CLUSTERS OF CALAXIES:

WHERE COSMOLOGY AND ASTROPHYSICS COLLIDE

Arif Babul University of Victoria

THE HOLY GRAIL OF COSMOLOGY

>What is the make-up of the Universe? >What is the present-day cosmic expansion rate? How is the expansion rate evolving? What is the large-scale geometry of spacetime? >What is the nature of dark matter? >What is the nature of dark energy?

How was galaxy formation, and the observed large-scale structure traced by the galaxies, seeded?

\mathbf{A}_{i}	ge of	universe	t	to

- Hubble constant H_0
- Baryon density Ω_h
- $\Omega_b h^2$ Physical baryon density Dark matter density Ω, $\Omega_c h^2$ Physical dark matter density Dark energy density Ω_{Λ} Curvature fluctuation amplitude, $k_0 = 0.002 \text{ Mpc}^{-1 \text{ b}}$ Δ_R^2 Fluctuation amplitude at $8h^{-1}$ Mpc σ_8 $l(l+1)C_{2\infty}^{TT}/2\pi$ C_{220} Scalar spectral index n_{g} Redshift of matter-radiation equality z_{eq} Angular diameter distance to matter-radiation eq.^c $d_A(z_{eq})$ Redshift of decoupling Z_{\pm} Age at decoupling t_{*} Angular diameter distance to decoupling c,d $d_A(z_*)$ Sound horizon at decoupling d $r_{g}(z_{*})$ Acoustic scale at decoupling d $l_A(z_*)$ Reionization optical depth τ Redshift of reionization

Parameters for Extended Models

Zreion

t_{reion}

Total density ^f	Ω_{tot}
Equation of state ⁸	W ₀ , W ₁
Tensor to scalar ratio, $k_0 = 0.002 \text{ Mpc}^{-1 \text{ b},h}$	r
Running of spectral index, $k_0 = 0.002 \text{ Mpc}^{-1 \text{ b}, i}$	$dn_s/d\ln k$
Neutrino density ^j	$\Omega_{\nu}h^2$
Neutrino mass ^j	$\sum m_{ u}$
Number of light neutrino families ^k	N_{eff}

Age at reionization

Locations and amplitudes of the peaks in the CMB power spectrum depend on values of both astrophysical and cosmological parameters.

Age of universe	t_0		-		
Hubble constant	H_0				
Baryon density	Ω_b				
Physical baryon density	$\Omega_b h^2$				
Dark matter density	Ω_{c}		Open		
Physical dark matter density	$\Omega_{\rm c}h^2$		le		
Dark energy density	Ω_{Λ}		odr		
Curvature fluctuation amplitude, $k_0=0.002~{\rm Mpc^{-1}~b}$	Δ_R^2	~	adn		
Fluctuation amplitude at $8h^{-1}$ Mpc	σ_8	NO(1	ab		
$l(l+1)C_{2\infty}^{TT}/2\pi$	C_{220}	(+1)			
Scalar spectral index	n_{s})Į			
Redshift of matter-radiation equality	z_{eq}		(SW)		
Angular diameter distance to matter-radiation eq. $^{\rm c}$	$d_A(z_{\rm eq})$				
Redshift of decoupling	z_*				
Age at decoupling	t_*				
Angular diameter distance to decoupling ^{c,d}	$d_A(z_*)$		•		
Sound horizon at decoupling d	r.(r.)		4Ω		
Acoustic scale at decoupling ^d	$l_A(z_*)$				
Reionization optical depth	τ				
Redshift of reionization	Zreion				
Age at reionization	t_{reion}				
Parameters for Extended Models					
Total density ^f	Ω_{tot}	_	1		
Equation of state ⁸	w ₀ , w ₁	- F	W _o = -1		
Tensor to scalar ratio, $k_0 = 0.002 \text{ Mpc}^{-1 \text{ b},h}$	r		-		
Running of spectral index, $k_0 = 0.002 \text{ Mpc}^{-1 \text{ b}, t}$	$dn_g/d\ln k$		0		
Neutrino density ^j	$\Omega_{\nu}h^2$				
Neutrino mass ^j	$\sum m_{\nu}$	<	0.06 eV		

The Minimal Model Just Six Numbers?

 N_{eff}

3

Number of light neutrino families k

EVEN THEN, THE PARAMETERS ARE DEGENERATE FOCUS ON THE $\Omega_{\rm m}-\sigma_{\rm 8}$ PLANE

USE OF COMPLEMENTARY PROBES CAN GREATLY REDUCE UNCERTAINTIES

Allen SW, et al. 2011. (from Rozo et al. 2010) Annu. Rev. Astron. Astrophys. 49:409–70

CMB MEASURES PARAMETERS AT HI-Z CLUSTERS/LSS MEASURE PARAMETERS AT LOW-Z

CLUSTERS CAN ALSO CONSTRAINT OTHER COSMOLOGICAL PARAMETER

CMB MEASURES PARAMETERS AT HI-Z CLUSTERS/LSS MEASURE PARAMETERS AT LOW-Z

Allen, S.W. et al. arXiv:1307.8152

WHY ARE CLUSTERS USEFUL COSMO PROBES?

Evolution of Structure in a Low Omega Universe

200 Mpc across

Time = 0.05 Gyr

Hierarchical clustering:

Massive structures are built up thru mergers of smaller structures

Cluster formation is ongoing. Rate of assembly depends of cosmology.

CLUSTER MASS FUNCTION AND ITS GROWTH IS A PROBE OF RECENT COSMOLOGICAL EVOL.

WE CAN MEASURE CLUSTER SZE, OPTICAL AND X-RAY PROPERTIES

Henry et al. 2009: HIFLUGCS cluster temperature function Bohringer et al 2014: REFLEX II cluster luminosity function

NEED TO FIND OBSERVABLE THAT BEST MAPS TO MASS AND DOES SO PREDICTABLY OVER A RANGE OF REDSHIFTS:

MASS-OBSERVABLE PROBLEM

LET US CONSIDER X-RAY LUMINOSITY

LARGE SCATTER IN L-T PLOT DUE TO LARGE VARIATIONS IN CLUSTER CORE ENTROPY \rightarrow ASTROPHYSICS.

McCarthy et al 2008 Cavagnolo et al 2008

At fixed T, ~10 scatter in Lx

CLUSTER ENTROPY – DENSITY CORRELATION

Cavagnolo et al 2008

CCCP Mass-Observable Luminosity Relationship

 $\bigcirc D_{BCG} < 0.01 \text{ Mpc}$ $\bigcirc D_{BCG} > 0.01 \text{ Mpc}$ Mahdavi et al. 2013

CCCP Mass-Temperature Relationship

 $\bigcirc D_{BCG} < 0.01 \text{ Mpc}$ $\bigcirc D_{BCG} > 0.01 \text{ Mpc} \quad \text{Mahdavi et al. 2013}$

CCCP Mass-Yx Relationship

Yx= Mgas*T

 $\bigcirc D_{BCG} < 0.01 \text{ Mpc}$ $\bigcirc D_{BCG} > 0.01 \text{ Mpc} \quad \text{Mahdavi et al. 2013}$

CCCP Mass-Yx Relationship Yx= Mgae log Slope: 0.40 ± 0.07 log Slope: Scatter: 14%±4% $(11\%\pm8\% \text{ scatter})$ 10 15%±8% s**c**atte 8) $(10^{14} M_{\odot})$ t... X-ray telescopes are very expensive because O.6 an barely detect clusters out to -must beispast 10 5 Y_x(<1 Mpc) (10¹⁴ M_o keV Y_{x} (<1 Mpc) (10¹⁴ M_o keV) $K(20 \text{ kpc}) < 70 \text{ keV cm}^2$ ⁾ D_{BCG} < 0.01 Mpc K(20 kpc) > 70 keV cm² **D**_{BCG} > 0.01 Mpc Mahdavi et al. 2013

Ibermel SZE

Frequency (GHz)

200

300

400

500

100

-0.1

a

Inverse Compton Scattering of CMB by "hot" ICM e-

PLANCK SZ CLUSTER ANALYSIS: PREMISED ON MEASURING CLUSTER MASS FUNCTION

HSE: $\frac{dP}{dr} = -\frac{GM(r)\rho(r)}{r^2}$

CLUSTERS ARE LARGELY DARK mass cannot be easily measured

PLANCK MEASURE Ysz

FOR SUBSET OF CLUSTERS WITH X-RAY DATA, USE X-RAY DATA TO ESTIMATE MASS: Mx

PLANCK:
$$\xi = [0.7, 1.0] < \xi > = 0.8$$

USE RESULTING Ysz – M TO DERIVE MASSES OF ALL OTHER CLUSTERS (MASS-OBSERVABLE)

IF USE $<\xi > = 0.6$ INSTEAD OF 0.8, THE TENSION IS RESOLVED

FOCUS ON THE $\Omega_{\rm m}-\sigma_{\rm 8}$ PLANE

Ade et al. 2013: Planck Collaboration XX/XXI

Planck CMB is measuring cosmology at t ~ 370,000 yrs. Planck Clusters gives cosmology at more recent epoch.

FYI: THE DIFFERENCE MAY NOT SEEM LIKE MUCH, BUT...

SO WHAT'S GOING ON?

♦Systematics in the Planck CMB data

Spergel et al. (2014) and others have looked at this. Moves CMB results towards Clusters but not enough.

♦ Systematics in the Planck SZ Cluster analysis

Focus of CCCP analysis.

◆Failure of the vanilla (six-parameter) model → new physics

Exploits the fact that CMB and Cluster measurements are at different epoch. (Premature in light of above but interesting proposals are circulating.)

PLANCK SZ CLUSTER ANALYSIS: PREMISED ON MEASURING CLUSTER MASS FUNCTION

 $\frac{dP}{dr} = -\frac{GM(r)\rho(r)}{r^2}$

HSE:

CLUSTERS ARE LARGELY DARK mass cannot be easily measured

PLANCK MEASURE Ysz

FOR SUBSET OF CLUSTERS WITH X-RAY DATA, USE X-RAY DATA TO ESTIMATE MASS: Mx

 $\begin{array}{l} Mx \text{ IS A BIASED ESTIMATOR OF} \\ TRUE MASS M: Mx = \xi M \end{array}$

PLANCK:
$$\xi = [07, 1.0] < \xi > = 0.8$$

USE RESULTING Ysz – M TO DERIVE MASSES OF ALL OTHER CLUSTERS (MASS-OBSERVABLE)

IF USE $<\xi > = 0.6$ INSTEAD OF 0.8, THE TENSION IS RESOLVED

WE <u>CAN</u> EMPIRICALLY ESTABLISH Ysz – M FOR CLUSTERS IN THE NEARBY UNIVERSE – USING WEAK GRAV LENSING!

Canadian Cluster Comparison Project it's good for the masses!

$$\kappa(\theta) = \frac{\Sigma(\theta)}{\Sigma_{\text{crit}}},$$

$$\Sigma_{\text{crit}} = \frac{c^2}{4\pi G} \frac{D_{\text{OS}}}{D_{\text{OL}} D_{\text{LS}}},$$

Lensing provides a direct estimate of the *projected* (2D) mass.

To turn 2D mass estimate into 3D mass estimate, we assume NFW halo profile:

 $\begin{aligned} \rho_{\rm tot}({\bf r}) &= {\bf r}^{-1} ({\bf r}_{200} + {\bf cr})^{-2} \\ &{\bf c} \propto {\bf M}_{200}^{-0.14} / (1+z) \end{aligned}$

 Real clusters are not spherical but triaxial
 Projected masses include nearby foreground / background mass distribution.

This introduces about 25-30% uncertainty in individual WL mass estimates (i.e noisy) but with many objects, can beat this noise down.

MEASURING SHEAR: THEORETICALLY SIMPLE, IN PRACTISE...

SOURCES OF NOISE:

Random intrinsic shape of galaxies.

Atmospheric seeing and telescope point spread function

Background noise in the CCD image

Foreground and cluster galaxies

Faint unresolved galaxies

Distance between lens and background galaxies

UNDERSTANDING SYSTEMATIC OFFSETS:

We have undertaken a thorough analysis of the <u>entire pipeline</u> to understand and quantify different sources of systematic biases:

$$\gamma_i^{obs} = (1 + \mu) \gamma_i^{true} + \chi$$

For cluster work: not important due to azimuthal avrg

Start with an input mock galaxy distribution ocorrect number counts and redshift distribution oappropriate ellipticity distribution (mag dependent)

- **Create a lensed image; add "appropriate" noise level**
- *Impose correct PSF size (seeing) and distortions
- *Analyze mock images via identical pipeline/approach
- Compare results to true input to determine multiplicative and additive biases.
- **MOCK IMAGES MUST MATCH OBSERVATIONS IN ALL ASPECTS!**

MOST IMPORTANT FINDINGS

MOCK IMAGES MUST INCLUDE GALAXIES AT LEAST <u>1.5</u> <u>MAGNITUDES FAINTER</u> THAN THE LIMITING MAGNITUDE OF SOURCES USED IN THE LENSING ANALYSIS – EVEN IF THESE GALAXIES ARE UNRESOLVED.

MOST IMPORTANT FINDINGS

MOCK IMAGES MUST INCLUDE GALAXIES AT LEAST <u>1.5</u> <u>MAGNITUDES FAINTER</u> THAN THE LIMITING MAGNITUDE OF SOURCES USED IN THE LENSING ANALYSIS – EVEN IF THESE GALAXIES ARE UNRESOLVED.

FAINT UNRESOLVED GALAXIES IMPACT SHAPES OF BRIGHTER SOURCE GALAXIES VIA BLENDING

GOING FROM STEP2 TO GEMS GALAXY COUNTS, THE GREATEST CHANGE IN $|\mu|$ RESULTS FROM INCLUSION OF UNRESOLVED FAINT GALAXIES IN THE SIMULATIONS.

MOST IMPORTANT FINDINGS

CORRECT SOURCE REDSHIFT DISTRIBUTION IS KEY THIS IS THE DOMINANT SOURCE OF SYSTEMATIC UNCERTAINTY

- CCCP'12 used N(z)^z from Ibert et al (2006) based on CFHTLS^mDeep Fields (ugriz) Ibert et al (2009) based on COSMOS-30: no NIR photometry (not shown) →WtG
- --- New Ibert et al (2013): COSMOS/UltraVISTA with deep NIR data and calibrated against zCOSMOS.
- Muzzin r-selected N(z) using COSMOS/UltraVISTA: 29 bands from 0.15-24 μm and also calibrated against zCOSMOS

PLANCK SZ CLUSTER ANALYSIS: PREMISED ON MEASURING CLUSTER MASS FUNCTION

 $\frac{dP}{dr} = -\frac{GM(r)\rho(r)}{GM(r)\rho(r)}$

HSE:

CLUSTERS ARE LARGELY DARK mass cannot be easily measured

PLANCK MEASURE Ysz

FOR SUBSET OF CLUSTERS WITH X-RAY DATA, USE X-RAY DATA TO ESTIMATE MASS: Mx

 $\begin{array}{l} \mbox{Mx IS A BIASED ESTIMATOR OF} \\ \mbox{TRUE MASS M:} & \mbox{Mx} = \xi \mbox{ M} \\ \mbox{PLANCK:} \ \xi = [\ 0.7, \ 1.0 \] \\ & < \xi > = 0.8 \end{array}$

USE RESULTING Ysz – M TO DERIVE MASSES OF ALL OTHER CLUSTERS (MASS-OBSERVABLE)

IF USE $<\xi > = 0.6$ INSTEAD OF 0.8, THE TENSION IS RESOLVED

AND, COMBINING EVERYTHING TOGETHER...

WE COMPARE TO PLANCK MASSES

THE VALUE OF ξ WITH CCCP MASSES IS SAME AS THAT ASSUMED IN PLANCK COSMOLOGY ANALYSIS.

TENSION BETWEEN PLANCK CLUSTER ANALYSIS AND PLANCK CMB ANALYSIS REMAINS.

NO DIFFERENCE BETWEEN COOL CORE & NON-COOL CORE SYSTEMS NO DIFFERENCE BETWEEN RELAXED & UNRELAXED SYSTEMS

WE FIND MASS DEPENDENCE BETWEEN Mpl - Mwl

PRELIMINARY MASS-Ysz SCALING RELATION

THIS IS ALL VERY EXCITING... SO DOES THIS MEAN NEW PHYSIS?

TENSION BTW HI-Z & LO-Z PARAMETERS CAN BE RESOLVED:

ONE EXTRA STERILE v

 ΔN_{eff} =1 M_s ~ 0.4-0.8 eV

DEEP CLUSTER COUNTS FROM GROUND-BASED SZE SURVEYS

cluster counts: SZE

Frieman et al. 2008 Carlstrom et al. 2002

BUT THIS REQUIRES KNOWING Ysz – MASS RELATIONSHIP ACROSS DIFFERENT REDSHIFT.

THE SIMPLEST ASSUMPTION WOULD BE THAT THE GAS IS INFLUENCED ONLY BY GRAVITY ... NO EVOL.

cluster counts: SZE

Frieman et al. 2008 Carlstrom et al. 2002

GAS IS HEATED BY ACCRETION SHOCKS

8	Мрс	box	Cluster	gas	density	0.02	Gyr
Ur	niver	rsity of I	Washington	Ast	ronomy	T. Quinn :	2000

cluster counts: x-ray flux

BUT...GAS CAN ALSO BE HEATED BY LARGE-SCALE GALACTIC OUTFLOWS POWERED BY SUPERNOVAE, STELLAR WINDS & RADIATION PRESSURE"

AND BY JETS AND WINDS FROM BLACK HOLES

- DB: s200m5P42b640l10_hdf5_plt_cnt_0000 Cycle: 1 Time:0 Pseudocolor
- Var: temp 1.0e+10
 - 1.4e+09
 - 2.0e+08
 - 2.8e+07
 - 4.0e+06

S. CIELO

REALISTIC AGN FEEDBACK IN COSMO SIMS: F. DURIER/ G. NOVAK

Implications Of Varying Entropy Core Values: y-maps

0°.85 Square Section Of 2°X2° SZ Sky Map: $\sigma_8=0.9$; M > 10¹³ h⁻¹ M_{\odot} (uniform core entropy with no evolution; res=14"; only thermal SZ)

Holder, McCarthy, Babul

Implications Of Varying Entropy Core Values: SZE

At a given mass, larger S results in:

- Iower amplitude,
- I flatter proj. y-profiles,
- higher signal outside the core

With increasing mass, the fractional change is lower.

Changes are negligible for M > $10^{14} M_{\odot}$

Holder, McCarthy, Babul

CLUSTER COUNTS IN SZE SURVEYS

Planck like

ASTROPHYSICAL EFFECTS CAN MIMIC COSMOLOGICAL TRENDS

cluster counts: SZE

Frieman et al. 2008 Carlstrom et al. 2002

CLUSTER COUNTS IN SZE SURVEYS

ASTROPHYSICAL EFFECTS CAN MIMIC COSMOLOGICAL TRENDS

cluster counts: SZE

Frieman et al. 2008 Carlstrom et al. 2002

QUANTIFYING EFFECTS OF ASTROPHYSICS VS. COSMOLOGY

REQUIRES GOOD UNDERSTANDING OF THE PHYSICS AND HIGH FIDELITY SIMULATIONS

Delsart, Barbosa, Blanchard 2010

Canadian Cluster Comparison Project

"it's good for the masses!"

CASCADIA TO CAPE TOWN COMPUTATIONAL COSMOLOGY COLLABORATORY