Introduction	οτςι	Weibel vs. OTSI	Conclusions

Particle transport in Weibel-type and OTSI-type turbulence

G. Pelletier (IPAG) & M. Lemoine (IAP) I. Plotnikov (IPAG)

october 3th 2012

<ロ> (四) (四) (三) (三) (三) (三)

1/13

Introduction	οτςι	Weibel vs. OTSI	Conclusions
Relativistic shock In the shock fror	it rest frame.		
3I	overshoot	V _s reflected protons	

B₀

foot

++

Resistive sheet

β_u

х

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

ßd

G.Pelletier et al. 2009

Instabilities and self-consistent fields at relativistic shocks

Length scale of the precursor in lab frame $l_{F|u} = m_p c^2 / (eB_{0|u} \Gamma_S) \ll R_{L,0}$ \rightarrow small-scale plasma instabilities.

Families of relevant instabilities :

- Weibel-Filamentation : $\vec{k} \perp \vec{v}_b || \vec{E}$
- OTSI : $\vec{k} || \vec{E}$, \vec{v}_b oblique

Magnetic fields : generated upstream, transmitted downstream.

(日) (同) (三) (三)

3/13

Transport

Generate intense and small-scale electomagnetic fields.

Introduction	оты	Weibel vs. OTSI	Conclusions

Transport in OTSI

OTSI instability : upstream frame \rightarrow wave frame

Moving wave packets in upstream frame.

OTSI (Lemoine&Pelletier 2011) :

- $\Gamma_{OTSI} = (\xi_{cr} m_e / m_i)^{1/3} \omega_{pe}.$
- Frequency : $\omega \simeq \omega_{pe}$.
- Oblique : $k_{\perp} \sim k_{||}$ and $E_{\perp} \sim E_{||}$.

(日) (同) (日) (日)

5/13

Transport

• Caracteristic field energy :
$$\begin{split} & \epsilon_{0} = q\Delta\Phi = \xi_{B}^{1/2}m_{p}c^{2}. \\ & \text{Where } \xi_{B} = B^{2}/(4\pi\Gamma_{s}^{2}nm_{p}c^{2}) \end{split}$$

OTSI instability : upstream frame \rightarrow wave frame

Moving wave packets in upstream frame.

 In the wave frame : static E' and B' fields of the same strength

• And
$$\vec{k}_w = \vec{k}_{\perp,u} + \vec{k}_{||,u}/\gamma_w$$

OTSI (Lemoine&Pelletier 2011) :

- $\Gamma_{OTSI} = (\xi_{cr} m_e / m_i)^{1/3} \omega_{pe}$.
- Frequency : ω ≃ ω_{pe}.
- Oblique : $k_{\perp} \sim k_{||}$ and $E_{\perp} \sim E_{||}$.

• Caracteristic field energy :

$$\begin{split} \hline \epsilon_{\mathbf{0}} &= q\Delta\Phi = \xi_{B}^{\mathbf{1}/2}m_{p}c^{2}. \\ \hline Where \ \xi_{B} &= B^{2}/(4\pi\Gamma_{s}^{2}nm_{p}c^{2}) \end{split}$$

Equations of motion in the wave-frame

$$\begin{aligned} \frac{\mathrm{d}p_x}{\mathrm{d}t} &= qE'_x(1+\beta_w\beta_z) \\ \frac{\mathrm{d}p_y}{\mathrm{d}t} &= qE'_y(1+\beta_w\beta_z) \\ \frac{\mathrm{d}p_z}{\mathrm{d}t} &= qE'_z - q\beta_w(\beta_x E'_x + \beta_y E'_y) \end{aligned}$$

Introduction	оты	Weibel vs. OTSI	Conclusions

・ロト ・部ト ・ヨト ・ヨト

3

7/13

Transport

Transport in OTSI : $k_z = 0$, invariants

$$k_z = 0$$
 implies $E'_l = 0$.

Then 2 Invariants :

- Electrostatic field : $H = \epsilon(p) + q\Phi(x, y)$
- Generlized momentum : $\pi_z = p_z + q\Phi(x, y)/c$
- Φ : electric potential.

Introduction	отѕі	Weibel vs. OTSI	Conclusions

Transport in OTSI : $k_z = 0$, invariants

 $k_z = 0$ implies $E'_l = 0$.

Then 2 Invariants :

- Electrostatic field : $H = \epsilon(p) + q\Phi(x, y)$
- Generlized momentum : $\pi_z = p_z + q\Phi(x, y)/c$
- Φ : electric potential.

Momentum space constrained by π_z invariant.

8/13

Transport in OTSI : $k_z = 0$, simulations

Beam-like configuration : $\vec{p}_0 = p_{||,0}\vec{e}_z$ Simulations : $p_{||,0} \in [mc, 10^4 mc]$.

Diffusion in \perp direction.

$$\Delta \gamma : H = \epsilon(p_{||,0}) + q\bar{\Phi}.$$

Time-scales

- Non-linear ballistic : $t_{nl} = \sqrt{\frac{2p_{||,0}l_c}{qE_tc}}$.
- Linear coherence time : $t_c = l_c/c$ (not-seen).

2 types of particles :

- Thermal particles : ε ≪ ε₀. Considerable enegy gain.
- Beam particles : ε ≫ ε₀. Negligible influence by field.

(日) (同) (日) (日)

Transport in OTSI : $k_z \neq 0$, short term

 $k_z = k_{\perp}/\gamma_w$. $E'_l = E'_t/\gamma_w$. Simulations : $p_{||,0} \in [mc, 10^4 mc]$.

New time-scales in z direction : $t_{c,||} = \gamma_w l_c / c \text{ and } t_z = \gamma_w \frac{l_c}{c} \left(\frac{p_{||,0}c}{qE_z \gamma_w l_c} \right)^2$

For $t > t_{nl}$ 2D-like behaviour dissapears. Change in transport regime when $t_{nl} > t_{c,||} = \gamma_w l_c/c$. Transverse diffusion dissapears.

More complicated picture. Long term behaviour $t \gg t_z$?

(日) (同) (日) (日)

Transport in OTSI : $k_z \neq 0$, long term behaviour

Time-scale in z direction : $t_z = \xi \frac{l_c}{c} \left(\frac{p_{||,0}c}{qE_z \gamma_w l_c} \right)^2$, with $\xi = l_{||}/l_{\perp}$. Particle with : $p_{||,0} = mc$.

11/13

< ロト (同) (三) (三)

Introduction	οτςι	Weibel vs. OTSI	Conclusions
Weibel type vs.	OTSI type turbulence		

Same set of equtions in 2D limit, because ...

In 3D similar behavior. The only difference is the dispersion of Weibel modes in z direction.

(日) (同) (三) (三)

Introduction	οτςι	Weibel vs. OTSI	Conclusions
Conclusions			

• OTSI upstream : energy transfer from rms energy of waves to particles. Electron preheating up to $T_e = \xi_b m_p c^2$.

イロト イロト イヨト イヨト 三日

13/13

- **9** Weibel upstream $(k_z = 0)$: similar behaviour as OTSI in $k_z = 0$ limit.
- Tridimensionnalisation time is too long to be seen in PIC simulations.
- Issues at relativistic shocks (e.g. Guy Pelletier)