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Introduction



MOND from the Tully-Fisher’s law

� Rotation curves

V4~Lb [Tully-Fisher’s law]

Kinematically:  a2 ~ Lb / r2

Thus:  a2 = G Mb a0 / r2

[Degeneracy with the ratio M/L]

•• Possible modification of the NewtonPossible modification of the Newton’’s law of gravity beyond an s law of gravity beyond an 

universal scale of accelerationuniversal scale of acceleration a0

• V4
rot = G M a0
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Non relativistic MOND 
[Milgrom 1983]

� Modification of inertia:

m a µ(|a|/a0) = Σ F 

With µ(x>>1) = 1 and µ(x<<1) = x

[Does not respect the usual conservation law of energy and momentum; Felten 1984]

� Modification of the gravitational force:

g = a0 f [GMb/a0r
2]

With f(x>>1) = x and f(x<<1) = Sqrt[x]

[Inequivalent theories]
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MOND vs CDM

� In a sense, MOND can be interpreted as providing an 
universal profile of dark halos:

a0 f[GMb/a0r
2] = G MDM(r) / r2

� But standard CDM does not involve this universal scale a0

� a0 is of order of H0 => cosmological origin of a0 ?

� Prediction of MOND: 
� LSB galaxies are DM dominated, no DM in HSB galaxies 

� No DM in the center of galaxies (cusp problem in CDM)

� Existence of a correlation between baryonic and dark matter 
[MacGaugh 2005]

� More details : Sanders&McGaugh 2002
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MOND’s phenomenology

� Newtonian regime: 

a >> a0 , a = GM/r2

� MOND regime: 

g << a0 , a = (GMa0)½ /r

� Transition : rM ~ (GM/a0)½ GR (strong fields)

Fits: a0 ~ 1.2 10-10 m.s-2 ~ c H0

M
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Model building



General Relativity

� GR’s action:

And:

� Options:

� Modify the kinetic term R* and/or add new gravitational fields that couple to 
matter and/or spin-2 field g*: « modified gravity »

� Consider that « modified inertia »

� [Very imprecise terminology. E.g. scalar-tensor theories modify inertia in the 
Einstein frame but modify gravity in the Jordan frame…]

� This difficulty is deeply rooted in the fact that both inertia an gravity are 
described by the same entity, namely the metric. Thus, this is a consequence of 
the weak equivalence principle: locally, inertia and gravity cannot be 
distinguished.

Model building 1/6



« Modified Inertia »
[Milgrom]

� In a non-metric context, and notably non-relativistic context, 

modifying inertia has an intrinsic meaning. 

� Milgrom considered point particles actions that may depend on 

higher derivatives of the position.

� He showed that Galilean covariance + MOND requires the action 

to be non local. Stability and causality may be ok.

� But the relativistic generalization seems not straightforward. This 

may lead to a non metric theory. 
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Higher order gravity

� One loop divergences of quantized GR generate terms proportional to Riemann 

squared. [t’Hooft & Veltman 1974]

� Such terms may thus be naturally added to the classical action: 

� These theories are however unstable. The schematic propagator may indeed be 

written as: 

� Negative energy (or ghost) d.o.f. ! Generically, this happens for all 

Lagrangians of the form except GR and f(R) theories.
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Avoiding the ghost?

� The GB term does not provide any d.o.f around the 
Minkowski metric.

� Theories of the form               may thus avoid the ghost 
around flat spacetimes [Elizalde&Odintsov,Van Acoleyen&Navarro] 

� But flat spacetime is generically not the vacuum 
solution! 

� Moreover, even if the ghost d.o.f. does not appear 
around any background, the theory is still unstable, 
because of Ostrogradski’s theorem
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Ostrogradski’s theorem

� Consider for instance 

� Then define the canonical variables and momentas:

and

� The Hamiltonian reads

Inverting, we find

� This is linear in p1, and thus not bounded by below
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(Mono)scalar-tensor theories

� General action: 

� L=F(R*) theories are particular cases of ST theories.

� This may not lead to MOND’s phenomenology in 

general. Indeed 

� If V has a negligible influence, then

� If V has a minimum => Yukawa

� If , is a solution. But b is 

independent of M.
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MOND as K-essence models



Non relativistic field theory of MOND
[Bekenstein-Milgrom 1984]

� Newtonian action with an unusual « kinetic » term 

(Aquadratic Lagrangian, or AQUAL)

� Modified Poisson equation

� Galilean covariance + least action principle 

=> Noether’s theorem holds 

=> Conservation of energy-momentum
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Relativistic generalization 
[Bekenstein-Milgrom 1984]

� « Detection » of DM by weak-lensing + MONDian 
cosmology? => the need for a relativistic theory of MOND

� Relativistic AQUAL (RAQUAL)

• Einstein Hilbert action for the metric g*

• K-essence scalar field (aquadratic kinetic term)

• Matter couples to a second metric, conformally related to g*.

• [Finally, this is a scalar-tensor theory with a non standard kinetic term] 
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MOND as a RAQUAL

model

� With: 

� Hence the µ function reads:

� MOND is thus recovered with any smooth function f such that
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Theoretical considerations (1)

� Stability: 

� The condition is necessary for the Hamiltonian to be bounded 
by below 

� But not sufficient

� Hyperbolicity of the field equation:

� The scalar field propagates along the effective metric

ie

� Lorentzian signature of G =>

� These two conditions are sufficient for the Hamiltonian to be 
bounded by below 
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� The scalar field propagates superluminally if 

And MOND requires

=> Superluminal propagations are unavoidable (in that 

framework)

� Does it threaten causality? Should we impose              ?
[See Bekenstein 1984, Aharonov et al 1969, Adams et al: hep-th 0602178]

Theoretical considerations (2)
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Causality in a « multi-metric »

scenario

� Let’s consider various fields that propagate 
along non conformally related metrics

� Cauchy surfaces always exist if the union 
of causal cones has a non vanishing 
exterior. 

� Then general theorems (depending on the 
precise form of the field equation) ensure 
that the Cauchy problem is well-posed, ie 
that the theory is causal.

� Notably, k-essence theories are well-posed 
if 
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The origin of the controversy
[hep-th/0612113]

� Basic idea: causally connected events must be time-ordered. 

� In the relativistic picture of spacetime, any Lorentzian metric 

defines a local time-ordering [or chronology] 

� There are as many notions of causality as there are non-

conformally related metrics.

� … and thus, there is no reasons to favor the chronology 

induced by the propagation of the gravitational or EM field, 

etc.

� Which field propagates faster or slower than the others (if 

any), is thus only an experimental question, not a theoretical 

one.
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Phenomenological considerations 

(1)

� Superluminal behaviors do not ruin RAQUAL models

� But MOND requires that 

and thus f ‘(0) = 0

� The Cauchy problem is not well-posed at s=0, i.e. at the 
transition between local and cosmological scales.

� The theory needs to be cured by introducing a new parameter:

� Thus at large distance the potential is Newtonian again, with a 
renormalized gravitational constant G/ε.

� Rotation curves then decline at radius 
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Phenomenological considerations 
(2)

� The conformal coupling implies

� Solar system experiments:

� But the extra MOND force starts 
manifesting at 

whose value is 0.1 AU. Excluded by test of 
Kepler’s law.

� Unless one tunes the free function f ’
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The problem of light deflection



The position of the problem

� The EM sector is conformally invariant and thus unsensitive 
to the scalar field strength in (ST or) RAQUAL models.

� Thus the light bending reads like in GR.

� But the effective gravitational constant (measured by 
Cavendish experiments) reads

� Thus the above RAQUAL models actually predict less light 
bending than GR.
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Disformal coupling
[Bekenstein-Sanders 94, Sanders 97]

� Simple solution: consider 

� But increasing light deflection needs B>0 => gravitons are superluminal

� Or, by introducing a unit timelike vector field:

� One gets the right amount of light deflection if  

in Schwarzschild coordinates.

� Using

define TeVeS [Bekenstein 2004]
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� Coupling a vector field to matter may lead to difficulties: 

=>

� But enforcing the vector field to have a fixed norm with 

a Lagrange multiplier cures the problem

� Full action: 

� Constraint: 

� Problem: the Hamiltonian is not bounded by below!

[Clayton&Moffat]
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Phenomenological considerations 
(1)

� Gravitons propagate slower than light if

� In fact the only known experimental constraint is in favor of 
superluminal propagation of gravitons. 

� Indeed matter that propagates faster than gravitons may emit 
gravitational waves by a « gravi-Cerenkov » process [Elliot et 

al. hep-ph/0106220, hep-ph/0505211]

� Thus                    , ie Clight < Cgrav ou Clight / Cgrav < 1 + 10-15

using UHECR

Here:
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Phenomenological considerations 

(2)

� Schwarzschild-like metric =>

� No solar-system constraints on 

� But this disformal theory behaves as a scalar-tensor 
one in strong fields. Thus the way the scalar waves 
extract energy of binary-pulsar is  known even if 
dynamics of the scalar is subtler in MOND than in ST 
at large distances. 

� Binary-pulsar observations thus impose

� The fine-tuning problem of the function f ’ is 
recovered

The problem of light deflection 5/5



Nonminimal metric couplings



First idea (1)

� Consider the action

� The metric and its derivatives can be combined to get a local 
access to the mass and the radius. 

� Then define for instance

� Hence MOND is entirely coded in the (nonminimal) coupling 
to matter. 

� Great advantage : the theory is purely GR in vacuum.
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First idea (2)

� Thus a massive spherical body generates the 

Schwarzschild solution for g*.

� In that case the matter metric reproduces the 

MOND’s phenomenology (with                               )

� The deadly problem, however, is the (un)stability. 

This is in fact an higher order gravity theory => 

Ostrogradski’s theorem
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Nonminimal scalar-tensor model 
(1)

� The above instability may be avoided with the help of a scalar 
field

� Very similar idea :

� I.e. a disformal-like theory, but with a quadratic kinetic term

� Purely Brans-Dicke theory in vacuum
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Nonminimal scalar-tensor model 

(2)

� We may thus expect that outside matter

� In that case the matter metric reads:

� Ostrogradski’s theorem ?

� The Christoffel symbols of the matter metric involve secon 
derivative of the scalar field.

� But: gauge bosons are described by one-forms, and thus their 
action does not involve the Christoffel symbols (e.g. EM)

� And the action of fermions  depends on the derivative of the 
metric (or more precisely of the tetrad field), but only linearly
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Consistency of the scalar field 

equation within matter (1)

� The matter metric is of the type

� The scalar field equation is then

� Its hyperbolcity is thus an quite involved question.

� Simple approach: the case of an perfect pressureless fluid. 

Then the effective kinetic term of the scalar field is simpler 

and reads
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Consistency of the scalar field 

equation within matter (2)

� The negative sign of B is such that the time-time component 

of the effective metric G_00 is even more negative.

� Specializing to a point-like mass surounded by tenuous gas, 

hyperbolicity requires

� Unfortunately MOND requires

� Hence A’ and A’’ are of opposite signs. Moreover the order of 

magnitude are such that the scalar field equation may become 

non hyperbolic in the tenuous gas in the outskirts of galaxies!
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Solution: fine-tuning?

� Add a large and positive term in A(s), that does not spoil the 

MOND phenomenology. E.g : 

� Problem: this term actually dominates the source term, and the 

scalar field may not be such that

� Solution: keep this term in tenuous gas surrounding a galaxy, 

but kill it inside dense matter.

� The best model (but very fine tuned) we can obtain is however 

such that the scalar field is only generated by the center of 

extended bodies.
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Conclusions

� The success of MOND’s phenomenology may signal a breakdown of 
Newtonian gravity at small accelerations

� Any competing model of DM should therefore explains the success of MOND, 
and notably the existence of an universal acceleration scale

� K-essence models nicely embed the MOND paradigm in a relativistic field 
formulation. But the actual difficulty is to reproduce the light deflection.

� TeVeS-like models suffer from unstabilities of the vector field. Moreover the 
free function must be fine-tuned.

� Scalar disformal models - and nonminimal metric couplings – that reproduce 
MOND’s phenomenology generically lead to nonhyperbolic equation for the 
scalar field within matter. Fine-tuning is thus also required. 

� To date thus, no consistent relativistic theories of MOND exists. 

� These difficulties may signal that MOND needs a more general framework than 
(pseudo-)Riemannian geometry. Finsler geometry? Nonlinear realization of
local symetries? Etc.


