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Motivation

Inflation works very well.... but we haven’t detected the inflaton field.

The big-bang model suffers from the singularity problem.

Bounce models can be viewed as an extension to inflation.

Reformulation of some cosmological questions....
...as the homogeneity or the particle horizon.

Bounces can be used as laboratories for quantum gravity theories.

It’s not difficult to violate the singularity Theorems...
Self-interacting scalar-Field + curvature.
Non-linear electrodynamics.
Quantum effects.
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Quantization of Minisuperspace models

Dirac quantization procedure

H(p̂µ, q̂µ)Ψ(q) = 0 .

The quantities p̂µ, q̂µ are the phase space operators related to the homogeneous
degrees of freedom of the model. Usually this equation can be written as

− 1

2
fρσ(qµ)

∂Ψ(q)

∂qρ∂qσ
+ U(qµ)Ψ(q) = 0 , (1)

where fρσ(qµ) is the minisuperspace DeWitt metric of the model. Writing Ψ in polar
form, Ψ = R exp(iS), and substituting it into (1), we obtain the following equations:

1

2
fρσ(qµ)

∂S
∂qρ

∂S
∂qσ

+ U(qµ) + Q(qµ) = 0 ,

fρσ(qµ)
∂

∂qρ

(

R2 ∂S
∂qσ

)

= 0 ,

where ,

Q(qµ) ≡ − 1

2R fρσ
∂2R
∂qρ∂qσ

is called the quantum potential.
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Quantization of Minisuperspace models

pρ =
∂S
∂qρ

,

where the momenta are related to the velocities in the usual way:

pρ = f ρσ
1

N

∂qσ

∂t
.

To obtain the quantum trajectories we have to solve the following system of first order
differential equations, called the guidance relations:

∂S
∂qρ

= f ρσ
1

N
q̇σ. (2)

Eqs.(2) are invariant under time reparametrization. Hence, even at the quantum level,
different choices of N(t) yield the same space-time geometry for a given non-classical
solution qα(t).
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Classical Minisuperspace models

The total GR Hamiltonian can be expressed as

HT
.
=

∫

dt d3x
(

N H0 + NiHi + λP + λi Pi
)

where, H0
.
= Gĳkl π

ĳ πkl − h1/2 3R, and Hi .
= −2πĳ

;j .
If we consider a homogeneous and isotropic space-time given by a metric of the form

ds2 = −N2dt2 + a2 (t) γĳdxidxj , γĳdxidxj =
dr2

1−K r2
+ r2dΩ2

HT = N

(

− P2
a

24a
− 6 aK

)

, Pa = −12
aȧ

N

In Schutz’s formalism for perfect fluids, the main idea is to use the thermodynamics
potentials to describe its four-velocity. Suppose we have a thermodynamic fluid with
equation of state p = p (µ, s), the Lagrangian is to be taken as

L = −
∫

d3x
√

−g (R− 16πp) .
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Classical Minisuperspace models

Following the Dirac’s procedure for degenerate theories and applying canonical
transformation we can put the hamiltonian in the simple form

Hmat = N
Pφ

a3w
.

Where we had assumed a equation of state for the perfect fluid p = wρ, with w

constant. Thus the Hamiltonian of the system is

H = NH = N

(

− P2
a

24a
− 6 aK+

∑

k

Pφk

a3wk

)
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Dust plus Radiation Classical model

The Hamiltonian of a system composed of dust plus radiation is

H = NH = N

(

− P2
a

24a
− 6 aK+

PT

a
+ Pφ

)

The φ field is associated with dust and the radiation with the T field. The equation of
motion are given by:

φ̇ = {φ,H} = N Ṗφ = 0

Ṫ = {T ,H} = N
a

ṖT = 0

ȧ = {a,H} = − N
12a

Pa

δN = 0→ H = 0⇒ P2
a

24a
= −6Ka +

PT

a
+ Pφ

Combining theses equations we find the Friedmann equation

(

ȧ

a

)2

= N2
[

− K
a2

+
1

6

(

PT

a4
+

Pφ

a3

)]

The importance of this result is the identification of the conjugate momenta with the
total content of dust and radiation in the universe.

Pφ = 16πGa3ρm PT = 16πGa4ρr
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Dust plus Radiation Quantum model

Quantization in the conformal gauge,

N = a −→ Ṫ = 1 .

The scale factor is define only in the half-line, which means that the hamiltonian is in
general non-hermitian. So if one requires unitary evolution, the Hilbert sub-space must
be compose of function satisfying the condition:

∫ ∞

−∞
dφ

[

∂ξ∗ (a, φ)

∂a
ψ (a, φ)

]

a=0
=

∫ ∞

−∞
dφ

[

∂ψ (a, φ)

∂a
ξ∗ (a, φ)

]

a=0

For practical purpose is enough to calculate the norm of the wave function and check
its dependence with time. Using the co-ordinate basis the dynamical equation is
written as

i
∂

∂η
ψ (a, φ, η) =

(

− 1

2m

∂2

∂a2
+

m

2
Ka2 + ia

∂

∂φ

)

ψ (a, φ, η) (3)

There are formal solutions for all three cases K = 0,±11.

1N. Pinto-Neto, E. Sergio Santini, and F.T. Falciano, Phys.Lett.A 344, 131 (2005)
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Eingenstates of total matter content.

These wavefunction are eingenstates of the operator p̂φ|ψ〉 = pφ|ψ〉, and since
[

Ĥ , p̂φ
]

= 0 this property is preserve by time evolution.

Ψ (a, φ, η) = ψ (a, η) exp{i pφ φ}

i
∂ψ (a, η)

∂η
=

(

− 1

2m

∂2

∂a2
+

m

2
Ka2 − pφa

)

ψ (a, η)

The Restriction over the Hilbert space now reads

∂ψ (a, t)

∂a

∣

∣

∣

a=0
= α ψ (a, t)|a=0 with α ∈ ℜ

A solution ψ(a, η) can be obtained from a initial wave function ψ0(a) using the
propagator of a forced harmonic oscillator K(2, 1) ≡ K(η2, a2; η1, a1).

K(2, 1) =

√

mw

2iπ sin (wη)
eiScl
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Eingenstates of total matter content ( K = 0).

Restricting to the flat case (K = 0)
If we define the initial wave function as

ψ0(a1) =

(

8σ

π

)1/4

exp
{

−σa2
1

}

Then,

ψ(a, η) =

∫ ∞

−∞
da1K(2, 1)ψ0(a1) = ReiS

and following the guidance relations,

a′ = − 4ση

m2 + 4σ2η2
a +

m2 + 2ση2

m(m2 + 4σ2η2)
pφη

With solution,

a (η) = C0

√

m2 + 4σ2η2 +
pφ
2m
η2
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Superpositions of total dust mass eigenstates

Still for the flat case, we assume plane wave solution for φ and then make a gaussian
superposition to construct a square-integrabel wave function.

Ψ (a, φ, η) = ψpφ (a, η) exp{−i φ pφ}

The initial condition is a even function of a

ψpφ (a, 0) =

(

8σ

π

)1/4

exp
{

− (σ + i q) a2
}

,

where σ and q ∈ ℜ and σ > 0. Taking the gaussian superposition,

Ψ (a, φ, η) =

∫

dpφ exp−γ(pφ−p0)2

ψpφ (a, η) exp
{

−i φ pφ
}

(4)

we find,
∫ ∞

0

da

∫ ∞

−∞
dφ ‖Ψ‖2 =

√

8π3

γ

(

1 +
1√
π

erf

(

p0η2

2m

))

.
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Superpositions of total dust mass eigenstates

Recalling the guidance relations, the trajectories can be computed by solving the given
systems of equation

a′ =
2

m

(ℑ (A)

4ν
+

m

2µη

(

µ−m2 + 2qmη
)

)

a +
ℑ (B)

4ν
φ

Pφ =

(ℑ (C)

2ν
φ+
ℑ (B)

4ν
a

)

φ′ = a

Where,

µ = 4
(

σ2 + q2
)

η2 − 4qmη + m2

ν =

(

γ +
ση4

4µ

)2

+
η6

(24mµ)2

(

µ+ 3m2 − 6qmη
)2

A =

[

mση2

µ
+ i

η

2µ

(

µ+ m2 − 2qmη
)

]2 [

γ +
ση4

4µ
− i

η3

24mµ

(

µ+ 3m2 − 6qmη
)

]

B = −2 i

[

mση2

µ
+ i

η

2µ

(

µ+ m2 − 2qmη
)

][

γ +
ση4

4µ
− i

η3

24mµ

(

µ + 3m2 − 6qmη
)

]

C = −
[

γ +
ση4

4µ
− i

η3

24mµ

(

µ+ 3m2 − 6qmη
)

]
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Superpositions of total dust mass eigenstates

Cannot be solve analiticaly, so we integrated numerically with the choice of a(0) = 1.

The Quantum Potential as a function of time
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Superpositions of total dust mass eigenstates

Recalling the Friedmann equation,

(

a′

a2

)2

=
1

6

(

PT

a4
+

Pφ

a3

)

the universe starts from a classical
singularity with exotic matter
(ρ < 0)

quantum effects avoid the collapse
and transform exotic matter into
matter (ρ > 0).

the universe expands classical as
η + η2.

Evolution of the scale-factor
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Free Scalar-Field Model

Matter content described by stiff matter. The total lagrangian in natural units reads

L =
√

−g

[ R
6l2
− 1

2
φ;µφ

;µ
]

,

We can simplify the hamiltonian by defining α ≡ ln(a), obtaining

H =
N

2 exp(3α)

[

− p2
α + p2

φ −K exp(4α)

]

, (5)

pα = − e3αα̇

N
, pφ =

e3αφ̇

N
.

But we should keep in mind that aphys = la/
√

2, where V is the total volume divided
by a3 of the spacelike hypersurfaces.
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Classical Behavior

pφ is a constant of motion which we will call k̄. The classical solutions are, in the
gauge N = 1 (cosmic time):

1) For K = 0:

φ = ±α+ c1 , a = eα = 3k̄τ1/3 , φ =
ln(τ)

3
+ c2 .

2) For K = 1:

a = eα =
k̄

cosh(2φ− c1)
, φ̇ = e−3αk̄ .

3) For K = −1:

a = eα =
k̄

| sinh(2φ − c1) | , φ̇ = e−3αk̄ .

These solutions describe universes contracting forever to or expanding forever from a
singularity. Near the singularity, all solutions behave as in the flat case. There is no
inflation. Hence, in all models there is at least one singularity and no inflationary
phase, as it should be for a classical stiff matter fluid.
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Quantum minisuperspace model

The operator version of Eq. (5), with the factor ordering which makes it covariant
through field redefinitions, reads

1

2e3α

(

−∂
2Ψ

∂α2
+
∂2Ψ

∂φ2
+Ke4αΨ

)

= 0 , (6)

Applying the Bohmian quantization procedure to the wave function Ψ = ReiS we find
the quantum potential

Q(α, φ) =
1

R

[

∂2R
∂α2

− ∂2R
∂φ2

]

. (7)

and the guidance relations,

∂S
∂α

= − e3αα̇

N
,

∂S
∂φ

=
e3αφ̇

N
. (8)

There are formal solutions for all three cases K = 0,±12.

2FelipeT. Falciano, N. Pinto-Neto, and E. Sergio Santini, gr-qc/07071088 accepted for
publication in PRD
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Quantum minisuperspace model

For K = 0:
In this case the general solution is Ψ(α, φ) = F(α + φ) + G(α− φ), where F and G

are arbitrary functions. which can be written as Fourier transforms as

Ψ(α, φ) =

∫

dkU(k)eik(α+φ) +

∫

dkV (k)eik(α−φ) , (9)

In Ref.34 were made gaussian superpositions of these solutions with the choice
U(k) = V (±k) = A(k), with A(k) given by

A(k) = exp

[

− (k −
√

2d)2

σ2

]

, (10)

with σ > 0, presenting bouncing non-singular solutions, oscillating universes and
expanding singular models.

3R. Colistete Jr., J. C. Fabris, and N. Pinto-Neto, PRD 62, 083507 (2000).
4N Pinto-Neto and E. Sergio Santini, Phys. Lett. A 315, 36 (2003).
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Generalized gaussian superpositions

Generalizing the parameter σ2 in (10) by a complex number:

A(k) = exp

[

− (k −
√

2d)2

σ2 + i4h

]

, (11)

and choosing U(k) = V (k) = A(k), we obtain the solution Ψ = Rei S , with:

R =
√

2π
4
√

σ4 + 16h2 e−
σ2

8
(α2+φ2)

√

cosh

(

σ2φα

2

)

+ cos[2φ(hα− d)]

S = dα − h

2
(α2 + φ2) + arctan

{

tanh

(

σ2αφ

4

)

tan[φ(hα− d)]

}

+ arctan

(

√

√

σ4 + 16h2 − σ2

√

σ4 + 16h2 + σ2

)

,
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Generalized gaussian superpositions

In the gauge N = e3α, the solution yields a planar system given by:

α′ = (hα − d) − 1

4

σ2φ sin[2φ(hα − d)] + 4hφ sinh

(

σ2φα
2

)

cosh
(

σ2φα
2

)

+ cos[2φ(hα− d)]
=: f (α, φ), (12)

and

φ′ = −hφ+
1

4

σ2α sin[2φ(hα − d)] + 4(hα − d) sinh

(

σ2φα
2

)

cosh
(

σ2φα
2

)

+ cos[2φ(hα − d)]
=: g(α, φ). (13)

Due to the symmetries

f (α, φ; h, d) = f (−α,−φ;−h, d) , g(α,−φ; h, d) = g(−α,−φ;−h, d),

f (α, φ; h, d) = −f (−α, φ; h,−d) , g(α, φ; h, d) = g(−α, φ; h,−d),

h → −h inversion around the origin with time reversion, while d → −d reflexion in the
φ axis. Hence, one can make definite choices of sign for these parameters without loss
of generality.
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Generalized gaussian superpositions
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Non-Singular Inflationary Universe

There is an interesting case when σ2 = 0, hence A(k) = exp

[

i
(k−
√

2d)2

4h

]

. Then

the wave function reduces to

Ψ(u, v) = 2
√

π|h|
[

exp i

(

−hu2 +
√

2du +
π

4

)

+ exp i

(

−hv2 +
√

2dv +
π

4

)]

.

Its norm is given by R = 4
√

π|h| cos[φ(hα− d)], yielding the quantum potential

Q = (hα− d)2 − h2φ2 . (14)

The guidance relations given by (12) and (13) now reduce to

α′ = hα− d , φ′ = −hφ . (15)

The only critical point (φ = 0, α = d
h

) is a saddle point and, as it is well known, it
represents an unstable equilibrium. Note that there are two regions of different signs
of α̇ separated by the line α = d/h.
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Non-Singular Inflationary Universe

The analytical solutions read

a = eα = ed/h exp(α0eht) and φ = φ0e−ht ,

The time parameter t is related to cosmic time τ through τ =
∫

dte3α(t)

⇒ τ − τ0 = Ei(3α0eht)/h, where Ei(x) is the exponential-integral function.
These solutions represent ever expanding or
contracting non-singular models, depending
on the sign of h. For h > 0, the Hubble and
deceleration parameters ȧ/a and ä/a read (a
dot denotes a derivative in cosmic time τ)

ȧ

a
=
α0heht

a3
,

ä

a
=
α0h2

a6
eht(1− 2α0eht) ,

R = −6α0h2

a6
eht(1− α0eht) .
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Non-Singular Inflationary Universe

There are three important phases in this model.

For t << 0 the Universe expands accelerately from its minimum size a0 = ed/h

(remember that for the physical scale factor one has a
phys
0 = led/h/

√
2V ), which

occurs in the infinity past t → −∞ when the curvature is null but increasing
while scale factor grows. The scalar field is very large in that phase.

For t >> 0 the Universe expands decelerately, the scale factor is immensely big,
the scalar field becomes negligible and the curvature approaches zero again. The
transition occurs when httran = − ln(2α0).

Around ht = 0 one has

a ≈ eα0+d/h [1 + α0ht + (α0h2 + α2
0h2)t2/2! + ...]. (16)

If α0 >> 1 (and hence t > ttran, which means in the deceleration phase), one

can write a ≈ eα0+d/h exp(α0ht). In that case, from τ =
∫

dta3(t), one obtains

that a ∝ (τ − τ0)1/3 and φ′ ∝ 1/τ ∝ 1/a3, as in the classical regime.
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Perturbations in a Quantum minisuperspace model

The model is described by a perfect fluid with equation of state p = w ǫ. The
Hamiltonian can be written as 5 6

H = N

[

H
(0)
0 + H

(2)
0

]

+ ΛN PN +

∫

d3xφπψ +

∫

d3xΛφπφ

H
(0)
0 ≡ −

l2
Pl

P2
a

4aV
+

PT

a3w

H
(2)
0 ≡ 1

2a3
+

∫

d3xπ2 +
aw

2

∫

d3xv,iv,i

The Bardeen potential is related to v by Φ,i,i = − 3
√

(w+1)ǫ0

2
√

w
l2
Pl

a
(

v
a

)
′

.

Dirac quantization of the wave function

Ψ
[

N , a, φ(xi), ψ(xi), v(xi),T
]

=⇒ Ψ
[

a, v(xi),T
]

∂

∂N
Ψ =

δ

δφ
Ψ =

δ

δψ
Ψ =

(

H
(0)
0 + H

(2)
0

)

Ψ = 0

5P. Peter, E. Pinho, and N. Pinto-Neto, JCAP 07, 014.
6E. J. C. Pinho, and N. Pinto-Neto, hep-th/0610192.
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Perturbations with no back-reaction

With the ansatz Ψ [a, v,T ] = Ψ(0) (a,T) Ψ(2) (a,T , v], the system decouples in two
equations

i
∂Ψ(0)(a,T)

∂T
=

1

4

∂2Ψ(0)(a,T)

∂χ2
, where we defined χ =

2

3
(1− w)−1 a3(1−w)/2

i
∂

∂T
Ψ(2)(v,T) =

(

−a(3w−1)/2

2
+

∫

d3x
δ2

δv2
+

wa(3w+1)

2

∫

d3xv,iv,i

)

Ψ(2)(v,T)

Initial condition:

Ψ(0)(χ) =
(

8
T0π

)1/4
e

(

−χ
2

T0

)

=⇒ a(T) = a0

[

1 +
(

T
T0

)2
]1/3(1−w)

Using this solution to perform a canonical transformation and changing to the
Heisenberg picture,

v′′−w v
,i
,i−

a′′

a
v = 0 where a ′ means derivative with respect to conformal time.

Far from the bounce the normal modes should satisfy the equation

v′′ +

[

w k2 +
2(3w − 1)

(1 + 3w)2η2

]

v = 0 (17)
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Perturbations with no back-reaction

Taking the formal expansion

v

a
≈ A1

[

1− wk2

∫

dη̄

a2

∫ η̄

a2d ¯̄η

]

+A2

[

∫

dη̄

a2
− wk2

∫

dη̄

a2

∫ η̄

a2d ¯̄η

∫ ¯̄η
d ¯̄̄η

a2

]

+O(k4)

The leading order in the far past can be written as

v

a
∼

{

A1 − A2T0a
3(w−1)
0

T0
T

in the far past
(

A1 + πa
3(w−1)
0 T0A2

)

+ T0
T

a
3(w−1)
0 T0A2 in the far future

The k dependence can be derived by matching solution of eq.(17). The power
spectrum PΦ ∼ k3|Φ|2 goes as

PΦ ∼ kns−1 with ns = 1 +
12w

1 + 3w

For the tensor perturbations 7

Ph ∼ knT with nT =
12w

1 + 3w

7P. Peter, E. Pinho, and N. Pinto-Neto, Phys. Rev. D 73, 104017 (2006).
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Perturbations with no back-reaction

The curvature scale at the bounce

L0 ≡ T0a3
0 ∝

1√
R0

, where R0 is the scalar curvature.

Constraining the amplitude of scalar perturbations A2
s = 2.08× 10−10, and the

spectral index ns . 1.01 we find that L0 & 1500lPl . There is another constraint that

comes from the total mass of the universe today, PT = − ∂S
∂T

= 1060Mpl , evaluated
for T/T0 ≫ 1 yields

4a3
0

9T2
0

> 1060 =⇒ a0 > 1022 very unprobable!!!

Remedy this problem by a dislocated wave function.8

Ψ0 =

(

8

πT0

)1/4
[

e
− (χ−q)2

T0 + e
− (χ+q)2

T0

]

.

8Work in progress P. Peter, N. Pinto-Neto, and F. T. Falciano
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Summary

1 Quantum effects can avoid the singularity.
2 There is the possibility of matter/ exotic matter creation and

annihilation.
3 A free scalar field can describe a non-singular inflationary model.
4 Perturbation Theory is well establish and can reproduce a

scale-invariant spectrum.
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