	KKLMMT	End of KKLMMT		

Tachyon entropy perturbations in brane inflation

Larissa Lorenz Institut d'Astrophysique de Paris, France

work with R. Brandenberger & A. Frey: arXiv:0712.2178 [hep-th]

February 25th, 2008 Seminaire GReCo, IAP

▲□▶▲□▶▲□▶▲□▶ = のぐら

Brandenberger, Frey & Lorenz arXiv:0712.2178

Outline	KKLMMT	End of KKLMMT		

1 String inflation

2 KKLMMT

- 3 End of KKLMMT
- 4 Perturbations

5 Caveats

6 Conclusions

Very early Universe physics was described by a **Grand Unified Theory**. **String Theory** is a candidate – does it contain (predict) inflation ?

String inflation	KKLMMT	End of KKLMMT			
A promising star	t: String essent	g Theory contair tial for the inflat	ns lots of sca ionary mechai	lar fields, nism.	
A challenging ta	sk: Does a suit	one field ϕ (or seable potential?	everal, ϕ_1, ϕ_2 .) have	
 			٨		

What kind of scalar fields?

- Coupling constants are determined by field VEV's, e.g. dilaton g_s = e^{Φ₀}.
- The stringy Universe has (at least) 10 dimensions.
- There are lowerdimensional hypersurfaces (*Dp* branes, *p*: # of spatial dimensions).

- 4 回 ト - 4 回 ト - 4 回 ト

String inflation	KKLMMT	End of KKLMMT			
A promising sta	rt: String essen	g Theory contai tial for the inflat	ns lots of sca tionary mecha	alar fields, nism.	
A challenging ta	isk: Does a suit	one field ϕ (or stable potential?	everal, ϕ_1, ϕ_2) have	

What kind of scalar fields?

- Coupling constants are determined by field VEV's, e.g. dilaton g_s = e^{Φ₀}.
- The stringy Universe has (at least) 10 dimensions.
- There are lowerdimensional hypersurfaces (*Dp* branes, *p*: # of spatial dimensions).

- 4 同 ト 4 ヨ ト 4 ヨ ト

String inflation	KKLMMT	End of KKLMMT			
A promising sta	rt: Strin	g Theory cont	ains lots of s	calar fields,	
A challenging ta	esser I sk: Does a sui	ntial for the infl s one field ϕ (or table potential	ationary mech several, ϕ_1, ϕ_2	aanism. ₂) have	

What kind of scalar fields?

- Coupling constants are determined by field VEV's, e.g. dilaton g_s = e^{Φ₀}.
- The stringy Universe has (at least) 10 dimensions.
- There are lowerdimensional hypersurfaces (*Dp* branes, *p*: # of spatial dimensions).

String Inflation

closed string mode *e.g. moduli*

Brandenberger, Frey & Lorenz arXiv:0712.2178

String inflation	KKLMMT	End of KKLMMT		

æ

イロト イヨト イヨト イヨト

String Inflation

closed string mode *e.g. moduli*

open string mode *e.g. brane position*

C. Burgess & F. Quevedo in Scientific American, Nov 07

Candelas & de la Ossa (1990)

크

 T_3 : brane tension M, μ : model parameters

Brandenberger, Frey & Lorenz arXiv:0712.2178

2

Brandenberger, Frey & Lorenz arXiv:0712.2178

	KKLMMT	End of KKLMMT			
background evoluti	on:	In the tions	CMB, we ob around this ba	serve <i>pertu</i> ackground:	ırba-
$\frac{8\pi G}{3}\rho$	$= H^2$		$\phi = \phi_0$	$+ \delta \phi$	
$\ddot{\phi} + 3H\dot{\phi} + V_{\phi}$	= 0	Como	ving curvature	e perturbat	ion R:
with $V(\phi) = M^4 \left[1 \right]$	$-\left(\frac{\mu}{\phi}\right)^4$		$\mathcal{R} = \frac{\delta \rho}{\rho} \approx$	$rac{HV_{\phi}(\phi_*)}{\dot{\phi}_*^2}$	

 ϕ_* : field value when observable scales k left Hubble radius

 ${\mathcal R}$ must match COBE normalisation: ${\mathcal R}\approx 10^{-5}$

Brandenberger, Frey & Lorenz arXiv:0712.2178

	KKLMMT	End of KKLMMT					
		In the	CMB, we ob	serve <i>pertu</i>	irba-		
background evolution:		tions	<i>tions</i> around this background:				
$\frac{8\pi G}{3}$	$\rho = H^2$		$\phi = \phi_0$	$+ \delta\phi$			
$\ddot{\phi} + 3H\dot{\phi} + N$	$V_{\phi} = 0$	Como	oving curvature	e perturbat	ion R:		
with $V(\phi) = M^4$	$\left[1-\left(rac{\mu}{\phi} ight)^4 ight]$		$\mathcal{R} = \frac{\delta \rho}{\rho} \approx$	$\frac{HV_{\phi}(\phi_{*})}{\dot{\phi}^{2}}$			
			ρ	ψ			

 ϕ_* : field value when observable scales k left horizon

 ${\mathfrak R}$ must match COBE normalisation: ${\mathfrak R}\approx 10^{-5}$

Hence COBE fixes the scale of inflation, here M!

For this normalization, \Re must not change for $k/a \rightarrow 0$! "primary perturbations"

イロト イポト イヨト イヨト 三日

《曰》 《圖》 《臣》 《臣》

I_s : string length

	KKLMMT	End of KKLMMT		

"inflaton" ψ , tachyon T

potential driving inflation:

$$V(\phi) = M^4 \left[1 - \left(\frac{\mu}{\phi}\right)^4 \right]$$

valid up to $\phi_{\rm strg}$

Brandenberger, Frey & Lorenz arXiv:0712.2178

	KKLMMT	End of KKLMMT		

"inflaton" ψ , tachyon T

potential driving inflation:

$$V(\phi) = M^4 \left[1 - \left(\frac{\mu}{\phi}\right)^4\right]$$

valid up to $\phi_{
m strg}$

switch fields $\phi \rightarrow \psi \sim \ln \phi$

Brandenberger, Frey & Lorenz arXiv:0712.2178

	KKLMMT	End of KKLMMT		

"inflaton" ψ , tachyon T

potential driving inflation:

$$V(\phi) = M^4 \left[1 - \left(\frac{\mu}{\phi} \right)^4 \right]$$

valid up to $\bar{\phi_{
m strg}}$

switch fields $\phi \rightarrow \psi \sim \ln \phi$

potential during reheating: $\tilde{V}(\psi, T) = v_0^4 + \frac{1}{2} \underbrace{\left(-m_s^2 + 4\pi g_s \psi^2\right)}_{"\text{waterfall point"}} T^2$

T starts rolling when $\psi = \psi_{\text{strg}} = \frac{m_{\text{s}}}{4\pi g_{\text{s}}}$. m_{s} : *local* string scale

Brandenberger, Frey & Lorenz arXiv:0712.2178

potential driving inflation:

$$V(\phi) = M^4 \left[1 - \left(\frac{\mu}{\phi}\right)^4 \right]$$
valid up to ϕ_{strg}
switch fields $\phi \to \psi \sim \ln \phi$

potential during reheating: $\tilde{V}(\psi, T) = v_0^4 + \frac{1}{2} \underbrace{\left(-m_s^2 + 4\pi g_s \psi^2\right)}_{"\text{waterfall point"}} T^2$ T starts rolling when $\psi = \psi_{\text{strg}} = \frac{m_s}{4\pi \varepsilon_r}$.

 $m_{\rm s}$: *local* string scale

- $\begin{array}{lll} \psi \colon & \text{``heir'' of the inflaton field} \\ & \text{initial values are set by } \phi_{\mathrm{strg}}, \dot{\phi}_{\mathrm{strg}} \end{array}$
- T: waterfall field of hybrid inflation starts at rest, with small offset T_0

- 4 回 🕨 🔺 巨 🕨 🔺 巨

	KKLMMT	End of KKLMMT		

reheating potential:
$$ilde{V}\simrac{1}{2}\left(-m_{
m s}^2+4\pi g_{
m s}\psi^2
ight)T^2$$

$$\begin{aligned} \ddot{T} + 3H\dot{T} + \tilde{V}_{T} &= 0\\ \ddot{\psi} + 3H\dot{\psi} + \tilde{V}_{\psi} &= 0\\ \frac{8\pi G}{3}\rho &= H^{2} \end{aligned}$$

neglect friction term $ilde{V}_{\mathcal{T}} = \left(-m_{
m s}^2 + 4\pi g_{
m s}\psi^2
ight)\mathcal{T}$

Brandenberger, Frey & Lorenz arXiv:0712.2178

	KKLMMT	End of KKLMMT		

reheating potential:
$$ilde{V}\simrac{1}{2}\left(-m_{
m s}^2+4\pi g_{
m s}\psi^2
ight)T^2$$

$$\ddot{T} + 3H\dot{T} + \tilde{V}_T = 0$$

 $\ddot{\psi} + 3H\dot{\psi} + \tilde{V}_{\psi} = 0$
 $\frac{8\pi G}{3}\rho = H^2$

neglect friction term $\tilde{V}_T = (-m_s^2 + 4\pi g_s \psi^2) T$ $\ddot{T} - m_s^2 T = 0$ solution: $T(t) = T_0 \exp(m_s t)$

Brandenberger, Frey & Lorenz arXiv:0712.2178

	KKLMMT	End of KKLMMT		

reheating potential:
$$ilde{V}\simrac{1}{2}\left(-m_{
m s}^2+4\pi g_{
m s}\psi^2
ight)T^2$$

$$\ddot{T} + 3H\dot{T} + \tilde{V}_{T} = 0$$

$$\ddot{\psi} + 3H\dot{\psi} + \tilde{V}_{\psi} = 0$$

$$\frac{8\pi G}{3}\rho = H^{2}$$
so

eglect friction term $ilde{\prime}_T = \left(-m_{
m s}^2 + 4\pi g_{
m s}\psi^2
ight)T$ $\ddot{T} - m_a^2 T = 0$ olution: $T(t) = T_0 \exp(m_s t)$ o further acceleration b/c $V_{\psi} \simeq 2\pi g_{\rm s} T_0^2 \psi$ small $\sim \ln \phi \rightarrow \dot{\psi}_{
m strg} \sim \dot{\phi}_{
m strg} / \phi_{
m strg}$ $\dot{\phi}_{
m strg}$ from slow-roll

	KKLMMT	End of KKLMMT		

reheating potential:
$$ilde{V}\simrac{1}{2}\left(-m_{
m s}^2+4\pi g_{
m s}\psi^2
ight){\cal T}^2$$

$$\begin{aligned} \ddot{T} + 3H\dot{T} + \tilde{V}_{T} &= 0\\ \ddot{\psi} + 3H\dot{\psi} + \tilde{V}_{\psi} &= 0\\ \frac{8\pi G}{3}\rho &= H^{2} \end{aligned}$$

 $\dot{T} = m_{\rm s} T$ increases and catches up to $\dot{\psi}$ until $m_{\rm s} T_{\rm eq} = \dot{\psi}_{\rm strg}$.

neglect friction term $\tilde{V}_T = (-m_s^2 + 4\pi g_s \psi^2) T$ $\ddot{T} - m_s^2 T = 0$ solution: $T(t) = T_0 \exp(m_s t)$ no further acceleration b/c $\tilde{V}_{\psi} \simeq 2\pi g_s T_0^2 \psi$ small

$$\psi \sim \ln \phi
ightarrow \psi_{
m strg} \sim \phi_{
m strg}/\phi_{
m strg}$$
 .

 $\phi_{\rm strg}$ from slow-roll

Brandenberger, Frey & Lorenz arXiv:0712.2178

	KKLMMT	End of KKLMMT	Perturbations	

Describe perturbations using comoving curvature $\Re=\delta\rho/\rho$:

$$\dot{\mathcal{R}} = \frac{H}{\dot{H}} \frac{k^2}{a^2} \Psi$$
 Gordon et al. (2001)

 Ψ : longitudinal metric fluctuation, $\mathrm{d}s^2 = (1+2\Psi)\mathrm{d}t^2 - a^2(1-2\Psi)\mathrm{d}\vec{x}^2$

	KKLMMT	End of KKLMMT	Perturbations	

Describe perturbations using comoving curvature $\Re=\delta\rho/\rho$:

4

$$\dot{\mathcal{R}} = rac{H}{H} rac{k^2}{a^2} \Psi$$
 Gordon et al. (2001)

 Ψ : longitudinal metric fluctuation, $\mathrm{d}s^2 = (1+2\Psi)\mathrm{d}t^2 - a^2(1-2\Psi)\mathrm{d}ec{x}^2$

in single field inflation: $\mathcal{R} \rightarrow \text{const.}$ when $k/a \rightarrow 0$ hence COBE normalization $\mathcal{R} \approx \frac{HV_{\phi}}{\phi^2} \approx 10^{-5}$

	KKLMMT	End of KKLMMT	Perturbations	

Describe perturbations using comoving curvature \mathcal{R} :

$$\dot{\mathcal{R}} = \frac{H}{\dot{H}} \frac{k^2}{a^2} \Psi - \frac{2H}{\dot{\sigma}^2} \tilde{V}_s \,\delta s$$

Gordon et al. (2001)

 Ψ : longitudinal metric fluctuation, $ds^2 = (1 + 2\Psi)dt^2 - a^2(1 - 2\Psi)d\vec{x}^2$

in two field inflation:

in single field inflation: $\Re \rightarrow \text{const.}$ when $k/a \rightarrow 0$ on large scales, \mathcal{R} sourced by δs ! normalization to COBE affected! "secondary perturbations"

$$\dot{\mathfrak{R}} pprox -rac{2H}{\dot{\sigma}^2}\, ilde{V}_{s}\,\delta s$$

- "adiabatic" field velocity $\dot{\sigma}$:
- δs : "entropy fluctuation" $\perp \sigma$
- Ñ.: "entropy potential" gradient

・ロト ・聞 ト ・ ヨト ・ ヨト

	KKLMMT	End of KKLMMT	Perturbations	

Study the growth of
$$\delta s$$
: [Gordon et al. (2001)]
 $\delta \ddot{s} + 3H\delta \dot{s} + \left(\frac{k^2}{a^2} + \tilde{V}_{ss} + 3\frac{\tilde{V}_s^2}{\dot{\sigma}^2}\right)\delta s = \frac{1}{2\pi G}\frac{\dot{\theta}}{\theta}\frac{k^2}{a^2}\Psi$

where

$$\begin{split} \dot{\sigma} &= \sqrt{\dot{T}^2 + \dot{\psi}^2} \\ \tilde{V}_s &= \frac{\dot{\psi}}{\dot{\sigma}} \, \tilde{V}_T - \frac{\dot{T}}{\dot{\sigma}} \, \tilde{V}_\psi \\ \tilde{V}_{ss} &= \frac{\dot{\psi}^2}{\dot{\sigma}^2} \, \tilde{V}_{TT} - 2 \frac{\dot{T} \dot{\psi}}{\dot{\sigma}^2} \, \tilde{V}_{\psi T} + \frac{\dot{T}^2}{\dot{\sigma}^2} \, \tilde{V}_{\psi \psi} \end{split}$$

$$\dot{\mathcal{R}} pprox -rac{2H}{\dot{\sigma}^2}\, ilde{V}_{s}\,\delta s$$

Brandenberger, Frey & Lorenz arXiv:0712.2178

OutlineString inflationKKLMMTEnd of KKLMMTPerturbStudy the growth of δs :[Gordon et al. (2001)] $\delta \ddot{s} + 3H\delta \dot{s} + \begin{pmatrix} k^2 \\ a^2 \end{pmatrix} + \tilde{V}_{ss} + 3\frac{\tilde{V}_s^2}{\dot{\sigma}^2} \delta s = \frac{1}{2\pi G} \frac{\dot{\theta}}{\theta} \frac{k^2}{a^2} \Psi$

where

$$\begin{split} \dot{\sigma} &= \sqrt{\dot{T}^2 + \dot{\psi}^2} \\ \tilde{V}_s &= \frac{\dot{\psi}}{\dot{\sigma}} \, \tilde{V}_T - \frac{\dot{T}}{\dot{\sigma}} \, \tilde{V}_\psi \\ \tilde{V}_{ss} &= \frac{\dot{\psi}^2}{\dot{\sigma}^2} \, \tilde{V}_{TT} - 2 \frac{\dot{T} \dot{\psi}}{\dot{\sigma}^2} \, \tilde{V}_{\psi T} + \frac{\dot{T}^2}{\dot{\sigma}^2} \, \tilde{V}_{\psi \psi} \end{split}$$

イロト イヨト イヨト イヨト

크

on large scales $k/a \rightarrow 0$:

$$\delta \ddot{s} + 3H\delta \dot{s} + \underbrace{\left(\tilde{V}_{ss} + 3\frac{\tilde{V}_{s}^{2}}{\dot{\sigma}^{2}}\right)}_{=m_{\text{entropy}}^{2}} \delta s \approx 0$$

Brandenberger, Frey & Lorenz arXiv:0712.2178

イロト イヨト イヨト イヨト

2

recall:
$$ilde{\mathbf{V}} \sim rac{1}{2} \left(-\mathbf{m}_{\mathrm{s}}^2 + 4\pi \mathbf{g}_{\mathrm{s}} \psi^2
ight) \mathsf{T}^2$$

Brandenberger, Frey & Lorenz arXiv:0712.2178

크

recall:
$$ilde{\mathsf{V}} \sim rac{1}{2} \left(- \mathsf{m}_{\mathrm{s}}^2 + 4\pi \mathbf{g}_{\mathrm{s}} \psi^2
ight) \mathsf{T}^2$$

Brandenberger, Frey & Lorenz arXiv:0712.2178

イロト イヨト イヨト イヨト

크

recall:
$$ilde{\mathsf{V}} \sim rac{1}{2} \left(- \mathsf{m}_{\mathrm{s}}^2 + 4\pi \mathbf{g}_{\mathrm{s}} \psi^2
ight) \mathsf{T}^2$$

Brandenberger, Frey & Lorenz arXiv:0712.2178

æ

recall:
$$ilde{\mathbf{V}} \sim rac{1}{2} \left(-\mathbf{m}_{\mathrm{s}}^2 + 4\pi \mathbf{g}_{\mathrm{s}} \psi^2
ight) \mathsf{T}^2$$

Brandenberger, Frey & Lorenz arXiv:0712.2178

イロト イヨト イヨト イヨト

크

recall:
$$ilde{\mathsf{V}} \sim rac{1}{2} \left(- \mathbf{m}_{\mathrm{s}}^2 + 4\pi \mathbf{g}_{\mathrm{s}} \psi^2
ight) \mathsf{T}^2$$

Brandenberger, Frey & Lorenz arXiv:0712.2178

	KKLMMT	End of KKLMMT	Perturbations	

 δs grows while $T_0 < T < T_{eq}/\sqrt{3}$, neglect friction:

$$\delta \ddot{s} + \underbrace{m_{\text{entropy}}^2}_{\approx -m_s^2} \delta s \approx 0$$

Solution: $\delta s(t) = \delta s_0 \exp(m_s t)$, same as tachyon! $T(t) = T_0 \exp(m_s t)$

Brandenberger, Frey & Lorenz arXiv:0712.2178

 δs grows while $T_0 < T < T_{eq}/\sqrt{3}$, neglect friction:

$$\delta \ddot{s} + \underbrace{m_{\rm entropy}^2}_{\approx -m_{\rm s}^2} \delta s \approx 0$$

Solution: $\delta s(t) = \delta s_0 \exp(m_s t)$, same as tachyon! $T(t) = T_0 \exp(m_s t)$ Induced growth of \Re on large scales:

$$\dot{\mathfrak{R}} \approx -\frac{2H}{\dot{\sigma}^2} \, \tilde{V}_s \, \delta s \approx \frac{2H}{\dot{\psi}^2} \, m_{
m s}^2 \, T \, \delta s$$

Total growth from integrating away:

$$\Delta \mathcal{R} \approx \frac{\mathsf{H}}{\mathsf{m}_{\mathrm{s}}} \frac{\delta \mathsf{s}_0}{\mathsf{T}_0}$$

Initial values given by the same quantum fluctuations: $\delta s_0/T_0 \sim O(1)$

イロト イ部ト イヨト イヨト 三日

Brandenberger, Frey & Lorenz arXiv:0712.2178

		ion KKLMMT	End of KKLMMT	Perturbations		
$\mathcal{R}=$ prim	$rac{\delta ho}{ ho}$ ary	$\Delta \mathcal{R} pprox rac{H}{m_{ m s}} rac{\delta s_0}{T_0}$ secondary	$H/m_{\rm s}$ determines perturbations!	s impact of se	econdary	
		$\Delta \mathcal{R} \ll \mathcal{R}$:	COBE normaliz	ation as usua	d	
L	$\Delta \mathcal{R} \approx \mathcal{R}$	or $\Delta \mathcal{R} \gg \mathcal{R}$:	normalization t	o secondary p	perturbation	S

Brandenberger, Frey & Lorenz arXiv:0712.2178

Brandenberger, Frey & Lorenz arXiv:0/12.21/8

		KKLMMT	End of KKLMMT	Perturbations		
R = prin	$= \frac{\delta \rho}{\rho} \qquad \Delta \mathcal{R} \approx$	$pprox rac{H}{m_{ m s}} rac{\delta s_0}{T_0}$ ndary	$H/m_{\rm s}$ determine perturbations!	s impact of se	condary	
	$\Delta \ \Delta \mathcal{R} pprox \mathcal{R} \ { m or} \ \Delta$	$\mathcal{R} \ll \mathcal{R}$: $\mathcal{R} \gg \mathcal{R}$:	COBE normaliz normalization t	zation as usual to secondary pe	erturbatior	15
How Funct	to determine <i>I</i> tions of backgr	H/m _s ? round geom	etry:		$f_{\rm UV}$ $\phi =$	$\sqrt{T_3}r$
r	$m_{\rm s}^2 = \frac{2h_0^{-1}}{\alpha'}$	$\frac{12}{-}$	N ⁴		́о	<i>r</i> ₀ ⁴
٨	$\mathcal{M}^{4} \approx \frac{3}{3}$ $\mathcal{M}^{4} = \frac{4\pi^{2}v}{\mathcal{N}}$	$V = \frac{1}{3} I$ $\frac{\phi_0^4}{2}$	$lpha'\sim I$ $T_3:$ by	v: "size" ² _s , <i>I</i> _s : string ler rane tension	of tip ngth	E 990

Brandenberger, Frey & Lorenz arXiv:0712.2178

	KKLMMT	End of KKLMMT	Perturbations	

Example: parameters of the original KKLMMT proposal $T_3 \approx 10^{-3} m_{\rm Pl}^4$, $g_{\rm s} = 0.1$, $\alpha' m_{\rm Pl}^2 \approx 6.4$, $\mathcal{N} = 160$, v = 16/27

The resulting secondary perturbation amplitude is

$$\Delta \mathcal{R} pprox 10^{-5} \, rac{\delta s(0)}{T_0} pprox 10^{-5}$$

Secondary perturbations of same order as primary ones!

- COBE normalization is affected (compare "curvaton" scenario).
- Issue can be worse for other parameter sets.
- Calculation found a lower limit.

	KKLMMT	End of KKLMMT	Caveats	

Caveats

Inter-brane potential is a toy model!
 Baumann et al. (2007)
 V(φ) more likely of "inflection-point" type.

- Slow-roll for original inflaton ϕ used until ϕ_{strg} . Could be fast-rolling or oscillating at bottom.
- Canonic kinetic terms: fields & velocities below local string scale.
- Need T₀ < T_{eq} to trigger effect. If V(φ) has an inflection point, T is very massive at waterfall point and is deflected from equilibrium only slightly later.

Conclusions

- **D** $3 \overline{D3}$ inflation ends when tachyon appears (brane annihilation).
- **T**achyon T and ex-inflaton ψ generate entropy perturbations δs .
- δs grows exponentially for a certain range $T_0 < T < T_{eq}$.

It follows that

- Induced secondary perturbations $\Delta \Re$ can be as important as primary ones $\Re = \delta \rho / \rho$. \Rightarrow COBE normalization different?
- Issue present over a wide range of parameter space.

Outlook

<ロト <部ト < 注入 < 注入

- Toy model, lots of simplifications to eliminate!
- Potential $V(\phi)$ should be different, initial tachyon offset T_0 ?
- Interaction with second order effects.