delta G_{j}^{i} = \left[ 2 (H \Phi + \dot{\Phi})^{2} + 6 H (H \Phi + \dot{\Phi}) + 2 \dot{H} \Phi \right] \delta_{j}^{i}$$

Perturbed Einstein eqs for fluid DE

September 11, 2008

Eq. of motion 
$$\nabla_{\mu} T^{\mu}_{(m)\nu} = 0$$

Assumption: no interaction between fluid DE and CDM except gravity

$$\dot{\Delta_{\rm m}} - 3 \dot{\Phi} - k^2 v_{\rm m} = 0 \qquad (\Delta_{\rm m} := \delta \rho_{\rm m} / \rho_{\rm m})$$
$$\dot{v_{\rm m}} + 2 H v_{\rm m} + \frac{1}{a^2} \Phi = 0$$

Perturbed Einstein eqs for scalar field DE  

$$\delta G^{\mu}_{\nu} = 8\pi G \Big( \delta T^{\mu}_{(\varphi)\nu} + \delta T^{\mu}_{(m)\nu} \Big)$$

$$\frac{k^{2}}{a^{2}} \Phi + 3H (H \Phi + \dot{\Phi}) = -4\pi G (\delta \rho_{\varphi} + \delta \rho_{m})$$

$$H \Phi + \dot{\Phi} = 4\pi G \Big( p_{,X} \dot{\phi} \delta \varphi - \rho_{m} a^{2} v_{m} \Big)$$

$$(H \Phi + \dot{\Phi})^{2} + 3H (H \Phi + \dot{\Phi}) + \dot{H} \Phi = 4\pi G \delta p$$

$$\begin{aligned} \ddot{\varphi} + \left[ (4+3c_{\varphi}^{2})H + Z \right] \dot{\varphi} + \left[ 2\dot{H} + 3H^{2}(1+c_{\varphi}^{2}) + Z + \frac{c_{\varphi}^{2}k^{2}}{a^{2}} \right] \phi \\ = -4\pi G \rho_{\rm m} (c_{\varphi}^{2}\Delta_{\rm m} + Z a^{2}v_{\rm m}) \end{aligned}$$
$$c_{\varphi}^{2} := \frac{p_{,X}}{p_{,X} + p_{,XX}} \dot{\varphi}^{2} = \frac{p_{,X}}{\rho_{,X}} , \quad Z := \frac{p_{,X}p_{,X\varphi}\dot{\varphi}^{2} - p_{,\varphi}p_{,XX}\dot{\varphi}^{2} - 2p_{,\varphi}p_{,X}}{p_{,X}\dot{\varphi}(p_{,X} + p_{,XX}\dot{\varphi}^{2})} \end{aligned}$$

#### Remember the fluid case:

$$\ddot{\Phi} + (4+3c_{\rm f}^2)H\dot{\Phi} + \left[2\dot{H} + 3H^2(1+c_{\rm f}^2) + \frac{c_{\rm f}^2k^2}{a^2}\right]\Phi = -4\pi G c_{\rm f}^2\rho_{\rm m}\Delta_{\rm m}$$

September 11, 2008

In the case of quintessence,  $\rho = X + V(\varphi)$ ,  $p = X - V(\varphi)$  $c_{\varphi}^2 = p_{,X}/\rho_{,X} = 1$ ,  $Z = 2V_{,\varphi}/\dot{\varphi}$ 

(After some calculations, we find)

# Both coincide in the large-scale limit if CDM component is negligible

#### Two differences: sound velocity and source from CDM component

- Does not coincide with a fluid case generally even in the large-scale limit
- In purely kinetic k-essence p=p(X), the left-hand side coincides with a fluid case because Z=0,  $c_x^2=c_s^2$  but still different in the source
- May coincide with a fluid case generally in large-scale in uniform-field gauge δφ=0 If so, ``fluid analogy" is a gauge-dependent notion in cosmological perturbations

### 4. Illustrations of the perturbation dynamics



 $\begin{array}{c} \mathsf{LCDM} \\ (\Omega_m = 0.3, \ \Omega_\Lambda = 0.7) \end{array}$ 

Chaplygin fluid  $(\alpha=0.5, \xi=10)$ 

Corresponding quintessence

 $\xi = k/H_0$ 



 $\begin{array}{c} \mathsf{LCDM} \\ (\Omega_m = 0.3, \, \Omega_\Lambda = 0.7) \end{array}$ 

Chaplygin fluid  $(\alpha=0.5, \xi=100)$ 

Corresponding quintessence

### 5. Summary & Discussions

- Dynamics of linear perturbations can be a tool of exploring unified dark energy models
- Dynamics of linear perturbations coincides between a fluid dark energy and the corresponding scalar-field quintessence in the large-scale limit but are quite different in small scales.
- Does not coincide between a fluid model and a general scalar-field model generally even in the large-scale limit.

- Damping of metric perturbations will cause the Integrated SW effect on CMB anisotropy and is strongly constrained by observations. (Amendola et al 2003)  $0 \le \alpha < 2$
- To construct a viable model of DE-DM unification, the sound velocity should be designed to be small.