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The relation between dust and the infrared

Figure: Formation, processing, and evolution of
interstellar dust (Rinehart et al., 2008)

Interstellar dust:

plays a role in the
birth of stars

precursor material
for the formation of
planets

hides astronomical
objects from our
view

Infrared observations are
crucial to understanding
the origins of the
universe.
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The importance of studying silicates

Spectral features attributed to:

silicates

carbonaceous grains

PAHs

Constraints on chemical and
physical structure

Their spectra need be analyzed
through laboratory experiments
reproducing astrophysical
environments. (See Henning &
Mutschke, 2010)

Figure: A) Silicates on Earth are ordered
solids. B) In space their structure is chaotic.
(Adapted from Rinehart et al., 2008)

G. Cataldo From Dust to Galaxies, Paris 2011 4/20



Introduction Modeling Results Summary

The importance of studying silicates

Spectral features attributed to:

silicates

carbonaceous grains

PAHs

Constraints on chemical and
physical structure

Their spectra need be analyzed
through laboratory experiments
reproducing astrophysical
environments. (See Henning &
Mutschke, 2010)

Figure: A) Silicates on Earth are ordered
solids. B) In space their structure is chaotic.
(Adapted from Rinehart et al., 2008)

G. Cataldo From Dust to Galaxies, Paris 2011 4/20



Introduction Modeling Results Summary

The importance of studying silicates

Spectral features attributed to:

silicates

carbonaceous grains

PAHs

Constraints on chemical and
physical structure

Their spectra need be analyzed
through laboratory experiments
reproducing astrophysical
environments. (See Henning &
Mutschke, 2010)

Figure: A) Silicates on Earth are ordered
solids. B) In space their structure is chaotic.
(Adapted from Rinehart et al., 2008)

G. Cataldo From Dust to Galaxies, Paris 2011 4/20



Introduction Modeling Results Summary

The optical constants as primary parameters

De�nition

Complex refractive index m = n + ik

The refractive index n determines the velocity of
constant-phase waves.

The extinction index k determines the attenuation of the wave
as it propagates through the medium.

De�nition

Dielectric constant ε = (n + ik)2 = ε′ + iε′′

Problem: the optical constants are not directly measurable.
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Objectives of the OPASI-T program

Experimental apparatus and measurements

Development of numerical algorithms for the computation of
the optical constants as a function of wavelength and
temperature

Validation through application to laboratory data

Analysis and interpretation of post-processed data

Population of a library of optical properties in the far-infrared
regime
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Hypotheses and mathematical models

Figure: Analogy between scattering by a
particle and
transmission-re�ection-absorption by a slab
(Bohren and Hu�man, 1983)

Transmission-line
approximation

One-layer slab model
(Bohren and Hu�man,
1983)

Beer's law (Halpern et al.,
1986)

Transition modes

Lorentz model

Mixtures

Maxwell-Garnett formula
(Maxwell Garnett, 1904)
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Constrained minimization as main working tool

De�nition (Least-Squares Nonlinear Fit)

minDOFsχ
2
m = minDOFs

1

N

N∑
j=1

[T (DOFs, λj)− Tmeasured ]2

DOFmin ≤ DOF ≤ DOFmax

N = number of data points
λ = wavelength

Initial condition −→ Fit −→ DOFs −→
{

T ,R,A
n, k , ε

∀λj
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SiOx : Measured transmission spectrum at room temperature
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SiOx : Sample characterization

Figure: Various sample preparations are needed to cover the wide frequency
range (Rinehart, Cataldo, et al., Applied Optics, in press).
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SiOx : Sample characterization

Each sample preparation has a di�erent optical depth, which allows
us to obtain transmission values in the range of 0.2-0.8 as needed
to determine the optical constants to high accuracy.

Sample type Spectral coverage [µm]

8-mm 300− 1000
4-mm 100− 500
2-mm 100− 350
Polyethylene 15− 100
KBr 1− 25
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SiOx : How to extract the optical constants (bulk samples)

Beer's law

T = (1− R)2 exp (−αh)

R =
(n − 1)2 + k2

(n + 1)2 + k2

k =
α

2ω
=

a

2ω

( ω
2π

)b−1
α = a

( ω
2π

)b
h = sample thickness

T = T (n, a, b)
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SiOx : How to extract the optical constants (mixtures)

Maxwell-Garnett formula

εe� = εe� (f , εb, εi )

Lorentz model

εi = (n + ik)2 = εi ,∞ +
M∑
j=1

bm

ω2
p,j

ω2
0,j − ω2 − iωνj

= εi (DOFsi , ω)

Modi�ed Lorentz model (Sihvola, 1999)

εe� = εe� (f , εb,DOFsi , ω)

One-layer slab model (averaged)

T = T [f , εb, (4M + 1)DOFsi , ω]
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SiOx : Fit and output parameters (Cataldo et al., in prep.)
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Bulk (4-mm) Polyethylene KBr

DOFs 3 53 (13 LOs) 153 (38 LOs)

Residual average 0.32 0.62 0.25

∆T [%] maximum 2.68 3.93 1.47

χ2m 2.55 · 10−5 11.12 · 10−5 1.29 · 10−5

σ 0.005 0.012 0.008

χ2 109.89 239.81 146.26

χ2ν 0.93 1.15 0.25
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SiOx : The optical constants in the FIR and MIR
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SiOx : The optical constants in the FIR and MIR

(Adapted from Rho et al., 2008)
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Our sample description

Advantages Disadvantages

Bulk sample

n consistent with n not well
other measurements constrained

a = 0.003, b = 1.552 Need for data at
(Agladze et al., 95;...) longer wavelengths

Mixture

n − k independent n − k dependent
from �lling fraction on matrix

x ≈ 1.5 Fine-tuning

DOFs well constrained of starting guess

Outputs for mix Uncertainty
and particles in measurements
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Next steps

Measured re�ectance data (TOP PRIORITY)

Temperature dependence (Cataldo et al., in prep.)

Development of more sophisticated models

Metal-enriched powders: Fe- and Mg-rich silicates
(Kinzer, Cataldo, et al., in prep.)
Scattering
Multiple-layered structures
Unparalleled faces and roughness

Application to new upcoming laboratory data and observations

G. Cataldo From Dust to Galaxies, Paris 2011 16/20



Introduction Modeling Results Summary

Next steps

Measured re�ectance data (TOP PRIORITY)

Temperature dependence (Cataldo et al., in prep.)

Development of more sophisticated models

Metal-enriched powders: Fe- and Mg-rich silicates
(Kinzer, Cataldo, et al., in prep.)
Scattering
Multiple-layered structures
Unparalleled faces and roughness

Application to new upcoming laboratory data and observations

G. Cataldo From Dust to Galaxies, Paris 2011 16/20



Introduction Modeling Results Summary

Next steps

Measured re�ectance data (TOP PRIORITY)

Temperature dependence (Cataldo et al., in prep.)

Development of more sophisticated models

Metal-enriched powders: Fe- and Mg-rich silicates
(Kinzer, Cataldo, et al., in prep.)
Scattering
Multiple-layered structures
Unparalleled faces and roughness

Application to new upcoming laboratory data and observations

G. Cataldo From Dust to Galaxies, Paris 2011 16/20



Introduction Modeling Results Summary

Next steps

Measured re�ectance data (TOP PRIORITY)

Temperature dependence (Cataldo et al., in prep.)

Development of more sophisticated models

Metal-enriched powders: Fe- and Mg-rich silicates
(Kinzer, Cataldo, et al., in prep.)
Scattering
Multiple-layered structures
Unparalleled faces and roughness

Application to new upcoming laboratory data and observations

G. Cataldo From Dust to Galaxies, Paris 2011 16/20



Thanks!

Questions?



Appendix

The e�ective medium structure

Back
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Appendix

The optical constants as a function of �lling fraction
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Appendix

The optical constants for the SiOx − KBr mixture

Back

(Rinehart, Cataldo, et al., Applied Optics, in press)
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