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1.1. Motivation from mathematics

Nonlinear stability of Minkowski in vacuum GR:

Example:
ḟ (t) = f 2(t)

Stability of f (t) = 0?

Linearize: ḟ (t) ≈ 0 ⇒ stability (not asymptotic).

Nonlinear: f (t) = f0
1−f0t ⇒ singular at t = f−1

0 .

Cosmic censorship: is it possible to form a naked (visible to far
observers) singularity starting from smooth initial conditions in a
self-gravitating system which is regular without gravity?
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Linearize: ḟ (t) ≈ 0 ⇒ stability (not asymptotic).

Nonlinear: f (t) = f0
1−f0t ⇒ singular at t = f−1

0 .

Cosmic censorship: is it possible to form a naked (visible to far
observers) singularity starting from smooth initial conditions in a
self-gravitating system which is regular without gravity?

JMMG (LUTH & IAP) CritPhen 6 October 2008 4 / 30



1.1. Motivation from mathematics

Nonlinear stability of Minkowski in vacuum GR:
Example:
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ḟ (t) = f 2(t)

Stability of f (t) = 0?
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1.1. Christodoulou

Address both problems in a simpler setting: spherical symmetry.

Birkhoff theorem in 3+1 ⇒ no grav. freedom

Add massless real scalar field φ(t , r), obeying Klein-Gordon eq.

Results (CMP’86):
Small finite data ⇒ Minkowski is stable.

Large data ⇒ Schwarzschild end state.
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1.1. Christodoulou (II)

General question: What happens in between?
Naked singularity?

Particular question (1987): is it possible to form
arbitrarily small black holes?

M ∝ RBH , curvature at surface ∝ 1
R2

BH

Intuition: need for self-similarity near the centre (cf. Ori & Piran PRL’87):

φ(t , r) = f (−t/r) + κ log(−t)

Goldwirth and Piran, PRD’87:
We present a numerical study of the gravitational collapse of a massless
scalar field. We calculate the future evolution of new initial data,
suggested by Christodoulou, and we show that in spite of the original
expectations these data lead only to singularities engulfed by an event
horizon.
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1.2. Choptuik

1982–1986 (PhD): scalar field spherical collapse
code. Cauchy, fully constrained.

1987–1991: Improve accuracy and convergence:
adaptive mesh refinement and Richardson
extrapolation.

Choptuik, Goldwirth and Piran CQG’92: compare codes
[CA≡ Cauchy (Choptuik’s code). CH≡ Characteristic (GP’s code).]
... although the levels of error in the CA and CH results at a given
resolution were quite comparable at early retarded times (...), the CA
values were significantly more accurate than the CH data once the pulse
of scalar field had reached r = 0.

And then in 1993...
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1.2. Choptuik’s setup

The system:

ds2 = −α2(t , r)dt2 + a2(t , r)dr2 + r2dΩ2, Φ ≡ φ′, Π ≡ aφ̇/α

Φ̇ =
(α

a
Π
)′
, Π̇ =

1
r2

(
r2α

a
Φ
)′
,

α′

α
=

a′

a
+

a2 − 1
r

= 2πr(Π2+Φ2).

One-parameter (p) families of initial conditions with the property:

Small p leads to no BH formation (small finite data).
Large p produces a BH (large data).

Example (pure ingoing):

φ(0, r) = φ0 r3 exp (−[(r − r0)/δ]q)

p = φ0, r0, δ,q

∆

q

Φ
r

0 2 4 6 8 10
0

5

10

15
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1.2. Choptuik’s results

Bisection in p (prec ∼ 10−15) to BH formation threshold. He found (PRL’93):

There is always a well defined value p∗ separating BH formation from
dispersal (the threshold is not fractal).

It is possible to form arbitrarily small black holes.

Scaling: MBH(p) ∝ (p − p∗)γ for p & p∗.

Oscillations in the central region, accumulating at (r = 0, t = 0).

Discrete self-similarity: φ(t , r) ≈ φ(t/e∆, r/e∆)

Universality: γ ≈ 0,37, ∆ ≈ 3,44, same profile φ∗(t , r) for all
families.

Conjecture: φ∗ exact solution with high symmetry and attractive properties.

Comment: Self-similarity is dynamically found, but in a more general form!
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1.3. Further results

Independent confirmations:

Gundlach (PRL’95): φ∗ as solution of eigenvalue problem.

Hamadé & Stewart (CQG’96): higher precision collapse. Naked!

Phenomenology confirmed in more than 20 other systems:

Abrahams & Evans (PRL’93): axisymmetric vacuum (DSS).

Evans & Coleman (PRL’94): perfect fluid, p = ρ/3 (CSS).

Choptuik, Chmaj & Bizoń (PRL’96): SU(2) Yang-Mills (DSS).

Liebling & Choptuik (PRL’96): Brans-Dicke (CSS/DSS).

Proca, Dirac, sigma fields, ..., Vlasov(?)

With/without mass, charge, conformal couplings, ...

Different equations of state for fluids.

Other dimensions.
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1.3. Back to mathematics

Christodoulou & Klainerman
’93: Minkowski is nonlinearly
stable.

Christodoulou (AM’94):
Naked singularities in scalar
field collapse.

Christodoulou (AM’99): They
are unstable!

Cosmic censorship is
modified: no stable naked
singularities.

1997: Hawking concedes
defeat in his famous bet.

New bet!
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2.1. Self-similarity

Invariance under change of scale, or absence of a preferred scale.

Any continuous symmetry has a discrete version.
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2.1. Geometry of self-similarity

CSS: Homothetic Killing vector ξa:

Lξ gab = −2 gab

In spherical symmetry, define
adapted coordinates:

x ≡ r
−t , τ ≡ − log −t

t0

Then any metric is:

e−2τ
(
Adτ2 + 2Bdτdx + Cdx2 + FdΩ2

)
with ξ = ∂τ .

CSS: A,B,C,F functions of x only.
DSS: also periodic in τ , period ∆.

point
singularity

center
regular

past light cone 
    of the singularity

Cauchy
horizon

identify

of the singularity

PSfrag replaements
� = 0� = �� = 2�� = 3�

x = xf

x = xpx = x
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2.2. GR as a dynamical system
(Evans & Coleman PRL’94; Koike, Hara& Adachi PRL’95; Gundlach PRD’97)

State S ≡ {γ,K ,Ψ}. Ṡ = F [S] with some initial S(0) = S0.

Evolution in (∞-dim) phase space:

       curve

solution
subcritical

solution
supercritical

p>p*

p<p* of initial data

CRITICAL 
SURFACE

Minkowski

Choptuik

Schwarzschild(M)

Warnings:
Which functional space? Asymptotic properties of the spacetimes.
Which foliations? Which coordinates?
Meaning of “attraction”?
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State S ≡ {γ,K ,Ψ}. Ṡ = F [S] with some initial S(0) = S0.

Evolution in (∞-dim) phase space:

       curve

solution
subcritical

solution
supercritical

p>p*

p<p* of initial data

CRITICAL 
SURFACE

Minkowski

Choptuik

Schwarzschild(M)

Warnings:
Which functional space? Asymptotic properties of the spacetimes.
Which foliations? Which coordinates?
Meaning of “attraction”?

JMMG (LUTH & IAP) CritPhen 6 October 2008 15 / 30



2.2. GR as a dynamical system
(Evans & Coleman PRL’94; Koike, Hara& Adachi PRL’95; Gundlach PRD’97)
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2.2. The emerging idea

For any system in GR:
Find global attractors of evolution: Minkowski, stars, black holes.
Restrict to the boundaries among basins of attractors.
Find attractors on the boundaries (“critical solutions”).

Critical Phenomena ≡ Study of basins boundaries in GR phase space.

Same mathematical ideas and techniques used in Statistical Mechanics.
We believe there is no physical connection.

Attraction⇒ Forget initial details⇒ Highly symmetric solutions:
Spherical or axisymmetric
Static (“type I”) or self-similar (“type II”). Both continuous or discrete.

Two approaches to criticality:
The nonlinear way:

Evolution code and fine tune IC families to critical surface.
Search for critical phenomena (mainly universality).

The linear way:
Construct candidate critical solution.
Check there is a unique unstable linear mode.
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2.3. Mass scaling

Linearize evolution around critical solution (CSS):

Sp(τ, x) ≈ Z ∗(x) +
∞∑
i=0

Ci (p)eλiτsi (x)

For large τ only the unstable mode (i = 0) survives. By def C0(p∗) = 0.

Sp(τ, x) ≈ Z ∗(x) + K (p − p∗)eλ0τs0(x), K ≡ dC0

dp

∣∣∣∣
p∗

The linear approximation breaks when

K (p − p∗)eλ0τp s0(x) ≈ ε

At that time τp the system has forgotten everything except for the scale

(−tp) = t0e−τp ∝ (p−p∗)1/λ0 , MBH ∝ (p−p∗)1/λ0 , m«ax R ∝ (p−p∗)−2/λ0
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3.1. Massless scalar field

Perturbative results:

JMMG & Gundlach PRD’99 : All nonspherical perturbations
of the Choptuik spacetime decay. Slowest decaying mode
is l = 2 polar, with λ = -0.019(2)+ i 0.55(9).

Garfinkle, Gundlach & JMMG PRD’99 : Conjectured
scaling law for angular momentum, exponent 0.762(2).

(Gundlach & JMMG PRD’96 : Conjectured charge scaling,
exponent 0.884(1), confirmed by Hod & Piran PRD’96.)

Non-linear results:

Choptuik et al PRD’03, axisymmetry: unstable l = 2 polar
mode, exponent 0.1–0.4. Critical solution cascade.

Choptuik et al PRL’04: ansatz φ(t , ρ, z, φ) = eimφψ(t , ρ, z).
DSS criticality. Isolated m sectors. Which unstable?
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3.1. Fluids

Perturbative results:

Gundlach PRD’01, CSS p = kρ :

k < 1/9 (analytical): l = 1 axial unstable (ballerina effect).
1/9 < k <0.49: stable nonspherical modes.
k >0.49: many unstable polar modes.
Note: spherically-stable naked singularity for k <0.01 (Harada &
Maeda PRD’03, Snajdr CQG’06).

Non-linear results:

Jin & Suen PRL’07: BH threshold in neutron stars head-on collision.

Signs of type I criticality.
Critical solution: oscillating spherical neutron star, probably a finite
perturbation of an unstable TOV star (Noble & Choptuik ’08).
Universality is unlikely.
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3.1. Glancing BH collisions

Pretorius & Khurana CQG’07:

Equal mass BHs. Fine tune boost.

N circular orbits before merging or
dispersing.

eN ∝ (p − p∗)−γ , γ ≈ 0.31-0.38

1.5 % total energy radiated per orbit.
⇒ non-stationary criticality.

m«ax N limited by kinetic energy available.

Possible self-similar criticality for zero
mass BHs.
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3.2. Global structures for a self-similar spacetime

Recall structure e−2τgµν(x). Central singularity at τ =∞.

Self-similarity horizons: null homothetic lines.

Building blocks: fan and splash (Gundlach & JMMG PRD’03)

Example:
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3.2. High precision numerical Choptuik spacetime

JMMG & Gundlach PRD’03

Three regions

Psedospectral code. Fourier in τ ;
4th order FD in x .

point
singularity

center
regular

past light cone 
    of the singularity

Cauchy
horizon

identify

of the singularity

PSfrag replaements
� = 0� = �� = 2�� = 3�

x = xf

x = xpx = x
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3.2. The inner patch
Impose DSS and regularity at centre and past light cone.

∆ = 3,445 452 402(3)
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3.2. All together

Oscillations pile up at the Cauchy Horizon, but decay.

Curvature is continuous but non-differentiable. Continuation not unique:
one free function (radiation from the singularity).

Unique DSS continuation with regular center (nearly flat):
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3.2. Global structure of the Choptuik spacetime

All other continuations produce a negative mass singularity at the centre, with
no new self-similarity horizon:
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4+1 vacuum collapse

Bizoń et al PRD’05, PRL’05, PRL’06

No Birkhoff theorem in 4+1: gravitational waves in spherical symmetry.

Take

ds2 = −Ae−2δdt2 + A−1dr2 +
r2

4

[
e2Bσ2

1 + e2Cσ2
2 + e−2(B+C)σ2

3

]
σ1 + i σ2 = eiψ(cos θ dφ+ i dθ), σ3 = dψ − sin θ dφ

Triaxial symmetry: exchange of the σi . 6-copy solutions.

DSS criticality with B = C (biaxial 3-copy solutions).

⇒ 3 critical solutions and basins of attraction.

Boundaries among those are controled by triaxial DSS codim-2 sols.
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Chaos on the critical surface
Szybka & Chmaj PRL’08

Quadruple precision (32 digits) to fine tune two modes.

Chaotic evolution within the critical surface: which of three DSS
end-state? Reported fractal dim 0.68–0.72.

κ-family of ICs. Possible end-states h = 1,1/2,−2 or 0 (unknown).
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Summary

1 Historical introduction
Christodoulou
Choptuik
Other results

2 The current model
Self-similarity
GR as a dynamical system
Mass scaling

3 Interesting results
Non-spherical systems
Global structure of the critical solution
Chaos

4 Conclusions and open questions
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Conclusions and open questions

It is “easy” to form a naked singularity: fine tune to the BH threshold.

Process controlled by an exact solution (“choptuon”), as gravitational
collapse is controlled by a black hole.

Route to visible regions with arbitrarily high curvature.

First qualitative pictures of GR phase space. Chaos.

Numerical Relativity can add new physics to mainstream GR. Note the
importance of very high precision numerics.

Dynamical understanding of the process missing.

What happens outside spherical symmetries? No 3D simulations so far.

Show existence of the Choptuik spacetime.

Can we approximate critical exponents analytically? Holography?

Quantum and astrophysical relevance?

Gundlach & JMMG, Living Reviews Relativity 2007.
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