WHAT CAN TIDAL DISRUPTION EVENTS TEACH US ABOUT BLACK HOLE ACCRETION?

Mitch Begelman

JILA, University of Colorado

Tidal Disruption Event

A star ventures inside the tidal radius of a black hole and is torn apart

Tidal forces ...

... unbind ~half the debris

... throw the other half into highly eccentric orbits

Semi-major axis:

$$r_i \ge \frac{r_t}{2} \left(M_h / M_* \right)^{1/3}$$

= 4 × 10¹⁴ M₆^{2/3} cm
= 2400 M₆^{-1/3} r_g

Simulations by Guillochon & Ramirez-Ruiz 2013

Initial rise time for fallback $t_i = 0.1 M_6^{1/2}$ yr

Initial rise time for fallback $t_i = 0.1 M_6^{1/2}$ yr

Tidal disruption leads to hyperaccretion:

Mass supply rate exceeds Eddington limit:

$$\dot{M} >> \dot{M}_{\rm Edd}$$

- Energy released $\frac{GM\dot{M}}{r} \sim L_E$ at $r \sim 10 (\dot{M} / \dot{M}_{Edd}) r_g$ = trapping radius where $\tau = \frac{c}{v}$
- Energy accumulates at *r*<*r*_{trap}

$$r_{\rm trap} = \frac{M\kappa}{4\pi c} = 10 \left(\dot{M} / \dot{M}_{\rm Edd} \right) r_g$$

HYPERACCRETION: THE "SLIM DISK" APPROACH

 $R > R_{trap}$: M = const.thin Keplerian disk

 $R < R_{trap} : \dot{M} \propto R$ regulates L \sim L_E

Like an "ADIABATIC INLOW-OUTFLOW SOLUTION" (ADIOS) – Blandford & Begelman 1999

Fig. 8. Lines of matter flow at supercritical accretion (the disk section along the Z-coordinate). When $R < R_{sp}$ spherization of accretion takes place and the outflow of matter from the collapsar begins

SS433: A CLASSIC CASE OF HYPERACCRETION

$$\dot{M}_{in} \sim 10^3 \dot{M}_E$$

$$R_{trap} \sim 10^3 R_g$$

Strong wind from large *R*

DISKLIKE ACCRETION

- Thin disk
 - ~ all dissipated energy radiated away
 - ~ circular Keplerian orbits, vertical structure decouples
 - energy transport: internal torque
- Slim disk
 - gas retains enough pressure to affect radial balance
 - energy transport: torque + advection
- Radiatively inefficient disk
 - Due to low density or high optical depth (Eddington limit)
 - must dispose of extra energy, mass, or angular momentum to avoid becoming unbound
 - Inflow-outflow, circulation, turbulent transport, winds
 - Accretion may be inhibited

Slim disks: 1D models of 2D (axisymmetric) flows

What happens if we add the second dimension?

- Gyrentropes: S(I)
- Quasi-Keplerian

... which occurs if specific angular momentum is too small compared to Keplerian

STARLIKE ACCRETION

 Dynamical conditions don't allow a bound disklike flow

 Flow reduces B instead by steepening density/ pressure profiles leads to runaway accretion Predict: Sub-Keplerian angular momentum + Super-Eddington accretion rate

Failure of self-regulation:

Either violently unstable or star-like flow that produces super-Eddington jet (or accretion from low binding energy orbit)

WHAT ACTUALLY HAPPENS?

This is the situation in a super-Eddington TDE

Super-Eddington TDE Swift J1644+57

- •Swift + Chandra light curves
- •L corrected for beaming
- Radio emission suggests jet

Super-Eddington TDE Swift J1644+57

- Angular momentum of debris cloud
 - $R_{circularization} \sim 10^{13} (M/M_{\odot})^{-1/3} (M_{BH}/10^6 M_{\odot})^{1/3} cm$
- Radius of debris cloud
 - Set by radiation trapping condition $\mathbb{W} \sim c/v_{K}$
 - $R_{debris} \sim 10^{15} (M/M_{\odot})^{2/5} (M_{BH}/10^6 M_{\odot})^{1/5} cm$
- Hardly rotating

 $- L/L_{K} \sim (R_{circ}/R_{deb})^{1/2} \sim 0.1 (M_{BH}/10^{6}M_{M})^{2/15}$ initially

Model as evolving sequence of star-like (low l) flows with B~0

Zero Bernoulli Accretion Flow

(Coughlin & MCB 2013)

- Weakly bound envelope
- Narrow rotational funnel
- Density gradient and accretion rate depend on L/L_K

ZEro BeRnoulli Accretion Flow (Coughlin & MCB 2013)

ZEBRA

- Weakly bound envelope
- Narrow rotational funnel
- Density gradient and accretion rate depend on L/L_k

ZEBRA MODELS:

Equations:

$$\begin{split} \frac{1}{\rho} \frac{\partial p}{\partial r} &= -\frac{\partial \phi}{\partial r} + \frac{\ell^2 \csc^2 \theta}{r^3} \\ \frac{1}{\rho} \frac{\partial p}{\partial \theta} &= -\frac{\partial \phi}{\partial \theta} + \frac{\ell^2 \csc^2 \theta \cot \theta}{r^2} \\ \phi &+ \frac{\ell^2 \csc^2 \theta}{2r^2} + \frac{\gamma}{\gamma - 1} \frac{p}{\rho} = 0 \end{split}$$

General solution: I *any* function of $\phi r^2 \sin^2 heta$

Self-similar: Keplerian potential (💽, 💽, q depend on a)

$$\rho(r,\theta) = \rho_0 \left(\frac{r}{r_0}\right)^{-q} (\sin^2 \theta)^{\alpha},$$
$$p(r,\theta) = \beta \frac{GM_h \rho_0}{r} \left(\frac{r}{r_0}\right)^{-q} (\sin^2 \theta)^{\alpha},$$
$$\ell^2(r,\theta) = aGM_h r \sin^2 \theta,$$

ZEBRA MODELS:

Equations:

$$\begin{aligned} \frac{1}{\rho} \frac{\partial p}{\partial r} &= -\frac{\partial \phi}{\partial r} + \frac{\ell^2 \csc^2 \theta}{r^3} \\ \frac{1}{\rho} \frac{\partial p}{\partial \theta} &= -\frac{\partial \phi}{\partial \theta} + \frac{\ell^2 \csc^2 \theta \cot \theta}{r^2} \\ \phi &+ \frac{\ell^2 \csc^2 \theta}{2r^2} + \frac{\gamma}{\gamma - 1} \frac{p}{\rho} = 0 \end{aligned}$$

General solution: I *any* function of $\phi r^2 \sin^2 heta$

Self-similar: Kepleri onstaloidal (IN, N, Papendona) $\rho(r,\theta) = \rho_0 \left(\frac{r}{r_0}\right)^{-q} (\sin^2 \theta)^{\alpha},$ $p(r,\theta) = \beta \frac{GM_h \rho_0}{r} \left(\frac{r}{r_0}\right)^{-q} (\sin^2 \theta)^{\alpha},$ $\ell^2(r,\theta) = a GM_h r \sin^2 \theta,$

ZEBRA Evolution

- Accretion (from inner boundary)
 - Less I 🕅 steeper density slope 🕅 higher M
 - $-L >> L_{E}$, no way to self-regulate
 - Energy must escape as jets, or ZEBRA blows up
- BH accretes mass, leaves behind ang. mom.
 - I increases with time, density profile flattens
 - M declines, weaker jet
- Time-dependent model fits observed features of Swift J1644

Evolution of envelope mass

- Initially, fallback rate exceeds accretion rate: M incr.
- Later, accretion rate exceeds fallback rate but both decrease
- M levels off at ~15% of stellar mass

Evolution of jet power

- Proportional to accretion rate w/ fixed efficiency
- Sensitive to density slope
- Reaches L_{Edd} at ~500d, when Swift J1644 X-ray flux plummets

Envelope effective temperature

- Envelope luminosity ~ L_{Edd} << L_{jet}
 Teff M M*^{-1/5}M^{3/20}
- Far UV

Jets from Tidal Disruption Events

The Magnetic Flux/Spin Paradigm

Jet power limited by amount of flux available

Do TDEs have enough flux?

Transient accretion events have access to a fixed amount of flux...

Tidal Disruption Event candidate Swift J1644+57:

Jet power: $L_j > 10^{45} \text{ erg s}^{-1} \sim 100 L_E$

Flux needed: $\boxed{M} > 10^{30} \text{ G-cm}^2$

Flux available: $\mathbb{W}_{\mathbb{W}} \sim 10^{25} \text{ B}_3 (\text{R}_{\mathbb{W}}/\text{R}_{\mathbb{W}})^2 \text{ G-cm}^2$

PROBABLY NOT

An Alternate Mechanism for TDE Jets

Buoyant loops of B form inward corona

... so jet ultimately powered by dissipation of turbulent B

Relativistic radiation hydrodynamics: entrainment and acceleration by radiation stresses

(Coughlin & Begelman, in prep)

ZEBRA Jets

- Powered by dissipation of turbulent B (from MRI?), not net magnetic flux
- Reconnection X energy converted to radiation
- Acceleration by radiation pressure
- Collimation by rotational funnel
- Mass-loading determined by radiation drag – Jets "self-shield"
- L/L_E determines jet Lorentz factor

Broader Implications of ZEBRA Flows

• When do they form?

- Too much I to fall directly in
- Too little I/I_{Kep} to maintain disk-like flow
- Low radiative efficiency

• Where do they form?

- Tidal Disruption Events
- Collapsar Gamma-Ray Bursts
- Supermassive BH seeds accreting from cocoons (quasi-stars)

Do GRBs have enough flux?

Transient accretion events have access to a fixed amount of flux...

Tidal Disruption Event candidate Swift J1644+57:

Jet power: $L_j > 10^{45} \text{ erg s}^{-1} \sim 100 L_E$

Flux needed: $\boxed{M} > 10^{30} \text{ G-cm}^2$

Flux available: $\mathbb{W}_{\mathbb{W}} \sim 10^{25} \text{ B}_3 (\text{R}_{\mathbb{W}}/\text{R}_{\mathbb{W}})^2 \text{ G-cm}^2$

Collapsar Gamma-Ray Burst:

Jet power: $L_j > 10^{50} \text{ erg s}^{-1} \sim 10^{11} L_E$ Flux needed: $\boxed{\mathbb{M}} > 10^{28} \text{ G-cm}^2$ Flux available: $\boxed{\mathbb{M}} \sim 10^{25} \text{ B}_3 (\text{R}_{\mathbb{M}}/\text{R}_{\mathbb{M}})^2 \text{ G-cm}^2$

Generalize ZEBRAs to self-gravitating envelopes:

I any function of $\phi r^2 \sin^2 \theta$

Consequences for GRB Jets

- Dissipation at recollimation shock could explain jet entropy needed for thermal origin of prompt emission
- Lorentz factor ~ (L/L_E)^{small power (~1/4??)}
 - Extreme $L/L_{E} \sim 10^{11}$ [X] $\sim 100 1000$

"QUASISTAR"

- Remnant envelope around newly formed SMBH seed
- Black hole accretes from envelope, releasing energy
- Envelope absorbs energy and expands
- Accretion rate decreases until energy output = Eddington limit supports the "star"

Begelman, Volonteri & Rees 2006;Begelman, Rossi & Armitage 2008

QUASISTAR JETS?

- Similar situation to collapsar after expansion
- Self-gravity more important: envelope >~ 100 x BH mass
- Importance of magnetic flux unknown
- Detectability of quasistars at z~5-10?

So what can tidal disruption events teach us about black hole accretion?

- Rotating accretion flows need not resemble disks
- Not all hyperaccreting systems can regulate their energy outputs to the Eddington limit
- Not all jets need be magnetically propelled