Alternatives to the Dark
Matter Paradigm
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The Standard Cosmology:
Basic Ingredients

Gravity described by Einstein’s General Relativity
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Why Modified Gravity as an alternative to
Dark Matter?

One has never observed directly Dark Matter!

We infer Dark Matter from the behaviour of
ordinary matter in a gravitational field

Recall: Newtonian gravity breaks down at certain scales

Recall: Einstein gravity breaks down at high energy scales

Moreover dark matter has its own problems!
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Non-relativistic gravity theories

Definition of potential : a=—VPy

Definition of potential : Vibp = 4G np

simplest theory : Newtonian gravity &p = &y

Milgrom(1984) noticed Dark Mater is only needed
to explain galaxy rotation curves once Newtonian
accelerations due to gravity are very small
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Fits to rotation curves are generally
very good

Mass-Luminosity (Tully-Fisher)
relation is automatic, unlike CDM

No problem with cusps

Even works well for low surface
brightness galaxies (purportedly
with lots of CDM )

Rotation Velocity (km/s)
S0

. .‘!;!:...,

0 2 4 6 8

Radius (kpc) sanders & McGaugh 02
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MOND Problems

MOND should apply to motions of galaxy
clusters. But fits are off by factors of 2-10

With massive neutrinos in the cluster core temperature
profiles of x-ray clusters can be fit (sanders 03; Pointecouteaussik os)

MOdified Newtonian Dynamics. Depends on
Newtonian notions! Without a relativistic formulation,
one cannot do with confidence:

Gravitational waves: Binary Pulsar

Expansion history: Friedmann equation, BBN

Cosmological Structure: CMB, LSS

Gravitational lensing: Cluster mass consistency
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Relativistic (Geometrical) MOND

One can use two metrics :

Universal matter metric : matter follows geodesics

I of 9uv (analogue of @ = —Voy)

Einstein type metric : Action for g.. is Einstein-

I Hilbert. (analogue of V2®p = 47G np)

Need a relation between them (&, = ®,)
Simplest is a Guv = €22G,

Conformal transformations preserve angles
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Could TeVeS explain present days cosmological
observations?!
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TeVeS Background Evolution

Friedmann equation is basically unaltered
H?* = 87G(py + pv)/3
save for a small time dependence for G = Goe™2¢

The vector field does not contribute to the
background expansion

presents tracking behaviour. Since it must be
small during BBN, it will be nowadays

S0, expansion basically ‘normal’!
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Background and the free Function V
Vi(k) = =Vo (1_‘5/%)1” (1)

f ( ,U) — Z n tn ( v / Lo — 2) " Bourliot,Ferreira,Mota8Skordis 06
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But why don’t we see small
scale damping?

GR+A+CDM

0.1
k [h/Mpe]




How could cosmic structure form
without dark matter?

Dodelson&Ligouri 06



How could cosmic structure form
without dark matter?

Dodelson&Ligouri 06

2k2(i) ~ —87TGCL2(,0551) -+ pCDMécdm) 4= oo



How could cosmic structure form
without dark matter?

Dodelson&Ligouri 06

2k2(i) ~ —87TGCL2(,0551, -+ pCDMécdm) 4= oo

" b ;b
2k*® ~ —81Ga’p {5 + 3(1 + w)gﬁ — 2@} + 264¢5k2(1 — e *a + ...



How could cosmic structure form
without dark matter?

Dodelson&Ligouri 06

QkQCi) ~ —87TGCL2(pb5b -+ pCDMécdm) 4= e

s b b \
2k*® ~ —8wGa’p {5 +3(1 + w)gﬁ — 290} o+ 264¢5k2(1 — e *fa)+ ...

* Perturbations in vector field, support
gravitational potential through recombination!
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 These two effect nearly cancel out in second peak, conspire to higher
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Lensing convergence map in Bullet cluster
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Green contours: lensing
convergence k (Map of the
gravitational field! )

Newtonian gravity:
K proportional to mass density
=> Most Mass in Galaxies
(Dark Matter!)
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Can Modified Gravities explain Bullet?

® yes!

® Features in lensing converging map in Modified
gravity do not always reflect features in underlying
mattel’ SU I’face denSIty (Angus,Famaey&Zhao 06, Moffat 06)

® (Convergence can be non zero where there is no

prOjeCted matter (Zhao,Bacon, Taylor&Horne 06 ; Zhao&Qin 06, Moffat 06, Bekenstein 06)

® Bullet Cluster observations explained within
Modified Gravities

e MOND(TeVeS): With Massive Neutrinos (Angus,Shan,Zhao&Famaey 06)

o MOG: No dark matter at all! (Brownstein&Moffat 07)
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How to offset the gravitational potential
from surface density within MOND/TeVeS?

Poisson-like equation:

V(,u(\VCD\/aO)VCI)) . 47TG,0 GM(r) = f sin(6)d6dy 8<I>(’r,9,¢)lu(x)

r2 A7 O,

(Angus,Famaey&Zhao 006)

aTr | — — _ VD
N(x)zl [12 '\/(12 )2+$] 1’ x—|a0|

MOND: What you see (in terms of lensing convergence/
gravitational potential) is not what you get (in terms of density)
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Conclusions

Models of Modified Gravity are interesting alternatives to
the Dark Sector

Interestingly Modified Gravity may have potential to
substitute both Dark Matter and Dark Energy/Inflation

However, to explain observations need very massive
neutrinos!

Presently, best way to rule them out is to bound neutrino
masses bellow 1 eV

Modified Gravity models are young, complex and are not
fully explored



