Gas-To-Dust Ratio and X Factor in the Magellanic Clouds: New Insights from Herschel

Julia Román-Duval On behalf of the HERITAGE and MAGMA teams

> "From Dust to Galaxies" Meeting Paris, June 27-July 1, 2011

Goals

- Derive the global values of the gas-to-dust ratio (GDR) and X factor in the LMC and SMC
- Constrain dust models using the GDR
 - The GDR can tell us something about whether or not a dust model is realistic based on the metallicity of a galaxy !

Look at spatial variations and variations with radiation field in the X factor

GDR From Abundances and Depletions

X	LMC N _x /N _H in ppm (M _x /M _H)	SMC N _x /N _H in ppm (M _x /M _H)	Solar N _x /N _H in ppm (M _x /M _H)	Depletion fraction (solar) (Draine 2007)
С	109.6 (1.32e-3)	53.7 (6.44e-4)	223.9 (2.69e-3)	0.43
Ν	13.80 (1.93e-4)	4.27 (5.97e-5)	57.5 (8e-4)	0.28
0	223.9 (3.58e-3)	107.2 (1.71e-3)	575.6 (9.21e-3)	0.27
Mg	29.5 (7.08e-4)	9.55 (2.29e-4)	36.31 (8.71e-4)	0.92
Si	64.6 (1.81e-3)	10.7 (3.e-4)	31.6 (8.85e-4)	0.95
Fe	16.98 (9.48e-4)	6.92 (3.86e-4)	27.54 (1.54e-3)	0.993
S	5.012 (1.69e-4)	3.891 (1.24e-4)	16.21 (5.19e-4)	
Total M _x /M _H	0.00873	0.003453	0.0165	
Z/Z _o	0.5	0.2	1	
$GDR = \frac{1.36}{\sum_{X} \delta \times M_X / M_H}$	272 Assumption: Th SMC, and MW	816 ne depletion fra	170 ctions are the san	ne in the LMC,
Min GDR (δ = 1)	114	289	61	

Estimating the GDR

→ Measure the dust and gas masses and take their ratio.

The dust mass can be derived from:
FIR SED fitting, assuming a model

for the grain properties, such as emissivity and composition.

Extinction studies toward background stars the UV-NIR

The gas mass can be derived using H I 21 cm, CO rotational line emission observations to trace HI and H_2 (assume X factor, X_{CO})

Observations

- □ FIR/dust: HERschel Inventory of The Agents of Galactic Evolution (HERITAGE, PI: Margaret Meixner, see Meixner et al. 2010)
 - $\circ~$ PACS 100, 160 μm , SPIRE 250, 350, 500 μm
 - 40" resolution (SPIRE 500) convolved to 1' resolution to match HI, CO
 - Dust surface density maps derived in Gordon et al. (2010, 2011 in prep)
- Atomic Gas: HI 21 cm ATCA +Parkes survey (Kim et al. 2003) at 1' resolution
- CO for the LMC: MAGellanic
 Mopra Assessment (MAGMA, PI: Tony Wong, see Wong et al. 2011, submitted). 1' resolution
- CO for the SMC: NANTEN survey (Fukui et al. 2008). 2.6' resolution

Derivation of GDR and X Factor

PROBLEM: Presence of H₂ in low-Z GMC envelopes where there's no CO, making it invisible to CO emission observations !

□ How to get around the issue of X_{co} and CO-dark molecular gas ?

Derivation of the "global" GDR and X Factor

→ Compute GDR as the slope of the correlation between Σ_{gas} and Σ_{dust} in the **diffuse ISM (A_v<0.3)**, where no H₂ exists:

 \rightarrow Compute X_{co} where CO is detected as best-fit to $\Sigma(H_2)=X_{co}I_{co}$

 $Σ_{dust}$ obtained from SED fitting to **modified black body of emissivity index** β = 1.5 with *Herschel* bands (PACS 100, 160 μm, SPIRE 250, 350, 500 μm)

 $Σ_{dust}$ obtained from SED fitting to **modified black body of emissivity index** β = 2 with *Herschel* bands (PACS 100, 160 μm, SPIRE 250, 350, 500 μm)

Case of the SMC β = 1.5

GDR Map and Histogram

Coarse GDR map obtained from the same correlation method to pixels in aperture of diameter 100 pc (LMC) or 200 pc (SMC)

FIR and sub-mm Excess

- In the LMC and SMC, there is an observed excess emission at wavelengths > 200 µm compared to a modified black body with single emissivity index (Gordon et al. 2010, Bot et al. 2010, Israel et al. 2010)
- Possibilities to explain this excess include:
 - \circ $\,$ Modification of dust properties longward of 200 μm

From Bot et al. 2010

- Spinning dust
- Cold dust component (T < 10 K)
- Residuals and quality of the fits itself can usually not discriminate between these possibilities.
- A large amount of cold dust would be required to explain FIR/submm excess, so GDR may eliminate this possibility

 $Σ_{dust}$ obtained from SED fitting to modified black body of broken emissivity law with β = 1.5 for λ < 300 µm, and set as free parameter for λ > 300 µm

Case of the SMC: Broken Emissivity Law

SED fit to modified black body of emissivity index β = 1.5 + emission from T = 7.5 K dust

Case of the SMC: Very Cold Dust Component ?

Add emission from dust at T = 7.5 K to fit submm excess:

→ GDR too low (lower than minimum allowed by metallicity (289)

X Factor Variations and CO-Dark H₂

Coarse GDR map allows the derivation of a map of the X factor where CO is detected

 \Box First calculate X_{co} as a **ratio** to examine spatial variations

$$X_{CO} = \frac{\Sigma(H_2)}{2.16 \times 10^{-20} I_{CO}} = \frac{GDR \times \Sigma_{dust} + \Sigma_0 - \Sigma(HI)}{2.16 \times 10^{-20} I_{CO}}$$

□ Where no CO is detected, $\Sigma(H_2)$ is CO-Dark, but can be traced by dust !

Variations with Radiation Field

X_{co} calculated as a slope for different radiation fields

- □ Consider all the pixels where the dust temperature is within the interval $[T_i-\delta T, T_i+\delta T]$, with T_i = temperature bin
- □ The same method used to derive the "global" GDR and X_{co} can be applied to this subset of pixels
- lacksquare Possibility to examine variations of GDR and X_{CO} with $T_{dust},$ radiation field

$$\Sigma(HI)_{diffuse}^{T=T_i} = GDR_{diffuse}(T_i) \Sigma_{dust}^{diffuse,T=T_i} + \Sigma_0^{T=T_i}$$

Slope of the correlation between $\Sigma_{\rm dust}$ and Σ (HI)

$$GDR_{diffuse}^{T=T_i} \times \Sigma_{dust}^{T=T_i} + \Sigma_0^{T=T_i} - \Sigma(HI)^{T=T_i} = X_{CO}(T_i) \times 2.16 \times 10^{-20} I_{CO}^{T=T_i}$$

$$\Sigma(H_2, T = T_i)$$
 Slope of the correlation Observed CO

Variations with Radiation Field: X_{co} calculated as a slope

Systematics or real variation ?

→ Factor of two in GDR consistent with dust destruction/grain growth
 → Need to estimate dust column independently (using extinction)

Summary/Conclusion

- GDR in the LMC and SMC based on the correlation between HI and dust surface densities in diffuse regions with no molecular gas
 - LMC: GDR = 270 (Modified black body with β = 1.5)
 - SMC: GDR = 1230 (Modified black body with broken emissivity law, β = 1.5 for λ < 300 mic)
 - Very cold dust component, carbon graphite (β = 2) not likely (GDR too low !)
- Global X factor in the LMC and SMC based on the H₂ surface density derived from FIR and HI, and the observed CO.
 - LMC: $X_{co} \sim 4 \times 10^{20} \text{ K}^{-1} \text{ km}^{-1} \text{ s}$; SMC: $X_{co} \sim 25 \times 10^{20} \text{ K}^{-1} \text{ km}^{-1} \text{ s}$
- CO-dark H₂ in GMC photo-dissociated envelopes can be traced by dust
- X_{co} increases:
 - With radiation field (dust temperature), as CO becomes more and more photo-dissociated
 - Near the edges of GMCs, where CO starts to be photo-dissociated
- GDR increases with dust temperature/radiation field; Dust destruction in the diffuse ISM or in massive star formation regions such as 30 Dor?

Variations with Radiation Field

Variations with Radiation Field

Why do we need the GDR ?

- In low-Z galaxies ($A_v \alpha Z$), CO is an ineffective tracer of molecular gas because it is photo-dissociated more easily than H_2
- A good estimate of the GDR is fundamental to estimate the X factor and mass of CO-dark molecular gas from FIR observations in low-Z galaxies.

$$\Sigma(H_2^{dust}) = GDR \ \Sigma_{dust} - \Sigma(HI)$$
$$X_{CO} = \frac{\Sigma(H_2^{CO})}{2.16 \ 10^{-20} I_{CO}}$$

From Leroy et al. (2009):

Surface density of H_2 , $\Sigma(H_2^{dust})$, derived from FIR and HI measurements as a function of CO integrated intensity (I_{CO}) in N83 (SMC)

Dependence on Metallicity

Theoretical prediction: GDR varies linearly with ISM metallicity, no matter what the star formation history is (e.g., Dwek 1998)

From Draine et al. (2007): Relation between metallicity and GDR in 65 SINGS galaxies. The filled points show results for the regions of the galaxies where IR emission is detected. The non-filled points include the HI envelopes