L'émission haute énergie des pulsars: une conséquence de la reconnexion magnétique dans le vent strié?

Observatoire Astronomique de Strasbourg Université de Strasbourg

Jérôme Pétri

ac

< □ →

Outline

Vous avez dit pulsar?

- remarques générales
- émission haute énergie

La magnétosphère

The striped wind

Results

- emission pattern and geometry
- Luminosité gamma

Magnetic reconnection

- The wind problem
- Plasma instabilities
- The termination shock

Conclusion & perspectives

- remarques générales
- émission haute énergie
- La magnétosphère

3 The striped wind

Results

- emission pattern and geometry
- Luminosité gamma

5 Magnetic reconnection

- The wind problem
- Plasma instabilities
- The termination shock

Conclusion & perspectives

étoile à neutrons

bbjet compact de compacité $\frac{R_s}{R_*} \approx 0.4$ \Rightarrow effets de champ gravitationnel fort

Iortement magnétisée

 \Rightarrow plasmas quantiques, effets d'EDQ (création de paires e^{\pm} , raies cyclotron)

en rotation plus ou moins rapide ⇒ intense champ électrique induit ⇒ accélération violente de particule

étoile à neutrons

objet compact de compacité $\frac{R_s}{R_*} \approx 0.4$ \Rightarrow effets de champ gravitationnel fort

Iortement magnétisée

⇒ plasmas quantiques, effets d'EDQ (création de paires *e*[±], raies cyclotron)

en rotation plus ou moins rapide ⇒ intense champ électrique induit ⇒ accélération violente de particule

étoile à neutrons

objet compact de compacité $\frac{R_s}{R_*} \approx 0.4$ \Rightarrow effets de champ gravitationnel fort

fortement magnétisée

 \Rightarrow plasmas quantiques, effets d'EDQ (création de paires e^{\pm} , raies cyclotron)

en rotation plus ou moins rapide ⇒ intense champ électrique induit ⇒ accélération violente de particules

étoile à neutrons

objet compact de compacité $\frac{R_s}{R_*} \approx 0.4$ \Rightarrow effets de champ gravitationnel fort

fortement magnétisée

 \Rightarrow plasmas quantiques, effets d'EDQ (création de paires e^{\pm} , raies cyclotron)

- en rotation plus ou moins rapide
 - \Rightarrow intense champ électrique induit
 - ⇒ accélération violente de particules

Magnétosphère des pulsars: généralités

Qu'est-ce qu'un pulsar?

étoile à neutrons

objet compact de compacité $\frac{R_s}{R_*} \approx 0.4$ \Rightarrow effets de champ gravitationnel fort

fortement magnétisée

 \Rightarrow plasmas quantiques, effets d'EDQ (création de paires e^{\pm} , raies cyclotron)

- en rotation plus ou moins rapide
 - \Rightarrow intense champ électrique induit
 - \Rightarrow accélération violente de particules

(Lorimer & Kramer, Handbook of pulsar astronomy)

Magnétosphère des pulsars: généralités

Qu'est-ce qu'un pulsar?

étoile à neutrons

objet compact de compacité $\frac{R_s}{R_*} \approx 0.4$ \Rightarrow effets de champ gravitationnel fort

Iortement magnétisée

 \Rightarrow plasmas quantiques, effets d'EDQ (création de paires e^{\pm} , raies cyclotron)

- en rotation plus ou moins rapide
 - \Rightarrow intense champ électrique induit
 - \Rightarrow accélération violente de particules

(Lorimer & Kramer, Handbook of pulsar astronomy)

Quelques définitions utiles

- obliquité χ : angle entre moment magnétique $\vec{\mu}_*$ et axe de rotation $\vec{\Omega}_*$
- rotateur aligné / perpendiculaire / oblique: $\chi = 0 / 90^{\circ} / quelconque$
- rayon du cylindre lumière: surface sur laquelle une particule en corotation avec l'étoile atteint la vitesse de la lumière $r_L = c/\Omega_*$
 - \Rightarrow transition entre un régime quasi-statique et la zone d'onde

Les grandes classes de pulsars

⇒ distinction par la source d'énergie à l'origine de l'activité de l'étoile à neutrons

¹champ magnétique quantique $B_{\text{quant}} = 4.4 \times 10^9 \text{ T}$ pour lequel $\hbar \omega_{B_{\text{quant}}} = m_{\text{e}} c^2$

Des observations

- période de rotation $P \in [1.5 \text{ ms}, 10 \text{ s}]$
- dérivée de la période $\dot{P} \in [10^{-18}, 10^{-15}]$
- perte par freinage rotationnel contraint par

$$L_{\rm sd} = 4 \, \pi^2 \, I_* \, \dot{P} \, P^{-3} \approx 10^{24} - 10^{31} \, W$$

très différent des trous noirs ou des étoiles à neutrons accrétantes (taux d'accrétion \dot{M} inconnu)

 champ magnétique estimé par rayonnement dipolaire magnétique

$$B_* \sin \chi = 3.2 \times 10^{15} \text{ T} \sqrt{P \dot{P}} = 10^5 - 10^8 \text{ T}$$

 \Rightarrow ne contraint que B_{\perp}

⇒ valeur cohérente avec la conservation du flux magnétique lors de l'effondrement du progéniteur

champ électrique induit au niveau de la croûte stellaire

$$E_* = \Omega_* B_* R_* = 10^{13} \text{ V/m}$$

⇒ accélération "instantanée" à des vitesses ultra-relativistes, facteur de Lorentz $\gamma \gg 1$ ($\tau_{\rm acc} < 10^{-20}$ s)

• force d'attraction gravitationnelle négligeable !!

$$\frac{F_{\rm grav}}{F_{\rm em}} \approx \frac{G M_* m_p / R_*^2}{e \,\Omega_* B_* \,R_*} \approx 10^{-12} \ll 1 \tag{1}$$

⇒ dynamique de la magnétosphère dominée par le champ électromagnétique

Sur les caractéristiques de l'étoile à neutrons

- masse de $M_* \approx 1.4 M_{\odot}$
- rayon de $R_* \approx 10$ km
- densité centrale de $\rho_{\rm c} \approx 10^{17} \, \rm kg/m^3$

Pulsars gammas: l'apport de Fermi/LAT

- plus d'une centaine de pulsars gamma connus à ce jour (en constante augmentation)
 - (a) jeunes et énergétiques visibles dans tout le spectre (Crabe)
 - (b) jeunes et n'émettant pas/n'étant pas visible? en radio (Geminga)
 - (c) millisecondes
- courbes de lumière en forme de double pic pour 75% d'entre eux, séparation des pics de 0.2 en phase
- flux au-delà de 100 MeV approxilativement $dN/dE \approx 10^{-8} \text{ ph/cm}^2\text{/s}$
- spectre moyen (intégré sur la période) en loi de puissance + coupure exponentielle

$$\frac{dN}{dE} \propto E^{-\Gamma} e^{-E/E_{\rm cut}} \tag{2}$$

 $\Gamma \approx 1 - 2$ tandis que la coupure $E_{cut} \approx 1 - 5$ GeV. Cet ajustement me semble douteux.

- Iuminosité rotationnelle $L_{sd}\approx 10^{26}-10^{31}~\text{W}$
- luminosité gamma L_γ entre 0.1% et 100% de L_{sd}
 => L_γ ≤ L_{sd}, on atteint les limites de la conservation de l'énergie!
- la coupure spectral informe sur les mécanisme et sites de production du rayonnement, pense-t-on!?

(Abdo et al, ApJS, 2009)

Pulsars gammas: exemples

Figure: Courbe de lumière de quelques pulsars gammas, à gauche, (Abdo et al, Science 2009) et spectre moyen de Vela, à droite (Abdo et al, 2010).

Catalogue des pulsars gamma: positionnement

Figure: Le diagramme $P - \dot{P}$ des pulsars Fermi issus du 1er catalogue (Abdo et al., 2010)

Figure: La luminosité gamma des pulsars Fermi issus du 1er catalogue (Abdo et al, 2010).

Aux très hautes énergies

- détection de l'émission pulsée du Crabe à 50-400 GeV par MAGIC/VERITAS
- compatible avec le spectre dans la bande Fermi
- spectre en double loi de puissance plutôt que coupure exponentielle
- => spectre brisé avec fréquence de cassure et non de coupure
- => remet en cause les modèles d'émission magnétosphérique
- => presque tous les modèles actuels défunts !

Figure: Émission pulsée du Crabe (Aleksic et al. 2012).

1 Vous avez dit pulsar?

- remarques générales
- émission haute énergie

2 La magnétosphère

3 The striped wind

Results

- emission pattern and geometry
- Luminosité gamma

5 Magnetic reconnection

- The wind problem
- Plasma instabilities
- The termination shock

Conclusion & perspectives

Magnétosphère force-free

Equatorial magnetic field lines for the orthogonal rotator

Figure: Lignes de champ magnétique.

Rotateur perpendiculaire (Pétri, MNRAS 2012a)

Jérôme Pétri (Observatoire de Strasbourg)

Magnétosphère force-free

Figure: Luminosité rotationnelle

Perte d'énergie rotationnelle L_{sd} (Pétri, MNRAS 2012a)

$$L_{\rm sd} \approx \frac{3}{2} L_{\rm dip}^{\perp} \left(1 + \sin^2 \chi\right) \tag{3}$$

Formule plus réaliste que celle du dipole magnétique dans le vide $(B_{\perp} \text{ ET } B_{\parallel} \text{ contraints})$

Jérôme Pétri (Observatoire de Strasbourg)

1 Vous avez dit pulsar?

- remarques générales
- émission haute énergie

La magnétosphère

The striped wind

Results

- emission pattern and geometry
- Luminosité gamma

5 Magnetic reconnection

- The wind problem
- Plasma instabilities
- The termination shock

Conclusion & perspectives

The split monopole solution

- Definition
 - two half monopoles
 - equal and opposite magnetic moment
 - each located in one half-space (depicted in red and blue).

Properties

- exact analytical solution exists
- asymptotic structure as an archimedean spiral, $B_{\varphi} \propto 1/r$
- magnetic polarity change in the equatorial plane
 - \Rightarrow formation of a current sheet \equiv stripe

The striped wind structure

Definition

- Ω : rotation axis
- χ : inclination of magnetic axis
- ζ : inclination of line of sight.

Properties

- assumes only $B_{\varphi} \propto 1/r$
- independent of the magnetospheric structure inside the light cylinder
- discontinuous magnetic polarity reversal \Rightarrow infinitely thin current sheet \equiv striped wind (more realistic model = finite thickness)

High-energy emission from gamma-ray pulsars

What? Objectives

- high-energy pulsed emission (>10 MeV)
- spectral variability of several gamma-ray pulsars.

O How?

- synchrotron radiation from hot and magnetized plasma in the stripe
- IĆ with target photons
 - cosmic microwave background, CMB
 - synchrotron photons from the nebula, X-ray
 - thermal emission from the neutron star surface, black body with $T_{bb} \approx 10^{6}$ K
 - photons from companion star

To whom? Applications

- isolated pulsars gamma ray pulsars
- binary pulsars application to PSR B1259-63
- Iink to other wavelengths? radio band?
 - polar cap for radio emission: phenomenological
 - striped wind for gamma rays (Mev-GeV)
 - \Rightarrow geometry well defined.

2 How?

synchrotron radiation from hot and magnetized plasma in the stripe

 isolated pulsars gamma ray pulsars

2 How?

- photons from companion star
- To whom? Applications
 - binary pulsars application to PSR B1259-63

Vous avez dit pulsar?

- remarques générales
- émission haute énergie
- 2 La magnétosphère

3 The striped wind

Results

- emission pattern and geometry
- Luminosité gamma

5 Magnetic reconnection

- The wind problem
- Plasma instabilities
- The termination shock

Conclusion & perspectives

Radio time lag and gamma-ray peak separation

From pure geometric considerations

Gamma-ray peak separation Δ

 $\cos(\pi\,\Delta) = |\cot\zeta\,\cot\chi|$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Main results

- S-shape reflects emission from current sheets
- two spots corresponding to polar cap emission (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ
 - no pulse !
 - only radio
 - only gamma
 - one radio + one/two gamma-ray pulse(s)
 - two radio pulse => perpendicular rotator, $\zeta \approx \chi \approx 90^{\circ}$

Hypothèses

- émission synchrotron dans la partie striée
 - partie froide et fortement magnétisée peu rayonnante
 - partie chaude et faiblement magnétisée très rayonnante
- refroidissement radiatif compensé par réaccélération par reconnexion magnétique

Lyubarsky & Kirk, 2001

Le modèle: l'écoulement de plasma

 équilibre hydrodynamique dans les stries (pression magnétique = pression cinétique)

$$\frac{1}{3}\gamma'_{\rm h} n'_{\rm h} m_{\rm e} c^2 = \frac{B'^2}{2\,\mu_0} \tag{4}$$

 énergie rotationnelle injectée dans l'accélération des particules => écoulement d'un plasma froid avec facteur de Lorentz Γ_v et une efficacité de conversion η

$$\Gamma_{\rm v} n_{\rm c} m_{\rm e} c^2 = \eta \frac{L_{\rm sd}}{4 \pi r^2 c}$$
(5)

• injection des particules au niveau des calottes polaires avec un facteur de multiplicité κ

$$\dot{N}_{\pm} \approx 2.77 \times 10^{30} \,\mathrm{s}^{-1} \,\kappa \, \left(\frac{P}{1 \,\mathrm{s}}\right)^{-2} \, \left(\frac{B_{\mathrm{ns}}}{10^8 \,\mathrm{T}}\right) \, \left(\frac{R_{\mathrm{ns}}}{10 \,\mathrm{km}}\right)^3 \tag{6}$$

• lien entre $\Gamma_v \kappa$ et L_{sd}

$$\Gamma_{\rm v} \kappa \approx 8.7 \times 10^8 \, \eta \, \left(\frac{L_{\rm sd}}{10^{28} \, \rm W}\right)^{1/2} \tag{7}$$

efficacité et magnétisation

$$(1 + \sin^2 \chi) \sigma \eta = 1$$

Jérôme Pétri (Observatoire de Strasbourg)

 facteur de Lorentz des particules dans le vent (pertes radiatives = dissipation magnétique)

$$\gamma_{\rm h}' = \sqrt{\frac{3}{2} \frac{\mu_0 \, \text{ec}}{\sigma_T \, B_L'}} \, \frac{r}{r_{\rm L}} \, \tau_{\rm rec}} \tag{9}$$

• énergie des photons dans le référentiel du vent

$$\varepsilon'_{B} = \frac{3}{2} \gamma'^{2}_{h} \frac{B'}{B_{q}} m_{e} c^{2} = \frac{9}{4} \frac{\mu_{0} e m_{e} c^{3}}{\sigma_{T} B_{q}} \tau_{rec}$$
 (10)

• énergie des photons dans le référentiel du labo

$$\varepsilon_B = 2 \,\Gamma_v \,\varepsilon'_B = 472 \,\,\mathrm{MeV}\,\Gamma_v \,\tau_{\mathrm{rec}}. \tag{11}$$

Reconnection rate

 $\log L_{\rm sd}$ (W)

Condition pour observer une émission pulsée

$$\frac{L_{\rm sd}}{P} \geq 10^{27} \, {\rm W/s}$$

Vous avez dit pulsar?

- remarques générales
- émission haute énergie
- 2 La magnétosphère

3 The striped wind

Results

- emission pattern and geometry
- Luminosité gamma

Magnetic reconnection

- The wind problem
- Plasma instabilities
- The termination shock

Conclusion & perspectives

Description of the system

- in the vicinity of the pulsar, an intense magnetic field, kinetic energy of the particles weak
 - ⇒ dynamics dominated by the electromagnetic field
- in the nebula, a weak magnetic field, and ultra-relativistic particles responsible for the synchrotron radiation
 - \Rightarrow dynamics dominated by the particles

An essential parameter: the magnetisation " σ "

 $\sigma = \frac{\text{Poynting flux}}{\text{particle enthalpy flux}} \approx \frac{\text{electromagnetic energy density}}{\text{particle (kinetic + rest mass) energy density}}$

A fundamental problem

How to convert the electromagnetic energy into kinetic energy for the particles ? How to do the transition between the neutron star, $\sigma \gg 1$, to the nebula, $\sigma \ll 1$?

Idea

Magnetic energy dissipation at the termination shock of a striped wind.

Jérôme Pétri (Observatoire de Strasbourg)

Magnetic reconnection

Goal

Study the mechanism of magnetic reconnection in the pulsar wind:

- acceleration of the wind;
- magnetic energy conversion into kinetic energy for the particles.

Method

- analytical and semi-analytical
 - linear study of the electromagnetic instabilities by solving numerically the linearised Vlasov-Maxwell equations;
 - find the condition for magnetic field dissipation when the wind crosses the termination shock
- numerical: PIC simulations.

Applications

- instabilities in relativistic plasmas
- relativistic Harris current sheet
- striped wind
- gamma-ray bursts

Jérôme Pétri (Observatoire de Strasbourg)

Composition of the wind

- e[±] pairs in drift motion equal but opposite in direction
- relativistic speeds.

Description of the structure of a stripe

Exact solution: the relativistic Harris current sheet

• magnetic field:

$$B_{z}(x) = B_{0} \tanh(x/a);$$

- particle density of each species: $n(x) = N_{s} \operatorname{sech}^{2}(x/a);$
- temperature:

$$\Theta = k_B T_s / m c^2$$
;

• distribution function of the particles: $f(x, \vec{p}) = \frac{n(x)}{4 \pi m^3 c^3 \Theta K_2(1/\Theta)}$ $e^{-\Gamma_s (E \pm c \beta_s p_y)/\Theta m c^2}.$

Vlasov-Maxwell equation

$$\frac{\partial f}{\partial t} + \vec{v} \cdot \frac{\partial f}{\partial \vec{r}} + q\left(\vec{E} + \vec{v} \wedge \vec{B}\right) \cdot \frac{\partial f}{\partial \vec{p}} = 0$$

The perturbation of f_s is computed by numerical integration of the trajectories of the particles along the equilibrium orbits. Charge and current densities are obtained by integration over the momentum (by Gauss-Hermite quadrature).

Eigenvalue system

For the electromagnetic potential (ϕ, \vec{A})

$$\phi''(\mathbf{x}) - \left(k^2 - \frac{\omega^2}{c^2}\right)\phi(\mathbf{x}) + \frac{\rho(\mathbf{x})}{\varepsilon_0} = 0$$

$$\vec{A}''(\mathbf{x}) - \left(k^2 - \frac{\omega^2}{c^2}\right)\vec{A}(\mathbf{x}) + \mu_0\vec{j}(\mathbf{x}) = 0$$

- charge density: $ho(x) \propto \sum_s \int_{\mathbb{R}^3} f_s(x, \vec{p}) \, d^3 \vec{p}$
- current density: $\vec{j}(x) \propto \sum_{s} \int_{\mathbb{R}^3} \vec{v} f_s(x, \vec{p}) d^3 \vec{p}$

Growth rate of the two-stream and tearing mode instabilities

Growth rate of the two-stream and tearing mode instabilities

 \Rightarrow this study should help to estimate the reconnection rate in the striped wind.

Jérôme Pétri (Observatoire de Strasbourg)

Principle

striped wind structure preserved

 \Rightarrow Rankine-Hugoniot relations for the jump in the spatially averaged MHD quantities

⇒ conservation of particles, energy and momentum (over one period of the wind)

the shock region is not described physically.

Only one free parameter ξ

Relates the downstream current sheet thickness to the downstream Larmor radius (subscript 2)

$$\delta_2 = \xi r_{B2}$$

where $\xi > 1$.

Ultra-relativistic limit $(\Gamma_1, \sigma_1) \gg 1$

$$\delta_2 + \frac{1}{4\,\sigma_1} = \frac{1}{4\,\Gamma_2^2}$$

• for $\sigma_1 \gg \frac{5l_1}{\xi r_{B1}}$, full dissipation: $\delta_2 \approx 1, \Gamma_2 \approx 1$ • for $\sigma_1 \ll \left(\frac{5l_1}{4\xi r_{B1}}\right)^{2/3}$, negligible dissipation: $\delta_2 \ll 1, \Gamma_2 \approx \sqrt{\sigma_1} \Rightarrow$ ideal MHD

Numerical resolution

Numerical search for the MHD jump condition in the most general case for which the upstream magnetisation σ_1 is arbitrary.

Search for the roots of a system of non-linear equations

 \Rightarrow needs a good first guess for the solution (therefore the previous analytical study)

The magnetisation σ_2/σ_1

• $\sigma_2/\sigma_1 \approx 2$, negligible dissipation

PIC simulations: full dissipation with $\sigma = 45$, $\Gamma = 20$

From this we deduce the parameter ξ introduced in the analytical model: $\xi \approx 10$

Magnetic reconnection at the termination shock

significant if the analytical criterion is satisfied

• for $l_1/r_{B1} \sigma_1 \leq 3$, full dissipation, downstream flow purely hydrodynamical, $\Gamma_2 \approx 1$, particles heated to relativistic temperatures

• for $\sigma_1 \leq (l_1/12 r_{B1})^{2/3}$, no reconnection. Striped wind structure is preserved, simple compression, $\Gamma_2 = \sqrt{\sigma_1}$

Vous avez dit pulsar?

- remarques générales
- émission haute énergie
- 2 La magnétosphère

3 The striped wind

Results

- emission pattern and geometry
- Luminosité gamma

5 Magnetic reconnection

- The wind problem
- Plasma instabilities
- The termination shock

Conclusion & perspectives

Conclusions & perspectives

Pulsed emission

- high-energy pulsed emission emanating from regions outside the light cylinder, $r \approx (1 100) r_L$
- gamma-ray luminosities from Fermi/LAT second source explained by synchrotron emission/reconnection in the stripe

Further investigations

- link between asymptotic toroidal magnetic field and magnetosphere
 - \Rightarrow location where most of the high-energy pulsed emission is expected
- refinement of the model to include recent Fermi detections
- phase-resolved polarisation properties in X-ray
- possible explanation for gamma-ray binaries
- population study

Isolated vs binary pulsars

What changes?

- location of the termination shock
- strong external target photon field from companion
- variation with orbital phase

The case of PSR B1259-63

Pulsar parameters

- period P = 47.7 ms
- $L_{sd} = 8.3 \times 10^{28} \text{ W}$

Feature of the companion Be star known

- $L_* = 3.3 \times 10^{30} \text{ W}$
- $\dot{M} = 10^{-8} M_{\odot} / yr$
- v_{wind} = 1000 km/s
- separation $d = 9.6 \times 10^{10}$ m to 1.2×10^{12} m

Termination shock

pressure balance implies

$$\frac{R_{\rm TS}}{R_{\rm w}} = \sqrt{\frac{L_{\rm sd}}{\dot{M} \, v_{\rm w} \, c}} \approx 0.7$$

PSR B1259-63: what can we learn?

Orbital phase variability

- phase-averaged light-curve depends on orbital phase
- maximum at periastron
- spectral variability with orbital phase
 - spectral slope, transition Thomson/Klein-Nishina regime
 - cut-off and break energy

=> special features for pulsars in binaries

Light curve above 100 MeV

