Workshop "Processus d'accélération en astrophysique

IAP, Paris, October 4, 2012

Electron heating and acceleration in two plasmas colliding with sub-relativistic velocities

S. Davis*, R. Capdessus, E. d'Humières, S. Jequier, I. Andryiash, V. T. Tikhonchuk

Centre Lasers Intenses et Applications Université Bordeaux 1 – CNRS – CEA, Talence, France * Fulbright Scholar, United States Department of State, USA

- Instability analysis
- Long term behavior and shock formation
- Electron heating in the colliding plasmas
- Single filament evolution

Colliding plasmas: sequence of instabilities

Ion filamentation instability

Ion Weibel instability has attracted attention recently in relation with the GRB physics: Medvedev, Loeb, ApJ 1999, Lubarsky, Eichler, ApJ 2006 It is also of interest for ICF – RPA ions Growth rate is in the ion time scale, wavelength is on the electron spatial scale

$$\kappa \uparrow k_{x}$$

$$j_{iz}, j_{ez}, E_{z}$$

$$(j_{iz}, j_{ez}, E_{z})$$

$$(j_{iz$$

In the limit $\omega \ll kc$

$$i\sqrt{\frac{\pi}{2}}\frac{\omega_{pe}^2}{k_x v_{Te}} = \omega_{pi}^2 \frac{k_x^2 u_0^2}{\omega^3} + \frac{k_x^2 c^2}{\omega} \qquad \qquad \gamma_{ifi} \simeq \omega_{pi} \frac{u_0}{c} \quad k_x \simeq \frac{\omega_{pe}}{c} \left(\frac{\omega_{pi}}{\omega_{pe}} \frac{u_0}{v_{Te}}\right)^{1/3}$$

Ion filamentation instability as an energy transformer

Ion filamentation induces the charge separation

$$\begin{array}{c} x & k_{x} & & & u_{iz}B_{y} \rightarrow v_{ix} \rightarrow \delta n_{i} \rightarrow j_{iz} \\ & & j_{iz}, j_{ez}, E_{z} \\ & & & B_{y} \rightarrow E_{z} \rightarrow j_{ez} \end{array}$$

Instability is driven by phase difference between the electron and ion currents Saturation is due to the ion trapping \rightarrow electron heating is important

$$\omega_{tr} \simeq \sqrt{\omega_{ci} K_{x} U_{0}} \simeq \gamma_{ifi} \qquad \gamma_{ifi} \simeq \omega_{pi} \frac{U_{0}}{c} \quad K_{x} \simeq \frac{\omega_{pe}}{c} \left(\frac{\omega_{pi}}{\omega_{pe}} \frac{U_{0}}{v_{Te}}\right)^{1/3}$$
$$\frac{V_{ix}}{U_{0}} \simeq \frac{\omega_{tr}}{k_{x} U_{0}} \simeq \left(\frac{m_{e}}{m_{i}} \frac{v_{Te}}{u_{0}}\right)^{1/3} \qquad \frac{B_{y}^{2}}{\mu_{0} n_{0} m_{i} U_{0}^{2}} \sim \left(\frac{m_{e}}{m_{i}} \frac{T_{e}}{m_{i} U_{0}^{2}}\right)^{1/3}$$

GRB Workshop, IAP Paris, October 4, 2012

 $k/(\alpha^{1/3}\Omega_{m})$

Numerical simulations of ion filamentation instability

- Numerical simulations are very challenging, but the results are contradictory:
- Spitkovsky, ApJ 2008, 2009 very efficient energy transfer > 40%
- Dieckmann et al., PPCF 2008 ?
- Kato, Takabe, ApJ 2008 very weak transfer 2%
- Martins et al, ApJ 2009, Fiuza et al PRL 2012 efficiency of energy transfer ~10%

Kato & Takabe, ApJ 2008

Plasma collision with the solid wall

Relativistic collisionless shock

Spitkovsky, ApJ 2008: collision of two identical relativistic plasmas with γ = 15: efficient energy exchange – electron heating and magnetic field generation, but the mass ratio is small m_i/m_a ~ 16 – 100

Energy budget: ions are losing 40% of their initial energy, $T_e \sim T_i$, shock speed ~ c/2 electrons are gaining 35%, ~ Maxwellian energy distribution magnetic field energy raising to 15% at the shock front ~20 c/ ω_{ni}

Simulation of collision of two sub-relativistic plasmas

 $\beta = u_p / c = 0.2$ $\varepsilon_p \approx 20 \text{ MeV}$ for $n_0 = 10^{18} \text{ cm}^{-3}$ size 0.5×60 mm² time $\omega_{pi}^{-1} = 1 \text{ ps} \ \lambda_i = c/\omega_{pi} = 220 \ \mu\text{m}$

Simulation of the plasma interaction in the center of mass reference frame in the ion filamentation-dominated regime

$$u_p \gg c_s \simeq c \sqrt{m_e / m_i}$$

electron heating

ion slowing down

magnetic field generation

energy repartition in the upstream flow

shock front formation

Ion phase space - time evolution

Ion heating and slowing down

lon heating proceeds faster than slowing down – in the time scale of 200 ω_{pi}^{-1} they are loosing less than 10% of their energy, while their temperature increases dramatically

GRB Workshop, IAP Paris, October 4, 2012

Global properties: filaments and fields

Plasma filamentation in the electron spatial scale c/ω_{pe} develops in the ion time scale $1/\omega_{pi}$

GRB Workshop, IAP Paris, October 4, 2012

ωpi **t = 10**

current filaments are associated with strong small scale magnetic fields

large amplitude charge density modulations producing strong electrostatic fields

Electron heating in the filaments

Nonlinear evolution of filaments is associated with strong electron heating – by factor of 100 in the time scale of 10 – 20 ω_{ni}^{-1}

GRB Workshop, IAP Paris, October 4, 2012

12

Temporal evolution of electron energy

30 25

20

15

10

0.2

0.4

0,6

0.8

1.0

1.2

1.4

Electron energy density saturates at the average level of 0.4 with a sharp cut-off at 1.5nomec²

Electron temperature increases with time from 0.02 m_ec^2 to 1.5m_ec² in the time scale of 200 ω_{pi}^{-1}

GRB Workshop, IAP Paris, October 4, 2012

13

Continuous electron heating in filaments

Hot electron temperature and their cut-off energy increase lineraly in time Stochastic heating process

Evolution of the ion energy density

Ion energy evolution is much slower – in the time scale of 200 ω_{pi}^{-1} they are losing less than 10% of their energy. Filament rotation generates the parallel electric field that slows down the ions

GRB Workshop, IAP Paris, October 4, 2012

Evolution of the magnetic fields

Magnetic fields follow essentially the filament evolution – their spatial scale and the volume increase with time. The amplitude agrees with the saturation level.

 $\frac{\boldsymbol{\omega_{ce}}}{\boldsymbol{\omega_{pe}}} \sim \frac{\boldsymbol{u_0} \,/\, \boldsymbol{C}}{\left(\boldsymbol{\omega_{pi}} \boldsymbol{u_0} \,/\, \boldsymbol{\omega_{pe}} \boldsymbol{v_{Te}}\right)^{1/3}}$

Single filament characterization

- Zoom of a single filament at the time of 400 ω_{pe}^{-1}
- very large compression by a factor of 6
- ion density maximum is higher than the electron one
- very high energy of electrons in the filament
- strong magnetic field around the filament – high electric current
- strong electrostatic field due to the charge separation
- filament life time about 10
 - **20** ω_{pi}⁻¹

Conclusions

- Similarity in the physics of laser plasma interaction and some phenomena in the GRBs – modeling of the collisionless subrelativistic shocks in laser plasma interactions requires very big volumes, long times and high laser energies
- Electron heating is an important stage of the shock formation. This is a stochastic process that occurs due to the strong charge separation in filaments
- Energy transfer to magnetic fields in limited by the ion trapping in the filaments
- Parallel electric field is generated later in time in the downstream zone due to the filament rotation
- Radiation losses due to the electron synchrotron emission. Next step: photon – electron kinetics