

GAMMA-RAY RADIATION FROM TYPE IB SUPERNOVA REMNANTS PROSPECT FOR THE CERENKOV **TELESCOPE ARRAY** A.MARCOWITH (L.U.P.M.) IN COLLABORATION WITH M.RENAUD (L.U.P.M.), V. DWARKADAS (CHICAGO UNIVERSITY) & V. TATISCHEFF

(C.S.N.S.M. ORSAY)

OUTLINES

- INTRODUCTION:
 - TYPES AND FREQUENCIES OF SUPERNOVAE (SN)
 - TYPE IIB SN: PROPERTIES.
- A TEST CASE: SN 1993J:
 - RADIO OBSERVATIONS
 - PARTICLE ACCELERATION AND MAGNETIC FIELD
- GAMMA-RAY RADIATION FROM 1993J TYPE OBJECTS:
 - PAIR OPACITY CALCULATION
 - OBSERVABILITY BY CTA
 - OTHER OBJECTS
- CONCLUSIONS

TYPES OF SUPERNOVAE

CAPPELLARO & TURATTO'01

Figure 7. Representative spectra of SN II. On the right we report for each object the best estimate of the 56 Ni, total and ejecta masses (in parenthesis is the H mass in the ejecta).

CAPPELLARO & TURATTO'01

Figure 10. Representative spectra of SNIb/c. On the right the best estimates of the 56 Ni, total and ejecta masses are reported . In some case different modeling produces significantly different results.

SN RATES

CAPPELLARO'99, VDBERGH & TAMMAN'91 SMARTT+09, <u>LI+11</u> Table 1. The relative frequency of SNe types discovered between 1998-2008 (10.5 yrs) in galaxies with recessional velocities less than 2000 $\rm km s^{-1}$, and type taken from Table A1. The relative frequency of all types and the relative frequency of only core-collapse SNe are listed separately.

			Relative	Core-Collapse only
	Type	No.	/ per cent	/ per cent
MILKY WAY	II-P	54	39.1	58.7
$1 \land 0.4 + / - 0.2$	II-L	2.5	1.8	2.7
	IIn	3.5	2.5	3.8
11 1.5+/-1	IIb	5	3.6	5.4
	Ib	9	6.5	9.8
ABOUT 2	Ic	18	13.0	19.6
	Ia	37	26.8	
SN/CENTURY	LBVs	7	5.1	
	Unclassified	2	1.4	
	Total	138	100	100
	Total CCSNe	92	66	100

TYPE IIB SN

- INTERMEDIARY BETWEEN II (H RICH) AND IB/IC (H POOR).
- SEVERAL WELL-KNOWN OBJECTS: SN1993J, CASSIOPEIA A
- MASS LOSS BY WIND STRIPPING (MASSES ~ 25 SOLAR MASSES) OR INTERACTION WITH A COMPANION (RATHER FAVORED, CLAEYS+11) (MASSES ~ 15 SOLAR MASSES)
- <u>RARE EVENTS</u>:
 - VDBERGH ET AL'05
 - 3%+/-1% OF CORE COLLAPSE SNE IN 140 MPC LIMITED DISTANCE
 - 1.5%+/-1.5% IN 30 MPC LIMITED DISTANCE
 - **SMARTT'09**
 - 5.4+/-2.7% IN 28 MPC LIMITED DISTANCE
 - ~ ONE EVERY MILLENARY AT A RATE OF SN 2/CENTURY
- ! MAY ENTER IN SEQUENCE MS=>RSG=>WNH=>SNIIB
 - WNH WOLF-RAYET (NITROGEN, HYDROGEN) ASSOCIATED WITH HIGH LOSS
 RATE (ABOVE 10⁻⁵ SOLAR MASSES) AND FAST WINDS (2000 km/s)
 - BUT FOR OTHER MODELS SNIIB ARE NOT ASSOCIATED WITH ANY WR PHASES (E.G. MEYNET+11)

MAXIMUM CR ENERGY IN TYPE II SNR

- GALACTIC CRS AT PEV AND BEYOND COULD BE PRODUCED RIGHT AFTER THE SN EXPLOSION; WHEN THE BW IS PROPAGATING INTO THE MASSIVE STAR WIND (OTHER MODELS EXIST; E.G. BYKOV'01, PARIZOT, A.M.+04)
- FOR PROTONS (VOELK & BIERMANN '88, BELL & LUCEK'01, PTUSKIN+10)

$$E_{max} = 3.5 \times 10^{17} eV (v_{sh,2E4})^2 (M_{d,-5})^{1/2} (P_{CR,0.1\rhou})(v_{w,10})^{-1/2})$$

=> HINTS TOWARD SLOW WINDS, FAST SHOCKS, HIGH LOSS MASS RATES: INTERESTING CASE OF IIB SNR SN1993J

A TEST CASE: SN 1993J

- TYPE IIB SN (FILIPPENKO ET AL. 1993) DISCOVERED BY F.
 GARCIA ON 1993 MARCH 28TH IN M81
 - $D_{CEPHEIDS} = 3.63 + 0.34 \text{ MPC} (FREEDMAN ET AL. 1994)$
 - $D_{ESM} = 3.96 + 0.29 \text{ MPC}$ (Bartel et al. 2007)
- 13-20 M_{SUN} REDSUPERGIANT (RSG) WHICH HAD LOST MOST OF ITS H ENVELOPE TO A CLOSE BINARY

COMPANION (MAUND ET AL. 2004)

RADIO FOLLOW-UP

SHELL @ T >175 DAYS

10/3/12

LIGHT CURVES & SPECTRA

 $\theta_{out} \propto T^{M}$ M ~ 0.93 T<1YR M ~ 0.82 T>1YR BIETENHOLZ+11

10/3/12

LIGHT CURVES & SPECTRA

MAGNETIC FIELD AMPLIFICATION

• MF 3 ORDERS OF MAGNITUDE ABOVE MF-

WIND EQUIPARTITION

 $B_{eg} = (u_w M_d)^{1/2} / r = 2.5 \text{ mG} (M_{d,-5})^{1/2} (u_{w,10})^{1/2} (r_{,15})^{-1}$ 10/3/12 PHNE Meeting IAP

CONCLUSIONS FROM RADIO DATA

- FORWARD SHOCK DYNAMICS
 - NO STRONG EVIDENCES AT THE OUTER EDGE OF DEVIATION FROM CIRCULAR SHAPE.
 - EXPANSION WELL REPRODUCED BY HYDRODYNAMICAL MODELS.
 - MOST OF THE RADIO EMISSION COMING FROM THE FORWARD SHOCK (?)
- MAGNETIC FIELD
 - EVOLUTION IN R⁻¹ OR T⁻¹
 - AMPLIFICATION

SOME ASSUMPTIONS

FROM THE OUTBURST TIME:

- MF IS AMPLIFIED THROUGH THE BELL MECHANISM (BELL'04)
- HADRONS ARE ACCELERATED AS WELL AS ELECTRONS.
- \Rightarrow GAMMA-RAY RADIATION ?
 - INVERSE COMPTON
 - NEUTRAL PION DECAY (DENSITY PROFILE OF CIRCUM STELLAR MEDIUM)
 - THE LATTER LIKELY DOMINANT IN STRONG MF.

CIRCUMSTELLAR MEDIUM

EFFECTIVE DENSITY BEHIND THE FORWARD SHOCK: ۲

$$n_{eff} = \frac{M_d r_{eff}}{4\pi R_{sh,out}^2 u_w m_H (1+4X)}$$

DENSITY SCALES AS R⁻² WITH R(T=O)=3.5 10¹⁴ CM (DEDUCED FROM $\theta_{out}(T)$); $U_w = 10 \text{ km/s}$ (velocity at infinity)

• <u>Stromgren sphere</u> (B2 star) R_s ~13pc Bell instability growth rate VS IONIZATION FRACTION N_{E,CM-3}^{-2/3}: LIKELY FULLY IONIZED MEDIUM $Im(\omega)$ ONCE THE RSG PHASE STARTS. • QUESTIONED AFTER (BUT SEE $10.0 \text{ cm}^{-3} 10^2 \text{ J}$ FRANSSON+96) NB: 10 YEARS AT 10⁴ KM/S IS 0.1PC. • <u>MAGNETIC FIELD</u> (MAGNETIZATION) cm^{-3} , 10⁴ K B~1MILLI G @ 10^{16} CM => $\sigma \sim 2 \ 10^{-9} << 1$. **REVILLE+06** 10/3/12 PHNE Meeting IAP

17

COSMIC RAY ACCELERATION I

- ESTIMATION BY VOELK & BIERMANN'88
 - <u>NON AMPLIFIED MF</u>:
 - $K_1 = (C^2/3) * E/(ZEB_{BACK}(R_S))$
 - OBLIQUE SHOCK CASE: $K_2 = K_1/2$
 - LINEAR ACCELERATION: R_{TOT}=R=4
 - STELLAR RADIUS ~ 400 SOLAR RADII
- OTHER ESTIMATION:
 - AMPLIFIED MF:
 - $K_1(B_{AMPL})$
 - TANGLED MF AT THE SHOCK FRONT $K_2 < K_1/2$
 - NON-LINEAR EFFECTS R_{TOT}>4
 - STELLAR RADIUS RSG > 1000 SOLAR RADII.

COSMIC RAY ACCELERATION II

- ITERATIVE FIT RADIO DATA WITH A SYNCHROTRON MODEL
- 1D NON-LINEAR MODEL (BEREZHKO & ELLISON'99)
 - $V_{sH}(T)$, $B_{U}(T)$, T_{CSM} , $\rho_{U}(T) =>$ Solutions : F_{P} , F_{F}
- SOLUTIONS STAY CLOSE TO THE TEST-PARTICLE REGIME (ALFVÈN HEATING INCLUDED).
- ACCELERATION EFFICIENCY INCREASES WITH TIME UP TO 25%

 $\varepsilon_{\rm NT} = F_{\rm CR} / 1 / 2 \rho_{\rm u} v_{\rm sh}^3$

TATISCHEFF'09

DOWNSTREAM: SELF-SIMILAR MODEL BY CHEVALIER'82

TWO DIFFERENTS SOLUTIONS FOR B: ADVECTION/DAMPING

SYNCHROTRON MODEL FITTING

• FIT RADIO EMISSION OF VERY YOUNG SNR:

$$F(\text{mJy}) = K_1 \left(\frac{\nu}{5 \text{ GHz}}\right)^{\alpha} \left(\frac{t}{1 \text{ day}}\right)^{\beta} A_{\text{CSM}}^{\text{homog}} A_{\text{CSM}}^{\text{clumps}} A_{\text{SSA}}$$

- A FACTORS = ATTENUATION BY
- HOMOGENEOUS CIRCUMSTELLAR MATTER
- CLUMPS IN CIRCUMSTELLAR MATTER
- INTERNAL SYNCHROTRON-SELF

ASBORPTION

- => 4 parameters (K_1 , α , K_3 (CSM), K_5 (SSA)) fitted with 6 different wavebands (fig)
- <u>Synchrotron model</u> => MF

$$\langle B \rangle = (2.4 \pm 1.0) \left(\frac{t}{100 \text{ days}} \right)^b \text{G}, \text{ with } b = -1.16 \pm 0.20.$$

SN1993J TATISCHEFF'09

CONSISTENT WITH B=1 (ALSO IN OTHER YOUNG OBJECTS SN2008D IB/C)

COSMIC RAY ACCELERATION II

- ITERATIVE FIT RADIO DATA WITH A SYNCHROTRON MODEL
- 1D NON-LINEAR MODEL (BEREZHKO & ELLISON'99)
 - $V_{sH}(T)$, $B_{U}(T)$, T_{CSM} , $\rho_{U}(T) =>$ Solutions : F_{P} , F_{F}
- SOLUTIONS STAY CLOSE TO THE TEST-PARTICLE REGIME (ALFVÈN HEATING INCLUDED).
- ACCELERATION EFFICIENCY INCREASES WITH TIME UP TO 25%

 $\varepsilon_{\rm NT} = F_{\rm CR} / 1 / 2 \rho_{\rm u} v_{\rm sh}^3$

TATISCHEFF'09

DOWNSTREAM: SELF-SIMILAR MODEL BY CHEVALIER'82

TWO DIFFERENTS SOLUTIONS FOR B: ADVECTION/DAMPING

COSMIC RAY ACCELERATION II

- ITERATIVE FIT RADIO DATA WITH A SYNCHROTRON MODEL
- 1D NON-LINEAR MODEL (BEREZHKO & ELLISON'99)
 - $V_{SH}(T)$, $B_{U}(T)$, T_{CSM} , $\rho_{U}(T) =>$ SOLUTIONS : F_{P} , F_{F}
- SOLUTIONS STAY CLOSE TO THE TEST-PARTICLE REGIME (ALFVÈN HEATING INCLUDED).
- ACCELERATION EFFICIENCY INCREASES WITH TIME UP TO 25%

TATISCHEFF'09

 $\epsilon_{NT} = F_{CR} / 1 / 2 \rho_u v_{sh}^3$

• DOWNSTREAM: SELF-SIMILAR MODEL BY CHEVALIER'82

TWO DIFFERENTS SOLUTIONS FOR B: ADVECTION/DAMPING

MAGNETIC FIELD AMPLIFICATION

- OBSERVATIONS (BASED ON SSA MODEL): $B(T) = 501G (T/1D)^{-1.16}$
- LINK TO MICROPHYSICS THROUGH STREAMING INSTABILITY (BELL'04)

$$B_{NR}^{2}=8\pi\xi_{CR}\rho_{u}v_{sh}^{3}/2\phi; \phi=\ln(p_{max}/p_{min})$$

DOWNSTREAM
$$B_{D} = (1/3 + 2/3R_{SUB}^{2})^{1/2} B_{NR}^{2}$$

$$\xi_{CR} \propto p_{inj} / v_{sh}^{2}; p_{inj} \xi_{CR} \propto v_{sh} => \xi_{CR} \propto v_{sh}^{-1}$$

THIS PRODUCES B_{NR} IN T⁻¹

• **GROWTH TIMESCALE (BELL INSTABILITY)**

$$\tau = 3.3 \times 10^{-2} \text{ days } (\phi/15)(\epsilon_{NT}/0.1)^{-1}(E_{max,PeV})(t_{day})^{-1.34}$$

+Long wavelengths Bykov+11 $t_g = [1.5 \times 10^4] s \times \left(\frac{E_{10PeV}}{V_{sh,10^4}}\right)^{1/2} \times \frac{1}{A^{1/2} n_{CR}^{1/2}} (kr_g 0)^{-1/2}$ A = amplification factor by Bell's instability ~ 10–30

MAXIMUM PARTICLE ENERGY

- FIXING UP- AND DOWNSTREAM MAGNETIC FIELDS
- BOHM DIFFUSION REGIME
 - FIXES THE MAXIMUM ENERGY BY ESCAPE LOSSES AND TIME LIMITED EFFECT

GAMMA-RAY RADIATION

• TOTAL ENERGY PUT INTO CRS (SWEPT-UP MASS IS < $M_{\rm EJ}$) FROM DAY 1 TO 3100.

$$E_{CR} = \int dt 4\pi R_{sh}^2 \varepsilon_{NT} F_{NT} = 7.9 \times 10^{49} \text{ ergs}$$

• WITH A DENSE TARGET GAMMA-RAYS ARE EXPECTED BUT ABSORBED DUE TO ELECTRON-POSITRON PAIR PRODUCTION.

 γ (gamma) γ (UV-optical) \rightarrow e⁺/e⁻

10/3/12

$$\begin{aligned} \tau_{\gamma\gamma}(E_{\gamma}) &\approx R_s \kappa_{\gamma\gamma}(E_{\gamma}) ,\\ \text{where} \\ \kappa_{\gamma\gamma}(E_{\gamma}) &= \frac{45\sigma_{\rm T} U_{\rm rad}}{8\pi^4 k T_{\rm bb}} f_{\gamma\gamma}(E_{\gamma}, T_{\rm bb}) \end{aligned}$$

SOFT PHOTONS

SN PHOTOSPHERE => BLACK BODY, UV DOMINATES THE FIRST WEEK AND HENCE T~7000 K AFTER DAY 120.

At the level of $F(>1TeV)\sim 2 \ 10^{-12} \text{ cm}^{-2} \text{ s}^{-1}$ (Tatischeff'09, Kirk+95)

10/3/12

PHNE Meeting IAP

PERSPECTIVES: CERENKOV TELESCOPE ARRAY

Medium energies mcrab sensitivity ~100 GeV-10 TeV 10-12m telescopes High-energy section 10 km² area at multi-TeV energies 5–8m telescopes

The CTA consortium « Design Concepts for the Cherenkov Telescope Array » (arXiv:1008.3703)

Search for the optimal S/N ratio (Li & Ma 1983) in $\{E_{min}, E_{max}, t_{min}, t_{max}\}$ space assuming : CTA Configuration D, Zenith Angle = 20°, $\alpha = Exp_{ON}/Exp_{OFF} = 0.1$ 3 hrs of observation time (i.e. 6 runs) per night

 \rightarrow S/N = 5.6 in 50 hrs starting at day 130 in the 3 – 300 TeV energy range

BUT LIKELY AN UNDERESTIMATION

10/3/12

ANISOTROPIC PAIR PRODUCTION

NEUTRINOS

SECONDARY LEPTONS

Time-dependent transport equation :

PERSPECTIVES: SN

- IF A WOLF-RAYET PHASE OCCURS AFTER RSG PHASE THEN THE PEAK OF GAMMA-RAY EMISSION IS SHIFTED IN TIME.
- MAJORITY OF TYPE II SN; I.E. IIP MAY ENTER IN A SIMPLE SEQUENCE

MS(8-16 SOLAR MASSES)=>RSG=>SNIIP

 $\frac{M > 90M_{\odot}}{\text{low Z?}}: \text{ O - Of - WNL - (WNE) - WCL - WCE - SN(SNIbc/BH/SNIIn)? (PCSN/Hypernova low Z?)}$ $\frac{60 - 90 M_{\odot}}{40 - 60 M_{\odot}}: \text{ O - Of/WNL} \Leftrightarrow \text{LBV - WNL(H poor) - WCL-E - SN(SNIbc/BH/SNIIn)?}$ $\frac{40 - 60 M_{\odot}}{10 - 20 M_{\odot}}: \text{ O - BSG - LBV} \Leftrightarrow \text{WNL - (WNE) - WCL-E - SN(SNIb)}$ $\frac{30 - 40 M_{\odot}}{10 - 20 M_{\odot}}: \text{ O - BSG - RSG - WNE - WCE - SN(SNIb)}$ $\frac{10 - 20 M_{\odot}}{10 - 20 M_{\odot}}: \text{ O - (BSG) - RSG - BSG (blue loop) - RSG - SN(SNIIb, SNIIL)}$ MEXNET+11

Table 1. Properties of the RSGs. The first 27 stars are from LM05, while the following 12 stars are from JB00. The column marked V is the assumed wind speed. The column marked λ is the flux averaged wavelength. L_{Lev} is the luminosity giv in LM05 (from their M_{bol}) and L_{phot} is the luminosity obtained by integrating the UBVIJHKL + IRAS photometry. Is derived with Jura's formula, where the used luminosity is L_{phot} .

Name	m-M	$E_{\rm B-V}$	$f_{12}/f_{ m K}$	V	D	f_{60}	λ_m	L_{Lev}	$L_{\rm phot}$	\dot{M}
	(mag)	(mag)		$({\rm km~s^{-1}})$	(kpc)	(Jy)	(µm)	(L_{\odot})	(L_{\odot})	$(M_{\odot} yr^{-1})$
V589 Cas	11.50	0.78	0.156	14	2.00	3.61	1.72	52000	35000	5.0×10^{-7}
BU Per	11.40	0.66	0.435	14	1.90	5.23	2.20	58000	38 000	7.4×10^{-7}
SU Per	11.40	0.66	0.241	19	1.90	6.87	1.77	90 000	85 000	7.7×10^{-7}
RS Per	11.90	0.56	0.417	20	2.40	9.93	2.28	144000	95 000	2.0×10^{-6}
S Per	11.39	0.66	1.226	20	1.90	40.59	3.67	81 000	86 000	6.8×10^{-6}
V441 Per	11.40	0.66	0.156	16	1.90	3.54	1.69	66 000	50000	4.2×10^{-7}
YZ Per	11.40	0.66	0.291	16	1.90	5.28	1.86	48000	55000	6.5×10^{-7}
W Per	11.40	0.66	0.495	16	1.90	14.87	2.55	54000	56000	2.1×10^{-6}
BD+57647	11.40	0.66	0.351	14	1.90	6.47	2.24	80 000	37000	9.3×10^{-7}
NO Aur	10.70	0.47	0.146	18	1.38	5.12	1.62	67000	73000	2.9×10^{-7}
α Ori	5.57	0.18	0.177	15	0.130	299.00	1.64		56000	1.5×10^{-7}
TV Gem	10.70	0.66	0.294	19	1.38	6.06	1.69	100000	84000	3.5×10^{-7}
BU Gem	10.70	0.66	0.248	19	1.38	10.50	1.62	83 000	86 000	5.9×10^{-7}
V384 Pup	13.00	0.57	0.260	18	4.00	2.76	1.84	37 000	75000	1.4×10^{-6}
CK Car	11.70	0.55	0.531	22	2.20	13.98	2.11	161000	123000	2.1×10^{-6}
V602 Car	11.60	0.48	0.596	22	2.10	12.40	2.61	105000	124000	1.9×10^{-6}
V396 Cen	11.60	0.75	0.201	23	2.10	4.98	1.73	164000	140000	6.2×10^{-7}
KW Sgr	12.40	0.92	1.218	27	3.00	18.39	2.81	363 000	228000	5.6×10^{-6}
NR Vul	11.80	0.94	0.590	21	2.30	12.28	2.26	224000	111000	2.2×10^{-6}
BI Cyg	11.00	0.93	0.671	22	1.58	51.23	2.67	226000	123000	4.6×10^{-6}
KY Cyg	11.00	0.93	0.702	22	1.58	50.74	3.15	272000	138000	4.9×10^{-6}
RW Cyg	10.60	1.22	0.481	23	1.32	60.69	1.96	144000	145000	3.2×10^{-6}
μ Cep	9.70	0.69	0.361	20	0.87	127.00	1.69	340000	410000	1.4×10^{-6}
V354 Cep	12.20	0.63	0.566	18	2.75	8.01	2.89	369 000	76000	2.4×10^{-6}
V355 Cep	12.20	0.63	0.292	14	2.75	3.27	2.38	94000	37000	1.0×10^{-6}
PZ Cas	11.90	0.69	1.217	30	2.40	96.48	3.57	212000	193000	2.6×10^{-5}
TZ Cas	11.90	0.69	0.541	19	2.40	9.47	2.38	98000	83 000	2.0×10^{-6}
EV Car	13.13	0.51	0.745	39	4.20	25.87	2.57		675000	1.3×10^{-5}
HS Cas	12.00	0.83	0.275	17	2.50	3.51	1.92		59 000	7.5×10^{-7}
XX Per	11.14	0.66	0.492	16	1.69	4.23	2.03		50 000	4.3×10^{-7}
KK Per	11.14	0.66	0.117	16	1.69	2.23	1.59		50 000	2.0×10^{-7}
AD Per	11.14	0.66	0.164	15	1.69	2.85	1.66		42000	2.7×10^{-7}
PR Per	11.14	0.66	0.131	14	1.69	2.37	1.55		34000	2.3×10^{-7}
GP Cas	11.40	0.66	0.200	15	1.90	4.45	2.01		43000	5.9×10^{-7}
VY CMa	10.28	0.47	6.959	47	1.14	1453.00	7.77		295 000	1.6×10^{-4}
α Sco	6.34	0.10	0.165	17	0.185	115.50	1.73		71000	1.2×10^{-7}
VX Sgr	10.98	0.52	2.334	25	1.57	262.70	4.14		343000	2.0×10^{-5}
Case 49	11.70	0.87	0.155	15	2.19	6.58	2.01		42000	1.1×10^{-6}
U Lac	12.20	0.63	0.685	23	2.75	9.04	2.51		147000	2.3×10^{-6}

MAURON & JOSSELIN'1

-

SN IIP

- LESS LUMINOUS
 - => DECREASES OPACITY TO PAIR PRODUCTION => P=PLATEAU: MEAN LUMINOSITY HIGHER WITH TIME WRT IIB AND IIL => EXTEND THE EFFECT OF PAIR PRODUCTION.
- REMAINS TO BE TESTED.

CONCLUSIONS

- SNR ASSOCIATED WITH RSG PHASE ARE INTERESTING OBJECTS:
 - IF *MEDIUM FULLY IONIZED* THE BELL INSTABILITY MAY GROW FASTLY (WITHIN DAYS TIMESCALE)
 - MAXIMUM CR ENERGIES MAY REACH PEV ALSO RAPIDLY (WITHIN DAYS TIMESCALE)
- SN 1993J IS ONE OF THE MOST OBSERVED SN IIB AT ALL WAVELENGTHS
 - SHOCK VELOCITY ~ 0.2C, HIGH MAGNETIC FIELD THAT MAY BE INTERPRETED AS GENERATED BY CRS
 - HIGH ENERGY CRS MAY BE PRODUCED WITHIN DAY TIMESCALES UPLOADING A FEW % OF SN EXPLOSION
 - TRANSLATED INTO GAMMA-RAYS SIGNAL MODULO PAIR
 PRODUCTION CAN LEAD TO A DETECTION BY CTA @ 5.6SIGMA
 WITHIN 50 DAYS
- OTHER TARGETS TO BE TESTED E.G. SN IIP