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Modification of gravity - a way to get acceleration of the
Universe (geometrical Dark Energy).

Examples:
@ f(R) theories of Gravity

@ Models with extra-dimensions (e.g. Dvali-Gabadadze-Poratti
model)

Main Idea: give a mass to a graviton with m ~ 1/Hg




Lo Problems

Pathologies:

@ Hamiltonian unbounded from below
Q Ghosts
Q Singular solutions

However:
@ MG can be seen as a relatively simple toy model
@ MG shares some properties with DGP mogel
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@ Linear theory of MG (Quadratic action) Fierz'39; Fierz&Pauli’39

Non-linear generalization 3
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@ Non-linear generalization

S:/d4x (MTJ%\/TQR[QHth[f,gH\/jgﬁm[g])

& g is dynamical

® [ is flat (non-dynamical)

® matter is coupled to ¢

| V;.:|/,9]is a scalar density under common diffeomorphisms
& Vintlf, 9] takes the PF term...

Examples:

Vi(nB;D) — —%m2M123 v —F H,, H,; (f/”’af’/T — f/’“/fUT) Boulware&Deser’72

(AGS) L o0 o oo Arkani-Hamed,
% = —=m IMP\/—g HM,/HJT (g“ g — g“ g ) Georyi,
8 Schwartz’03

H,uz/ — Juv — f,uz/




Non-perturbative L , "
regime inear massive gravity
GR?? Non GR

Ry

\ 4

1/5
Q@ New scale: the Vainshtein radiusRy = (Rg m™*) % ainnteins72

= Is it possible to find a solution regular everywhere?

Q@ Our approach is to study these questions in a specific limit:
the decoupling limit

MP — OO A = (Mpm4)1/5 ~ const ArkanJ..—Hamed,
O T M ~U t Georqgi,
e Mu/ P cons Schwartz’'03

= Are there regular solutions in the DL?
= To what extend does the DL encode the physics of the full
system?




STATIC SPHERICALLY SYMMETRIC \




@ Bi-diagonal ansatz in the “Unitary” gauge:

gapdatda® = —J(r)dt? + K(r)dr® + L(r)r2d$?
fapdetdz® = —di® + dr® + r2d0?

Q@ “schwarzschild” gauge:

( A

gudztdz” = —e" B qi? + M GR? + R2d0O? Schwarzschild-like
/ 2

fuydxﬂdﬂjy — _dtQ i (1 o R/’L2(R)> e—,LL(R)dRQ i G—M(R)RQdQQ ﬂat

~ y,

@ Equations of motion:
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=+ (1-¢") = 881Gy (Thy+ Pe),
VAT, = 0.

8nGn (Tyy + pe”)




@ Expansion in Newtons constant:

A=Xo+ A1+ ... efc, with A\, vy, 1y oc GRE

Q Equations of motion:
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Ho ~ > )\()7 120
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. . )\0 V(/)
kBlamchl = 722 R )
)\0 — ﬁ — |
2R T vDVZ
solution: vy = —%, « +— | discontinuity
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st order Egs

relevant at
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_ solutionclosetosource

Q Expansion in m: f(R) = i m?" £, (R)
n=0

@ 0th order:
AN=-1yg = —1In (1—%)
po = movRs/R> Ao,

assume R > Rg

Rs 2 | Rs 4
v = —f—l—nl(mR) f—l-(’)(m)
1st order _ Rs 2 [ Rs 4
solution S A e A B
.
R
L= mg ﬁs +mi(mR)° + O (m*)




Rs < R <K Ry

Ry < R<m™!
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Non-perturbative
regime, GR

Ry

Expansion in m,
non-GR




Is it possible to match large R and small R
(Vainshtein) solutions???

Damour, Kogan,
Papazoglou’03

Numerical intergation

Ca ¥ &=

SINGULARITY

However: complicated problem. In order to study it, we take a limit which
simplifies the system while keeping the most important non-linearities:
the Decoupling Limit

= Are there regular solutions in the DL?
= To what extent does the DL encode the physics of the full
system?




THE GOLDSTONE PICTURE




__The Stuckelberg mechanism (1)

[Goal: to separate explicitly the various degrees of Freedom}

(tensor, vector, scalar) of a massive field.

1 m? b
. , 4 pv reaks gauge
Example: the Procas field L = 4FWF invaric?nceg

@ Field redefinition A, — A4, —9,B

1 1
= L= Fu " - §m2(Au — 0,B)(A* — 9" B)

New gauge invariance: A, — A, +0,A
B — B+A

Q@ “Unitary gauge”: B =0

Q@ “Longitudinal gauge”: 9,4 =0
2 DOF 1 DOF

2




Arkani-Hamed, Georgi, Schwartz’03

Q@ Massive spin-2 graviton: in the action

3 [ (v=ants) - ™y &) + 5,10

replace  fuw(x) — fu(®)=0,X%(2)0,X"(x)fap (X(2))
g,uv(x) - gl“/(x)

S

the action is now invariant under both x4 _. x’4

ot — M
Q “Unitary gauge”:  Xg'(z) = odat
@ In non-unitary gauge, introduce the “Goldstone boson” 7 :

XA4(z) = X3 (x) + 7 (x).




@ Scalar-vector decomposition: 74(z) = fA8 (Ap + O5¢)
Q Action in terms of huv = Gy — fuv

Q@ shift: b, = iLw/ — mznw,qﬁ and gauge fixing = demixing h and ¢
= SO /d‘lx{M]%iLDiL + o+ MEMPAOA + ... + MEam*¢Og + }

Canonical normalization: h,, = Mph,,,
A'U’ = MpmA“,
6 = Mpm?p.
0%¢)> 1/5
@ Dominant higher order term: ( A5) with A = (m4MP)
( )

Mp—>OO

Decoupling Limit mo— 0
AN ~ const

Ty/Mp ~ const
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9 The action for the scalar sector:

1 3~ _ -~ 1 ~ . -
5= [ate {3600+ 55 [0 @F° +5 (03 6 6] - 370}

@ Equation of Motion:

_ 5 5 s 5
3A5w¢ + 3aVH (qu)2 WA (¢;5,Y)2 + 2BV (qum)} - ]\j}—T
P
Can be integrated for ¢ = ¢(R) or ¢ = ¢(t)

Spherically Symmetric case:

4 ~ ~ ~ ~ ~ ~ ~ ~ ~ )
¢/ 2 ¢/2 ¢/¢// ¢//2 ¢/¢(3) ¢//¢(3)
— — —4— 42 2 2
3 R + A5 3 Rl + 7B + 2 + 2 + R +

95/2 q5/ QEU <guz QB’ q5(3)

6 2 4 2 3700
O\ ORs T2 TR T g




. Relationbetweenoand. |

Q@ 11 is defined via the gauge transformation

fapdX4dXP = —dt® +dr® + r?dQ?
, 2
N fluydx,udxl/ _ —dt2 4 (1 . R:LL2(R)> e—M(R)dRQ N e—M(R)R2dQ2

Q@ While the Stuckelberg field X is defined such that:
fudztdz” = [8MXA(x)8,,XB(:c)fAB (X (z))] dztdx”

Q@ This corresponds fo the Stuckelberg field:

m(

2R),9,¢) o ¢ zaqu:R(e—“‘zR) —1>

XA =2 4 fAB9p¢ = (t,Re‘




@ 1In the Decoupling Limit: |ji= ——¢'

Q@ Equations of Motion:

&//2
~6 g T2 o

E S
712 T
. 5 ( & o

Q=quadratic, second order — " Rg3
differential operator




SPHERICALLY SYMMETRIC SOLUTIONS \




s

@ The Decoupling Limit: Mp — oo b = Mpuv
A= (Mpm*)5 ~  const po= m*Mpp
,uu/MP ~ const p = p/Mp
Q@ From the Egs. of the full system we get in DL:
)‘_/+i__1(3~+3~’)+~ \ = Equation for u only:
p e = gBA+TRE)+p q u only:
72N U 2 3 1 [P iy o
- = >[A5Q(u)+2uR30 dR i (R) R
AV +Q(ﬁ)
R? 2R A /
with Q(u) = —% {3a (6,uu + 2R + 3R,u,u"—|— R2 ' ”)

5 3
+0 (10uu’ +5Ru” + S Ry + SR ”)}




9 Rescaled variables:

a = Rym = (Rgm)'/®

R/RV R‘?/

a2 1 Pa = 47Tﬁ,0,
—4 3

a v P, = 4W%P
a *\

= Equation for u only:

2Q(w)—|—gw:€i3

%‘l— 5% = 3w+ &) +pa
v
e e " ( [
= 5 QW) |
. 1 ¢
with Q(w) = 5{304 (5

v

wWW + iww + 2w* + ——

§

)

10ww

§

3 ..

— ww

5
5 + —wi + 5u? +

2

)}




close to source /
4

Vainshtein solution,

1
2Q(w) +>< &3

1

N\

far from source

( pertutbative regime,

3 1
Horie=g
2

3537 (V: _2)\)

N




NOTE: EOM is singular at & =00

—

Is it enough to know the asymptotic behavior at infinity?

s

3

2Q(w) + - w =

2

1

53

:{> Unique solution??

NO
=1
{ w(o0) — 1
1 2
w=Crep(-§+ 3 - 5+
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V(BD) —1f V= F huphor (fFOFYT — fRY 7)) Boulware, Deser’'72

5 w2+ww+2ww _|_3 1
- - [ —w:—
4 2 & 2 £3

) Asymptotic behavior at infinity: linear theory

N wi_—Tw\ 3 1 _ 2
2( £ +2?>+§w:€—3 = wl(&) ~weold) = 37
Q Formal series expansion around we(€)

(©. @]

Wi 2 4 1024 712960
w() =)

§3+5kz o 353 358 + 27513 + 243 518 +

k=0

Q Linearization around wuo ()

ow' 9 3

. 7 el Y3 - _ =

W= Weo + 0w = ow + : +4§5w &5
scillat

5% = unique solution?




o (W2 wi w31
49 ¢ 2V T e

Q@ small distance behavior: no Vainshtein scaling

w? o ww w3 1 A Imaginary
2| —+ ——+2— )|+ w== t ~—
(4 2 € ) X g T w(¢) VE nd solution!

Q@ Another scaling is possible:

2(%2+%+2—)X X@ Qw)=0 < w(€)~ é

2 free =
constan \ + nzl kzown k EM(In&)F
\2’1 3AB g 3

L 1= 6A9By — 54A02B§ — (2 -364¢By)Iné —61n° ¢

1643 E+0(E) .




100 ¢ RN
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0.001

0.1 0.2 0.5 10 20 50 100

= Unique regular solution ( Ao and By fixed), is it a good one?
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V(AGS) [g—lf] — \/_—g ]’LuthT (glu,o'qu- . gu,ygo-T) Arkanl—Hamed,

Georgi, Schwartz’'72

5 w2+jmb+2ww _%3 1
— -0 = —
4 2 & 2 £3

Q@ Asymptotic behavior at infinity: linear theory

w W ww 3 1 _
Q@ Linearization around weo(€)

ow' 9 3

— " _ - — 3 _ —_——

W= Ws + 0w = ow" + : 45 ow &5

1 decreasing mode : TR
'S = solutions isnt unique?
+ 1 exploding=ade_
NB: the exploding mode .
Wy 2 4 1024 712960

makes the numerical w(§) = - 2 4 = 4 + +
integration tricky! 1;) §HPR 36 3R 276l 243 ¢




9 w2+ww+2wu} +§ 1
42 ¢ 2V T ¢

Q Small distance behavior: there is Vainshtein solution
W ww ww 3 1 8

Q@ Another scaling is possible:

2(%2#"7%2%‘")9%:}{@ Qu)=0 = w<§>~§
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NUMERICS

A
w(é)Né-_g
2
8 3¢3
w(©) ~ /5
Vainshtein |
scaling Singularity ¢
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How to choose the correct solution?

@ Let’s include source and ask for no conical singularity!

11,
u() = ¢ = 5w ()

AR) ~ 7 — Ru(®

gudzids” = —e"@® a2 1 LB GR? | R240?2
1

@ Thus we require u(0) =XA(0)=0 = w(§) <O <€—2> for £ — 0




Vainshtei
scaling

w(&) ~ Cste

ool o1 1

Only Vainshtein solution gives good behavior at O!
= the scaling w(¢) ~ e
both AGS and BD potentials!!!

gives a conical singularity for




Conclusion (l)

@ It is possible to obtain the decoupling limit in the case of static
spherically symmetric ansatz.

@ This decoupling limit corresponds to DL in the Goldstone picture.

@ In the non-linear regime, apart from the Vainshtein scaling there is
another scaling (for some potentials), which can be smoothly
extended to an asymptotically flat solution and is associated with
zero modes of the non-linearities appearing in the decoupling limit.

@ For BD potential the unique regular solution exists, which
interpolates between asymptotically flat solution and the new
scaling solution. However, the solution contains conical singularity.

Q For AGS potential a family of solutions exists containing the new
scaling solution with an arbitrary constant and Vainshtein-like
solution as an asymptotic. The requirement of no-conical singularity
at zero chooses uniquely the Vainshtein-like solution.




L Concson()

@ Our plan for future: It would be interesting to study the solutions
of the full system.




