

2.5 m telescope

Capabilities for Studying Dust and the ISM in the Herschel Era and Beyond J. Rho, H. Zinnecker and SOFIA team

Wind Tunnel Tests at NASA Ames: pressure load, and boundary Layer characterization; Telescope is provided by German DLR

Outline of the talk

- Overview and Advantage of SOFIA
- Overview of SOFIA Instrument capabilities
- Science results with mid-IR camera FORCAST: Jupiter and Orion
- Science results with heterodyne spectrometer GREAT:
 [C II] and CO emission of M17 SW
- SOFIA Far-IR and Submm Instrument Capabilities: Comparison with those on the Herschel
- SOFIA mid- and near-IR Instrument Capabilities
- Upcoming Calls for Proposal
 - 2nd Generation Instrument Call (Just released) <u>http://nspires.nasaprs.com</u> (SOFIA Second Generation Instruments: NNH08ZDA009O_SOFIA)
 - Call for Observing Proposals (Cycle 1)

Overview and Advantages of SOFIA

- Above 99.8% of the water vapor; transmission at 14 km
 >80%; emphasis on the obscured IR and submm regions from 30 to 300 µm
- Instrumentation: wide variety, rapidly interchangeable, stateof-the art – SOFIA is a "new" observatory every few year
- Observatory comes back to base every night

Excellent Spectroscopy Capabilities: R=10² to 10⁸

I. Far-IR: SOFIA is comparable to Herschel; spectral mapping is efficient.

II. Mid-IR: sensitivity is comparable to ISO, but produce a higher spatial resolution including high spectral resolution

III. Near- to mid-IR (1-5 micron): less atmospheric absorption than ground

Photometric Sensitivity and Angular resolution

SOFIA is comparable to Herschel within a factor of 3-8 sensitivity.

First Light on May 26, 2011 UT: We demonstrated imaging capability of FORCAST from 5 to 37 microns with 3-4 arcsecond FWHM

Red = 37.1 μ *m*, *Green* = 24.2 μ *m*, *Blue* = 5.4 μ *m*

Orion with FORCAST: Red = $37.1 \ \mu m$, Green = $24.2 \ \mu m$

De Buizer et al. in prep.

SOFIA Early Science Images

Orion with FORCAST: Red = 37.1 μm, *Green* = 24.2 μm Orion Nebula at Mid IR with 3" resolution

BN is the hottest source and is not see at 37 μ m.

The source IRc2 (bright at 12 microns) and radio source "I" are not seen at 37 μ m. This is a surprise.

The brightest source at 37 µm is IRc4; one of the coldest (~100 K) and the most luminous (FORCAST team, in preparation)

Thermal Emission from PAH Rich Objects

A key question is whether portions of the aromatic population of PAHs are converted to species of biological significance

Vibrational modes of PAHs in a planetary nebula and the ISM (A. Tielens 2008)

GREAT First Light

- German REceiver for Astronomy at Teraherz Frequencies (GREAT)
- PI: Rolf Güsten, MPIfR
 in Bonn
- M17 (Omega Nebula)
 CO (J=13-12, green)
 and [C II] (white) spectra
- Velocity (x-axis): from -10 to 50 km/s
- GREAT Spectral resolution is ~10⁷.
- Efficient Scan mapping capability.

OB (yellow) stars, [CII] (green) contours on VLA image (ionizing flux). Inserted CO (J=13-12) image with [CII] contours.

[CII] is ionized gas at the boundary of dense warm CO.
 (Perez-Beaupuits, Güsten, and GREAT team, in preparation)

Frequency coverage and Molecule lines Herschel HIFI and SOFIA GREAT

USRA

Comparison between Herschel and SOFIA far-IR instruments

	PACS spec	FIFI-LS	HIFI	GREAT	PACS imager	HAWC
Wavelength range (µm)	55-210	42-110, 110-220	157-213, 240-625	60, 110-125, 156-165, 200-240	55-210	53, 89, 115, 216
Field of View	47"x47"	30"x30" 60"x60"	Single pixel	Single pixel (7 pixels in future)	47"x47"	27"x72", 42"x112", 72"x192", 96"x256"
Pixel size	9"	6", 12"	13", 39"	20"	9"	2.3",3.5", 6", 8"
Sensitivity	2-5x10 ⁻¹⁸ Wm ⁻² 100-250mJy	Similar to PACSspec within a factor of 3-5, but efficient mapping	A few to 100 mK	Similar to HIFI within a factor of 2-8, but efficient mapping	2-5x10 ⁻¹⁸ Wm ⁻² 100-250 mJy	60-120 mJy
Spectral Resolution	2600-5400 (55-72µm) 900-3000	1000- 5000	1000-10 ⁷	10 ⁶ -10 ⁸	2600-5400 (55-72µm) 900-3000	None

SOFIA's First-Generation Instruments

(http://www.sofia.usra.edu/Science/instruments/)

see also Gehrz et al. 2011 (Adv. Space Science)

Instrument	Туре	λλ (μm)	νν (THz)	Resolution	PI
FORCAST	imager / (grism)	5.4 - 37	8.1 - 56	filters / (R~2000)	T. Herter /
(in operation)					Cornell U.
GREAT	heterodyne			$R \sim 10^4 - 10^8$	R. Güsten /
(H-Freq.)	spectrometer	(62 - 65)	(4.6 - 4.8)		MPIfR
(M-freq June 2011)		(110 - 125)	(2.4 - 2.7)		
(L-freq.'s operating)		156 - 165	1.82 - 1.92		
		200 - 240	1.25 - 1.50		
HIPO	fast imager	0.3 - 1.1		filters	E. Dunham /
(summer 2011)					Lowell Obs.
FLITECAM	imager / (grism)	1.0 - 5.5		filters / (R~2000)	I. McLean /
(summer 2011)					UCLA
FIFI-LS	imaging grating	42 - 110	2.7 - 7.1	R ~1000 - 2000	Poglitsch,Krabbe
	spectrograph	110 - 210	1.4 - 2.7		/MPE,IRS
EXES	imaging echelle	4.5 - 28.4	10.6 - 67	$R \sim 3000 - 10^5$	M. Richter /
	spectrograph			10 3000 - 10	UC-Davis
HAWC	imager	45 - 270	1.1 - 6.6	filters	D. A. Harper /
					U. Chicago

FLITECAM (PI: Ian McLean, UCLA)

- A Facility-class camera at 1 5 μm
- Seeing/diffraction limited (2" 5"), 8 arcmin FOV
- Filters: *J, H, K, L, M*, PAH, Water-ice, Pa-α, Pa-cont
- Grisms: R ~ 2000 across 1 5 μm band, 1" & 2" slits
- Lines and molecules: H, He, Fe, H₂, PAH, warm CO
- FLITECAM is complete, has been field-tested on 3-m telescope at Lick observatory; can be used with HIPO
- 1st test flights Fall 2011 and FLITECAM available 2012

3.3 µm PAH filter

SOFIA successfully observed challenging Pluto Occultation (Jun 24, 2011)

NASA

- ISO SWS Spectra: stardust is spectrally diverse in the regime covered by SOFIA
- Studies of stardust mineralogy
- Evaluation of stardust contributions from various stellar populations
- Implications for the lifecycle of gas and dust in galaxies

USRA

EXES (PI: Matt Richter, U. Calif.-Davis)

- High spectral resolution in mid-IR: 4.5 28.4 μm
 - R = 50,000 120,000 cross-dispersed
- Single order long slit (~100" long)
 - R = 3,000 with 5% coverage
 - R = 20,000 with ~0.7% coverage
- Sensitivities: 0.2-1 Jy at 5µm and 2-15 Jy at 30µm depending on spectral resolution
- Designed primarily to study gas phase using
 - molecular ro-vibration bands that provide multiple energy levels in single observation
 - kinematic information that resolves structure and multiple components
 - Diverse star dust
- General availability: Cycle 2 (2013)

EXES and SOFIA

Lab Spectra: C2H2 low-pressure gas cell spectra obtained with EXES. Hi-res mode gives R=110k @ 13.7µm and best spectral focus.

HAWC (PI: Al Harper, U. Chicago)

- Four passbands at 53, 89, 154, and 214 μm
- Commissioning 2012 / 2013
- Dust properties of protostars and diffuse emission

Fig. 2. Three-color composite image of the H II region N 113 combining SPIRE 250 μ m (red), PACS 160 μ m (green), and MIPS 24 μ m images. Our reliable *Herschel* sources are marked with red boxes. *Spitzer*-

SOFIA will fly to Southern Hemisphere!

Protostar SED in LMC (Sewilo et al. 2010)

Current Schedule

- FORCAST Basic Science Flights: May to June 2011
- GREAT Basic Science Flights: July and September 2011
- FLITECAM Verification flights: Aug 2011

AO for 2nd Generation Instruments

- Draft AO: http://soma.larc.nasa.gov/SOFIA/sofiapbtelecon_agenda.html
- AO announcement: <u>http://nspires.nasaprs.com</u>

(SOFIA Second Generation Instruments:NNH08ZDA009O_SOFIA)

Asilomar meeting proceeding

http://www.sofia.usra.edu/Science/workshops/asilomar.html

Next Science Proposal Call

- Fall to Winter 2011, 300 hours observing time: open internationally
- FORCAST and GREAT
- FLITECAM, FORCAST grisms and HIPO are expected to be available.
- Data Analysis funding is available for US Investigators

Merci

Please visit http://sofia.usra.edu/

Questions and comments: send to sofia_help@sofia.usra.edu Subscribe SOFIA newsletter, send email to sofia_astronews@sofia.usra.edu

PSF and Jitter from Images of y Cygni

2,800 2.5 ms images shifted and co-added

Same data w/o shift and add

