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Goals

(dDerive the global values of the gas-to-dust
ratio (GDR) and X factor in the LMC and SMC

JConstrain dust models using the GDR

(JThe GDR can tell us something about whether or
not a dust model is realistic based on the

metallicity of a galaxy !

JLook at spatial variations and variations with
radiation field in the X factor



GDR From Abundances and Depletions

Depletion

fraction (solar)
(Draine 2007)

C 109.6 (1.32e-3) 53.7 (6.44e-4) 223.9(2.69e-3)  0.43
N 13.80 (1.93e-4) 4.27 (5.97e-5) 57.5 (8e-4) 0.28
0 223.9 (3.58e-3) 107.2 (1.71e-3) 575.6 (9.21e-3)  0.27
Mg 29.5 (7.08e-4) 9.55(2.29e-4) 36.31(8.71e-4)  0.92
Si 64.6 (1.81e-3) 10.7 (3.e-4) 31.6 (8.85e-4)  0.95
Fe 16.98 (9.48e-4) 6.92 (3.86e-4) 27.54 (1.54e-3)  0.993
S 5.012 (1.69e-4) 3.891 (1.24e-4) 16.21 (5.19e-4)

Total M,/M,, 0.00873 0.003453 0.0165

2/7, 0.5 0.2 1

136 272 816 170
GDR=25xMX/MH Assumption: The depletion fractions are the same in the LMC,
X SMC, and MW

Min GDR (8 = 1)

114 289 61
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Observations

O FIR/dust: HERschel Inventory of The Agents of Galactic Evolution

(HERITAGE, PI: Margaret Meixner, see Meixner et al. 2010)

o PACS 100, 160 um, SPIRE 250, 350, 500 um
o 40” resolution (SPIRE 500) convolved to 1’ resolution to match HI, CO
o Dust surface density maps derived in Gordon et al. (2010, 2011 in prep)

J Atomic Gas: HlI 21 cm ATCA
+Parkes survey (Kim et al. 2003)
at 1’ resolution

J CO for the LMC: MAGellanic
Mopra Assessment (MAGMA, PI:

Tony Wong, see Wong et al.
2011, submitted). 1’ resolution

1 CO for the SMC: NANTEN survey
(Fukui et al. 2008). 2.6’

resolution

See Poster by P. Panuzzo



Derivation of GDR and X Factor

Observed Unknown e Unknown
i }Qfl? g
cpp < 0021, +2.16 X100 X I, +@

2

dust

J PROBLEM: Presence of H, in low-Z GMC envelopes where there’s
no CO, making it invisible to CO emission observations !

d How to get around the issue of X, and CO-dark molecular gas ?



Derivation of the “global” GDR and X Factor

=>» Compute GDR as the slope of the correlation between X and
2 4.t IN the diffuse ISM (A,<0.3), where no H, exists:

_ diffuse
\ E(Hyl)diﬁ‘usel _\GDRdiﬁuSﬂZdust l + Z0

Observed

|
Slope ofthe Observed Intercept of the
correlation correlation

=» Compute X, Wwhere CO is detected as best-fit to 2(H,)=X ;|0

GDR,;... 200 — 2 (H)+ 2, = X, X 2.16x 107 Ieg
| J
| Slope of the
2(H,) correlation R SlILEe

Assumption: The GDR is does not depend on density !




Case of the
LMC
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245t Obtained from SED fitting to modified black body of emissivity index f§ = 1.5
with Herschel bands (PACS 100, 160 um, SPIRE 250, 350, 500 um)
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24t Obtained from SED fitting to modified black body of emissivity index 3 = 2
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FIR and sub-mm Excess

In the LMC and SMC, there is an observed excess emission at wavelengths >
200 um compared to a modified black body with single emissivity index
(Gordon et al. 2010, Bot et al. 2010, Israel et al. 2010)

Possibilities to explain this excess include:
o Modification of dust properties longward of 200 um From Bot et al. 2010

o Spinning dust

o Cold dust component (T .
< 10K)

Residuals and quality of the 104
fits itself can usually not
discriminate between these

FIR-submm
excess

10*

possibilities. >

A large amount of cold dust 1o?
would be required to explain
FIR/submm excess, so GDR 10

may eliminate this possibility
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Case of the
SMC:
Very Cold
Dust
Component

?

3, =27.3 M_/pc?
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- Prediction from
metallicity
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Add emission from dust at T = 7.5 K to fit submm excess:

=>» GDR too low (lower than minimum allowed by metallicity (289)




X Factor Variations and CO-Dark H,

[ Coarse GDR map allows the derivation of a map of the X
factor where CO is detected

4 First calculate X, as a ratio to examine spatial variations

S(H,) _ GDRxZ,, +3,-3(HI)

X =
0 216x107°1, 2.16x107™1,,

1 Where no CO is detected, 2(H,) is CO-Dark, but can be traced
by dust !
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Calculating X, as a Xco A when radiation
ratio becomes field 7
uncertain
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X0 Calculated as a slope for different radiation fields

[ Consider all the pixels where the dust temperature is within the
interval [T.-OT, T+0T], with T. = temperature bin

 The same method used to derive the “global” GDR and X, can
be applied to this subset of pixels

U Possibility to examine variations of GDR and X, with T, ,
radiation field

Z(Hl)dlﬁpuse —\GDRdiﬁpuse (]:? dljﬁtseT =T; +2T =T

dust
|

Slope of the correlation between X ., and Z (HI)

GDRije * i + %" = 2(HD™ = X (T) 1 2.16x10™ Iy

| 1 '
v ! Y

S(H,, T=T) Slope of the correlation Observed CO




GDR
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rvariations

O 1.9 20 25

Ty (G 0 THP)

Systematics or real variation ?

=» Factor of two in GDR consistent with dust destruction/grain growth

=2 Need to estimate dust column independently (using extinction)




Summary/Conclusion

GDR in the LMC and SMC based on the correlation between HI and dust surface
densities in diffuse regions with no molecular gas

— LMC: GDR =270 (Modified black body with § =1.5)

— SMC: GDR = 1230 (Modified black body with broken emissivity law, § = 1.5 for
A < 300 mic)

— Very cold dust component, carbon graphite (f§ = 2) not likely (GDR too low !)

Global X factor in the LMC and SMC based on the H, surface density derived from
FIR and HI, and the observed CO.

— LMC: X o ~ 4x10%° Kt km?'s; SMC: X ~ 25%1020 K2 km s
CO-dark H, in GMC photo-dissociated envelopes can be traced by dust
Xco iNcCreases:

— With radiation field (dust temperature), as CO becomes more and more
photo-dissociated

— Near the edges of GMCs, where CO starts to be photo-dissociated

GDR increases with dust temperature/radiation field; Dust destruction in the
diffuse ISM or in massive star formation regions such as 30 Dor?
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2 4ust at CO boundary

Prediction from Wolfire et al. (2010);

22 24 26 28 30

Td ust



D(H"™) CO—dark [M, pe™?]

100

10

|| The CO-dark H, extends deeper

into GMCs as the strength of
the radiation field increases.

The CO volume decreases as the
radiation field becomes stronger

because CO is photo-dissociated

0.1 1.0
Tgust [Mo PC-2] ~A,/10




Why do we need the GDR ?

4 In low-Z galaxies (A, a Z), CO is an ineffective tracer of molecular
gas because it is photo-dissociated more easily than H,

1 A good estimate of the GDR is fundamental to estimate the X

factor and mass of CO-dark molecular gas from FIR observations
in low-Z galaxies. R B A B A S L

I

1000

S(Hy"")=GDR X, -3(HI)
co
Xco = 2, )

2161072,

100 -

Z(szUSt) [Mo pC'z]

From Leroy et al. (2009):

Surface density of H,, 3(H,du), derived from
FIR and HI measurements as a function of
CO integrated intensity (lo) in N83 (SMC) 10




M, /M, vs. O/H for 60 galaxies
Xeo=4.0x10® cm~2/(K km s~!)
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