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Basics of averaged cosmologies

Observational facts

In the late time Universe, matter distribution appears:

Homogeneous on average at scales larger than ∼ 100 Mpc (Yadav & al,
MNRAS 2005)

Highly structured at smaller scales (galaxies, clusters, filaments, walls, voids)

But, in General Relativity, matter and geometry of space-time are tighly coupled.
How can we describe our Universe on large scales:

dynamics?

geometry (measure of distances)?

The cosmological principle is the guide of cosmologists.
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Basics of averaged cosmologies

The cosmological principles (I)

Friedmann Universe: the strong cosmological principle

Ignore the inhomogeneities: the Universe is locally homogeneous and
isotropic.

Maximally symmetric, homogeneous and isotropic space:

ds2 = −dt2 + a2(t)dl2 ; spatial section of constant curvature k.

Dynamics: second order differential equations for a(t); the so-called
Friedmann equations.

Distances are computed with the line element ds2 = −dt2 + a2(t)dl2.

Structure formation explained separetely with a perturbative expansion
around that background.

Great success for the early Universe that is highly homogeneous on all scales
(CMB).

Is it still relevant in the highly structured late time Universe?
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Basics of averaged cosmologies

The cosmological principles (II)

The weak cosmological principle

We retain the averaged homogeneity on large scales: the large scale
observables can be deduced from purely time-dependent functions.

But, no assumption on the local structure of space-time and matter
distribution.

Local dynamics obeys the general Einstein equations.

Defining the homogeneous model: averaging procedure?

Dynamical equations?
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Basics of averaged cosmologies

Evolving the average or averaging the evolution?

[∂t., 〈.〉D] 6= 0
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Basics of averaged cosmologies

Homogeneous Universes: Hypotheses

Framework

3+1 foliation of space-time:
ds2 = −N(t, ~x)dt2 + gij(t, ~x)(dx

i +N i(t, ~x)dt)(dxj +N j(t, ~x)dt)

Late time Universe: irrotational perfect fluid of dust matter: ρ(t, ~x).

Observers comoving with the fluid.

Then: N(t, ~x) = 1 and N i(t, ~x) = 0 ⇒ ds2 = −dt2 + gij(t, ~x)dx
idxj

Useful quantities:

Extrinsic curvature, Kij such that: Kij = − 1
2∂tgij .

−Kij = 1
3θgij + σij with:

σij(t, ~x): shear tensor. σi
i = 0

θ(t, ~x): local expansion rate

Intrinsic 3-curvature: Rij and the associated 3-Ricci scalar R.
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Basics of averaged cosmologies

Defining the averaged dynamics

Einstein equations in 3+1 splitting:

Constraints equations: R+Ki
i
2 −Ki

jK
j
i = 16πGρ ; ∇iK

i
j − ∂jK

i
i = 0

Evolution equations: ∂tgij = −2Kij ; ∂tK
i
j = Kk

kK
i
j +Ri

j − 4πGρδi
j

Conservation of energy-momentum: ∂tρ+ θρ = 0

Averaging procedure (Buchert, GRG, 2000 and 2001)

Choose a spatial domain D
Volume of D: VD(t) =

∫
D Jd

3x, with J =
√

det(gij)

Effective volume scale factor: aD(t) =
(

VD(t)
VDi

)1/3

Averaging operator for scalars: 〈Υ〉D =
1

VD

∫
D

ΥJd3x

We apply this averaging procedure to the scalar part of the equations.

Julien Larena (1) The morphon field Greco, 03/19/2007 9 / 25



Basics of averaged cosmologies

Effective averaged equations

H2
D =

8πG

3
〈ρ〉D −

1

6
(QD + 〈R〉D)

3
äD
aD

= −4πG 〈ρ〉D +QD

〈ρ〉D = ρDia
−3
D

∂tQD + 6HD = −∂t 〈R〉D − 2HD 〈R〉D

where:

HD = ȧD
aD

: effective Hubble parameter

〈R〉D: averaged 3-curvature

QD = 2
3

〈
(θ − 〈θ〉D)2

〉
D −

〈
σijσij

〉
D: fluctuation term called kinematical

backreaction.

The averaged system is not closed:
the cosmological model requires a closure condition.

Julien Larena (1) The morphon field Greco, 03/19/2007 10 / 25



Basics of averaged cosmologies

A remark on curvature

One can define a constant curvature kDi à la Friedmann for the averaged system:

kDi

a2
D

=
〈R〉D +QD

6
+ 2

1

3a2
D

∫ aD

1

aQD(a)da

A priori, the averaged 3-curvature is not a Friedmannian constant curvature:
General Relativistic effect: coupling between averaged 3-curvature and

backreaction.
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Mean field description: the morphon field

Setting up the correspondence

Formal identification of QD and 〈R〉D with a scalar field:

− 1

8πG
QD = εΦ̇2

D − U(ΦD) , − 1

8πG
〈R〉D = 3U(ΦD) (1)

Then, the averaged equations become (Buchert, Larena & Alimi, CQG, 2006):(
ȧD
aD

)2

=
8πG

3

(
〈ρ〉D +

ε

2
Φ̇2
D + U(ΦD)

)
äD
aD

= −4πG

3

(
〈ρ〉D + 2εΦ̇2

D − 2U(ΦD)
)

Φ̈D + 3
ȧD
aD

Φ̇D + ε
∂U(ΦD)

∂ΦD
= 0

A homogeneous model on large scales for the Universe naturally leads to an
additional scalar field source for the evolution of the cosmological scale factor.
Any information on a ’Friedmanian’ scalar field can provide information on the
fluctuations and there coupling to the averaged 3-curvature.
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Mean field description: the morphon field

A thermodynamical analogy

The scalar field description allows to identify:

EDkin =
ε

2
Φ̇DVD

EDpot = −UDVD

EDkin

EDpot

= −3

2

(
QD
〈R〉D

+
1

3

)
When there is no fluctuation (〈R〉D ∝ a−2

D ), we then have a ’virial’ condition:
2EDkin + EDpot = 0

⇒ Backreaction causes deviations from ’equilibrium’.
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Mean field description: the morphon field

Late time accelerated expansion: the morphon as dark
energy

aD accelerates iff QD > 4πG 〈ρ〉D.

QDVD grows with the fluctuations in the expansion rate.

Late time Universe:

Highly underdense and overdense regions.
The fluctuations in the expansion rate are important and growing.

We can expect that QD becomes important.

It can provide a solution to the coincidence problem.

A two zones toy-model implies that the significant parameter is the
proportion of voids in VD (Rasanen, JCAP, 2006).
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Scaling backreaction
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Scaling backreaction

The scaling solutions

(Buchert, Larena & Alimi, CQG, 2006)
QD = QDia

n
D and 〈R〉D = RDia

p
D.

a−6
D ∂t

(
a6
DQD

)
= −a−2

D ∂t

(
a2
D 〈R〉D

)
Two types of solutions:

2 types of solutions:

n 6= p:
QD = QDia

−6
D ; 〈R〉D = RDia

−2
D

Backreaction and averaged curvature are decoupled.
Quasi-Friedmannian Universe: ΩDR + ΩDQ ∼ ΩDk when aD → +∞.

n = p:

QD = r 〈R〉D = rRDia
n
D , n = −2(1 + 3r)/(1 + r), r 6= −1

r = 1
3

1+3wD
1−wD

= cst is the conversion rate between kinematical backreaction
and averaged curvature.
Purely General Relativistic effect.
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Scaling backreaction

Reconstruction of the morphon field potential

From the correspondence:

Φ̇2
D = −εRDi

8πG

(
r +

1

3

)
an
D

U(ΦD) = − RDi

24πG
an
D

So,

U(ΦD) = α (r,RDi , 〈%〉Di) sinh−4 1+3r
1−3r

(
β (r,RDi , 〈%〉Di)

ΦD
G

)
(Sahni & al, JETP Lett., 2003; Sahni & al, Int. J. Mod. Phys., 2000, Copeland &
al, hep-th/0603057)

The scalar field parameters are fixed by the initial averaged quantities.

Solution to the coincidence problem?

Constant equation of state: wDΦ = − 1
3

1−3r
1+r .
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Scaling backreaction

The space of solutions
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What do perturbations tell us?

Second order solution in the comoving synchronous gauge

We choose gij = a2(t)
(
(1− 2ψ(t,~(x))δij + (∂i∂j − 1

3δij∆)χ)
)

Then, to second order in perturbations (Li & Schwarz astro-ph/0702043), one
finds:

QD =
α∂D

aD
+
β∂D

a
7/2
D

+
γ∂D

a6
D

〈R〉D =
δD
a2
D
− 7α∂D

3aD
− 11β∂D

19a
7/2
D

One mode is quintessence-like: α∂D
aD

But, it does not dominate today because α∂D is of second order.

If initial conditions at CMB and ΩD0
m ∼ 0.3, ΩD0

R +ΩD0
Q ∼ 3×105(ΩDi

R +ΩDi
Q ).

Backreaction cannot be ignored for high precision cosmology!

QD and 〈R〉D are gauge-invariant (they vanish on the background)

Remark: The initial values of backreaction modes are surface terms (link with
holographic cosmology?)
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Conclusion

Conclusion

Averaged curvature is not, in general, a constant curvature.

Friedmann cosmology: a very particular homogeneous model, that is saddle
point in the space of homogeneous models with scaling backreaction.

A classical physical origin to cosmological scalar fields: they naturally appear
when one considers an averaged inhomogeneous model.

A perturbative treatment leads to a quintessence-like backreaction mode.

Julien Larena (1) The morphon field Greco, 03/19/2007 23 / 25



Perspectives

Plan

1 Basics of averaged cosmologies

2 Mean field description: the morphon field

3 Scaling backreaction

4 What do perturbations tell us?

5 Conclusion

6 Perspectives

Julien Larena (1) The morphon field Greco, 03/19/2007 24 / 25



Perspectives

Perspectives

How can we measure distances?

We only analysed dynamics.
But backreaction also modifies the way we measure distances
The averaged model is nor flat, neither a constant curvature space.
One needs a ’mock’ metric that is not Friedmannian, on large scales to
compute distances.
This metric does not obey Einstein equations. It is just ’geometric’.

ds2 = −dt2 + aD(t)
“

dr2

1−K(t)r2 + dΩ
”

?

Extension of the morphon field to cosmology with a relativistic fluid

Non minimally coupled scalar field?
Inhomogeneous inflation

Numerical estimate of backreaction

Geometrical treatment of backreaction: the Ricci-Hamilton flow
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