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INTRODUCTION



Modification of gravity - a way to get acceleration of the 
Universe (geometrical Dark Energy).

Motivation

Examples:
f(R) theories of Gravity
Models with extra-dimensions (e.g. Dvali-Gabadadze-Poratti 
model)

Main Idea: give a mass to a graviton with m ∼ 1/H0



Pathologies:
Hamiltonian unbounded from below
Ghosts
Singular solutions

However:
MG can be seen as a relatively simple toy model
MG shares some properties with DGP mogel

Problems



Linear theory of MG (Quadratic action) Fierz’39; Fierz&Pauli’39
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Non-linear generalization

Massive Gravity and Bi-Gravity theories



Non-linear generalization

    is dynamical
    is flat (non-dynamical)
   matter is coupled to 
             is a scalar density under common diffeomorphisms
             takes the PF term...
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  New scale: the Vainshtein radius 
➡   Is it possible to find a solution regular everywhere?

Our approach is to study these questions in a specific limit: 
the decoupling limit

Linear massive gravity

Non GR

Non-perturbative 
regime

GR??

➡   Are there regular solutions in the DL?
➡   To what extend does the DL encode the physics of the full 
system?

Static Spherically Symmetric Solutions

Vainshtein’72

Arkani-Hamed, 
Georgi, 
Schwartz’03



STATIC SPHERICALLY SYMMETRIC
SOLUTIONS OF MASSIVE GRAVITY



Metrics and Equations of Motion
Bi-diagonal ansatz in the “Unitary” gauge:

“Schwarzschild” gauge:

gABdxAdxB = −J(r)dt2 + K(r)dr2 + L(r)r2dΩ2

fABdxAdxB = −dt2 + dr2 + r2dΩ2
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solution far from source (I)
Expansion in Newton’s constant:

λ = λ0 + λ1 + ... etc., with λi, νi, µi ∝ Gi+1
N
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solution far from source (II)

solution:

1st order Eqs
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solution close to source
Expansion in m: f(R) =

∞∑

n=0
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0th order:
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Non-perturbative
regime, GR

Expansion in m,
non-GR

RS ! R! RV



Is it possible to match large R and small R 
(Vainshtein) solutions???

 

Numerical intergation

Damour, Kogan, 
Papazoglou’03

SINGULARITY

However: complicated problem. In order to study it, we take a limit which 
simplifies the system while keeping the most important non-linearities: 
the Decoupling Limit

➡ Are there regular solutions in the DL?
➡ To what extent does the DL encode the physics of the full 

system?



THE GOLDSTONE PICTURE
and

THE DECOUPLING LIMIT



Example: the Proca’s field

Goal: to separate explicitly the various degrees of freedom 
(tensor, vector, scalar) of a massive field.

 Field redefinition

breaks gauge 
invariance

New gauge invariance:

  “Unitary gauge”: 
  “Longitudinal gauge”: 

2 DOF 1 DOF

The Stuckelberg mechanism (I)



 Massive spin-2 graviton: in the action

replace 

the action is now invariant under both

  “Unitary gauge”:

  In non-unitary gauge, introduce the “Goldstone boson”     :

The Stuckelberg mechanism (II)
Arkani-Hamed, Georgi, Schwartz’03



 Scalar-vector decomposition: 

Action in terms of

Shift:                           and gauge fixing      demixing    and

The Goldstone boson expansion

h φ

    Canonical normalization:

 Dominant higher order term:

Decoupling Limit  



 The action for the scalar sector: 

 Equation of Motion: 

Can be integrated for              or      

Spherically Symmetric case:

Action for      in the Decoupling limit

φ̃ = φ̃(t)φ̃ = φ̃(R)

φ̃



      is defined via the gauge transformation

  While the Stuckelberg field X is defined such that: 

  This corresponds to the Stuckelberg field: 

Relation between    and φ µ



 Rescaling: 

  In the Decoupling Limit: 

  Equations of Motion: 

EOM for     in the Decoupling Limitµ

Q=quadratic, second order 
differential operator

Source term

Linear term



SPHERICALLY SYMMETRIC SOLUTIONS
IN THE DECOUPLING LIMIT



 From the Eqs. of the full system we get in DL:

 The Decoupling Limit: 

➡ Equation for µ only:

with

EOM in the Decoupling Limit



 Rescaled variables: 

with

Rescaled variables in DL

➡ Equation for µ only:
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pertutbative regime,

2Q(w) +
3
2

w =
1
ξ3

w → 2
3ξ3

, (ν = −2λ)

close to source

Vainshtein solution,

2Q(w) +
3
2

w =
1
ξ3

w ∝ 1√
ξ
, (ν = −λ)

Another solution!

2Q(w) +
3
2

w =
1
ξ3

Q(w) = 0 w ∝ 1
ξ2

, (ν = −λ)



Cauchy problem and initial conditions

Is it enough to know the asymptotic behavior at infinity?

NOTE: EOM is singular at ξ =∞

Unique solution?? 
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 Asymptotic behavior at infinity: linear theory

  Linearization around 

two oscillatory 
modes ➡ unique solution?

Example 1: the BD potential (I)

  Formal series expansion around 

Boulware, Deser’72



  Small distance behavior: no Vainshtein scaling

Imaginary 
solution!

  Another scaling is possible:

2 free 
constants

Example 1: the BD potential (II)
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➡ Unique regular solution (             fixed), is it a good one?

Example 1: the BD potential (III)

A0 and B0



  Asymptotic behavior at infinity: linear theory

  Linearization around 

➡ solutions isn’t unique?1 decreasing mode
+ 1 exploding mode

NB: the exploding mode 
makes the numerical 
integration tricky!

Example 2: the AGS potential (I)
Arkani-Hamed, 
Georgi, Schwartz’72



  Small distance behavior: there is Vainshtein solution

  Another scaling is possible:

Example 2: the AGS potential (II)



Example 2: the AGS potential (III)
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w(ξ) ∼ A
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NUMERICS



Example 2: the AGS potential (III)

How to choose the correct solution?

Let’s include source and ask for no conical singularity!

u(ξ) =
1
ξ
− 1

2
ξ2w(ξ)

gµνdxµdxν = −eν(R)dt2 + eλ(R)dR2 + R2dΩ2

λ(R) ∼ 1
R
−R2w(ξ)

Thus we require                      u(0) = λ(0) = 0 ⇒ w(ξ) < O

(
1
ξ2

)
for ξ → 0



Only Vainshtein solution gives good behavior at 0!
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Example 2: the AGS potential (IV)

➡ the scaling              gives a conical singularity for 
both AGS and BD potentials!!! 

w(ξ) ∼ A

ξ2



It is possible to obtain the decoupling limit in the case of static 
spherically symmetric ansatz.

This decoupling limit corresponds to DL in the Goldstone picture. 

In the non-linear regime, apart from the Vainshtein scaling there is 
another scaling (for some potentials), which can be smoothly 
extended to an asymptotically flat solution and is associated with 
zero modes of the non-linearities appearing in the decoupling limit.

For BD potential the unique regular solution exists, which 
interpolates between asymptotically flat solution and the new 
scaling solution. However, the solution contains conical singularity.

For AGS potential a family of solutions exists containing the new 
scaling solution with an arbitrary constant and Vainshtein-like 
solution as an asymptotic. The requirement of no-conical singularity 
at zero chooses uniquely the Vainshtein-like solution. 

Conclusion (I)



Our plan for future: It would be interesting to study the solutions 
of the full system.

Conclusion (II)


