Outflow collimation by a poloidal magnetic field

Andrea Ciardi andrea.ciardi@obspm.fr

LERMA

Observatoire de Paris, Ecole Normale Superieure, Universite Pierre et Marie Curie, CNRS UMR 8112

Collaboration LULI, LNCMI, CELIA: B. Albertazzi, J. Béard, J. Billette, S. Chen, T. Cowan, E. d'Humières, J. Fuchs, F. Kroll, M. Nakatsutsumi, O. Portugall, H. Pépin, C. Riconda, L. Romagnani, H-P. Schlenvoight, T. Vinci,

BASICS OF MAGNETIC COLLIMATION

"Main collimation mechanism" requires a toroidal (azimuthal) field component

From the (axisymmetric) induction equation:

$$\frac{\partial B_{\phi}}{\partial t} = -r \mathbf{B}_{\mathsf{pol}} \cdot \nabla \omega(\mathbf{r}, \mathbf{z})$$

differential angular rotation, ω , along an initially poloidal field line, **B**_{pol}, generates an azimuthal component B_{ϕ} .

"Main collimation mechanism" requires a toroidal (azimuthal) field component

Magnetic (Lorentz) force on the plasma $\mathbf{F} = \mathbf{j} \times \mathbf{B}$ can be written as (e.g. Ferreira 1997): Azimuthal:

$$m{F}_{\phi} = rac{B_{pol}}{\mu_0 r}
abla_{\parallel} (r B_{\phi})$$

Poloidal:

$$egin{aligned} \mathcal{F}_{\parallel} &= -rac{B_{\phi}}{\mu_0 r}
abla_{\parallel} \left(rB_{\phi}
ight) \ \mathcal{F}_{\perp} &= -rac{B_{\phi}}{\mu_0 r}
abla_{\perp} \left(rB_{\phi}
ight) + j_{\phi} B_{pol} \end{aligned}$$

We are interested in $B_{\phi} = 0$ and the effects of B_{pol} only $\rightarrow j_{\phi}B_{pol}$

COLLIMATION BY A POLOIDAL FIELD

Collimation by a poloidal magnetic field

Magnetosphere-disc region¹

- $\rightarrow\,$ Two component magnetized outflows: stellar and disc winds
- $\rightarrow~$ Collimation of stellar wind depends
 - on the field anchored in disc
 - disc wind

Romanova et al 2009

Matsakos et al 2009

¹Stone et al 1992; Matt et al 2003

Collimation by a poloidal magnetic field

Magnetosphere-disc region²

 $\rightarrow\,$ Collimation over a few $\times 10$ AU of disc-stellar wind

Matt et al 2003

²Stone et al 1992; Matt et al 2003

Collimation by a poloidal magnetic field

Outflows from collapsing pre-stellar cores³

Gravitationally collapsing dense core of $1\ {\rm solar}$ mass.

- ightarrow~ $R_{core}\sim$ 1000 AU
- $\rightarrow~n\sim 10^{6}~{
 m cm}^{-3}$
- ightarrow~T= 10 K
- $ightarrow \mu =$ 5 highly-magnetized, supercritical

³Hennebelle et al 2009, Ciardi et al 2010, Joos et al 2012

EXPERIMENTAL APPROACH

Laser-driven plasma plume \rightarrow thermally-driven wind

Simple estimates

 $\rightarrow\,$ Spherical expansion halted when

 $ho v^2 \sim B_0^2/8\pi$

ightarrow Collimation radius

$$R_{coll} \sim 0.8 \left(E_K / B_0^2 \right)^{1/3} ~{
m cm}$$

 \rightarrow Bulk kinetic energy

$$E_{K} = f E_{L}$$

with $f \sim 0.2 - 0.5$

ightarrow Collimation time-scale

$$t_{coll} \sim R_{coll} / v_{exp}$$

where $\textit{v}_{exp}(\rm cm/s) \sim 4.6 \times 10^7 \textit{I}^{1/3} \lambda^{2/3}$

Simple estimates

ightarrow Spherical expansion halted when

$$\rho v^2 \sim B_0^2/8\pi$$

ightarrow Collimation radius

$$R_{coll} \sim 0.8 \left(E_K/B_0^2\right)^{1/3}~{
m cm}$$

ightarrow Bulk kinetic energy

$$E_K = f E_L$$

with $f \sim 0.2 - 0.5$

ightarrow Collimation time-scale

$$t_{coll} \sim R_{coll} / v_{exp}$$

where $v_{exp}({
m cm/s}) \sim 4.6 imes 10^7 I^{1/3} \lambda^{2/3}$

Need $B_0 \gtrsim 0.1$ MG for several $t \gg 10$ ns

MODELLING THE EXPERIMENTS

Modelling tools

Laser-target interaction modelled with

 \rightarrow DUED ⁴

- > 2D Lagrangian, radiation hydrodynamics
- 3 Temperatures
- Ray-tracing laser deposition
- Multi-group radiation transport
- Flux limited thermal diffusion (ion & electron)
- Tabulated EOS (SESAME)

Plasma-magnetic field interaction modelled with

 \rightarrow GORGON⁵

- > 3D Eulerian, resistive MHD with computational vacuum
- 2 Temperatures (ion & electron)
- Optically thin radiation losses with black-body limiter
- Flux limited thermal diffusion (ion & electron)
- Ions: perfect gas. Electrons: Thomas-Fermi LTE

⁴Atzeni et al 2005

⁵Chittenden et al 2004; Ciardi et al 2007

Three main phases of evolution

- 1. Cavity-shell formation
 - High-beta cavity
 - Formation of a shell of shocked material and compressed B
 - Re-direction of plasma along cavity walls
- 2. Jet formation
 - Re-directed flow converges towards the axis
 - Formation of a conical shock
 - Axial re-direction and jet formation
- 3. Re-collimation
 - Secondary cavity
 - Re-collimation, conical shock and jet

Three main phases of evolution

Dynamics at $\mathit{I} \sim 10^{14}\,\mathrm{W\,cm^{-2}}$ and $\mathit{B}_0 \sim 0.2\,\mathrm{MG}$

Flow instabilities

Rayleigh-Taylor type filamentation instability⁶

Configuration similar to a $\theta\text{-pinch}$

 $\rightarrow\,$ Growth rate

$$\gamma \sim \sqrt{gk_{ heta}}$$

 $k_{ heta} = m/R_{jet}$
 $g \sim v^2/R_C$

ightarrow Growth time-scale is short

$$au_{\it I} \sim rac{ au_{\it coll}}{\sqrt{m}} \sim {
m few} \; {
m ns}$$

⁶Kleev & Velikovich 1990

Flow instabilities

Firehose⁷

Jet may be susceptible to firehose instability

$$egin{aligned} P_{\parallel} - P_{\perp} &> rac{B^2}{4\pi} \ P_{\parallel} &\sim
ho v^2 \ M_A^2 - rac{eta}{3} > 1 \end{aligned}$$

Marginally stable for some combination of laser intensity and magnetic field

- ightarrow Possible Kelvin-Helmoltz
- → Possible stabilization by the surrounding dense, magnetized plasma

⁷e.g. Benford 1981

EXPERIMENTAL FLEXIBILITY

Effects of the magnetic field strength

Jet formation by a conical shock suppressed at low field strength

Effects of target material (radiative losses)

Preliminary experimental results

Summary and future directions

Potential studies with coupled laser-driven plasmas and external magnetic field.

- $\rightarrow\,$ outflow collimation mechanism by a poloidal field
 - jet formation by re-converging flows

Summary and future directions

Potential studies with coupled laser-driven plasmas and external magnetic field.

- $\rightarrow\,$ outflow collimation mechanism by a poloidal field
 - jet formation by re-converging flows
- $\rightarrow\,$ jet interaction with ambient medium

Summary and future directions

Potential studies with coupled laser-driven plasmas and external magnetic field.

- $\rightarrow\,$ outflow collimation mechanism by a poloidal field
 - jet formation by re-converging flows
- $\rightarrow\,$ jet interaction with ambient medium
- $\rightarrow\,$ magnetized accretion shocks

