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punchlines

I Probabilistic inference with a generative model beats any
point estimate for accuracy and precision.

I When you don’t know how to model your data, use the data
to build the model; think hierarchically.

I You usually need to spend even more time modeling the
things you don’t care about—the noise—than the things you
do—the signal.

I “Images → coadd → catalog → best-fit model → high-level
conclusions” just won’t work in many circumstances.

I warnings for LSST and PanSTARRS and Gaia and . . .
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Hogg’s decadal survey

I Money spent on inference with real data is much more
productive, per dollar, than money spent on hardware or
theory. . .

I . . . and will help us survive the collapse of NASA and NSF!
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what is inference?

I I have some data D, I need to measure x .

I theoretically inspired arithmetic operations on the data?

I maximum-likelihood estimator?

I No: full likelihood function p(D|x ,α)
I And marginalize p(D|x) =

∫
p(D|x ,α) p(α) dα

I like a rotation and projection of the data into the x space
I as lossless as possible (there are theorems)
I likelihoods can be combined with other likelihoods to correctly

combine multiple data sets relevant to x .



1. Data-driven models



extreme deconvolution (Bovy, Hogg, Roweis 0905.2979): demo
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extreme deconvolution (Bovy, Hogg, Roweis 0905.2979): idea

I Each datum xn has its own error σn, therefore

I each datum xn is drawn from it’s own, individual pdf
p(xn |σn, θ).

I Parameterize the true (zero-error) PDF with
“hyperparameters” θ and

I find the hyperparameters that optimize the combined
likelihood of all the data.

p({xn} | θ) =
∏
n

p(xn |σn, θ) (1)

I This is a form of hierarchical inference.

I Generalize to D dimensions.



XDQSO (Bovy et al. 1011.6392): setup

I 2.2 < z < 3.5 quasars can be used to measure the baryon
acoustic oscillation in the Lyman alpha forest

I SDSS-III BOSS

I quasars in this range look like stars in ugriz

I This is a hard supervised classification problem.



XDQSO (Bovy et al. 1011.6392): results
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XDQSO (Bovy et al. 1011.6392): why do we win?

I We are data-driven.

I We use the errors correctly and account properly for missing
data; we have a generative model.

I That is true for both the training data and the test data.
I We can predict high S/N data using only low S/N data!

I We are extensible to new prior information or other data.
I GALEX
I UKIDSS
I variability

I extreme-deconvolution
I Bovy, Hogg, & Roweis (0905.2979)
I it Just Works (tm)
I C code with Python and IDL wrappers / interface
I can handle large data sets with large numbers of dimensions

I SDSS-III BOSS core target selection



polemic: What’s wrong with typical classification
algorithms?

I neural networks, boltzmann machines, support vector
machines, boosting

I these are all awesome

I they require that test data have the same statistical and error
properties as training data

I never true!

I they require that all features be measured for all data points

I never true!
I (If you know enough about your data to fix this problem, then

just write down a likelihood!)
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XDQSOz redshift prediction (Bovy et al. 1105.3975): example
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XDQSOz redshift prediction (Bovy et al. 1105.3975): lessons

I When you have a probabilistic generative model, generating
the raw data, even extremely low signal-to-noise data can be
decisive.

I Catalogs are useless in this regime.



high contrast imaging (Fergus et al.): examples

Band: 4,

Cube: 1

Band: 4,

Cube: 2

Band: 8,

Cube: 1

Band: 8,

Cube: 2

Band: 12,

Cube: 1

Band: 12,

Cube: 2

data from the P1640 spectroscopic imaging coronograph
(Oppenheimer et al.)

I Data are four dimensional: x , y , λ, nexp.

I Expect strong structure in the radius–wavelength plane.

I We have made the instrument an order of magnitude more
sensitive, by software alone.



high contrast imaging (Fergus et al.): eigenvectors
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high contrast imaging (Fergus et al.): sensitivity
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binary quasars (Tsalmantza et al. 1106.1180): example
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punchlines

I Probabilistic inference with a generative model beats any
point estimate for accuracy and precision.

I When you don’t know how to model your data, use the data
to build the model; think hierarchically.
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things you don’t care about—the noise—than the things you
do—the signal.
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2. Foreground-background modeling



GD-1 stream (Grillmair & Dionatos 2006 ApJL 643 L17–L20.)



GD-1 stream (Koposov et al. 0907.1085): setup



mixture models

[on the board]



GD-1 stream (Koposov et al. 0907.1085): results
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GD-1 stream (Koposov et al. 0907.1085): lessons

I We got the first-ever six-dimensional map of an orbit in the
Milky Way.

I If we had required hard classification of every star, we would
have failed.

I We had to put more parameters into our background model
than the stream!



self-calibration of imaging (Holmes, Rix, Hogg)
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self-calibration of imaging (Holmes, Rix, Hogg)
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self-calibration of imaging

I A good survey (Holmes et al.):
I every star appears in many images
I in different images, the star is in different places
I every image contains many stars

I A good model (Foreman-Mackey & Hogg):
I every star has some probability of being variable

(actually every star is variable with unknown amplitude)
I every datapoint has some probability of being corrupted
I calibrate without hard classification
I mixture model is a marginalization over good–bad decisions
I can recover many discarded SDSS-II Stripe 82 imaging runs



exoplanets around red giants (Hou, Goodman, Hogg)



exoplanets around red giants (Hou, Goodman, Hogg)

I stars (especially giants) have surface oscillations

I radial-velocity signal is a superposition of exoplanet and
oscillations

I need methods to model stochastically driven, damped
oscillators

I This is what Gaussian Processes are designed to do!
I Also very appropriate for transits in the presence of stochastic

intensity variations.
I Inference is expensive. Suck it up.



exoplanets around white dwarfs (Schiminovich, Lang, Hogg)



exoplanets around white dwarfs (Schiminovich, Lang, Hogg)



exoplanets around white dwarfs (Schiminovich, Lang, Hogg)



exoplanets around white dwarfs (Schiminovich, Lang, Hogg)



punchlines

I Probabilistic inference with a generative model beats any
point estimate for accuracy and precision.

I When you don’t know how to model your data, use the data
to build the model; think hierarchically.

I You usually need to spend even more time modeling the
things you don’t care about—the noise—than the things you
do—the signal.

I “Images → coadd → catalog → best-fit model → high-level
conclusions” just won’t work in many circumstances.

I warnings for LSST and PanSTARRS and Gaia and . . .



3. Catalogs are bad; unstacked images are good



faint proper motions (Lang et al. 0808.4004): brown dwarf



faint proper motions (Lang et al. 0808.4004): z > 6 QSO



faint proper motions (Lang et al. 0808.4004): faint galaxy



faint proper motions (Lang et al. 0808.4004): defect



faint proper motions (Lang et al. 0808.4004): lessons

I If we had only a catalog, we would have failed.

I If we had only a coadd, we would have failed.



what’s wrong with LSST and PanSTARRS?

I reducing data with point estimates

I building catalogs from “co-adds” with point estimates

I catalog matching
I All of these throw away information. Does it matter?

I Lang and I are betting it does: theTractor.org



The Tractor (Lang et al.): data



The Tractor (Lang et al.): model
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[polemical backup slides]



polemic: Weak lensing

I work very hard to make sensitive morphological measurements
(think “ellipticities”) on millions of galaxies

I then simply average in bins on the sky to make a shear map!
I Hierarchical inference beats averaging, provably.

p(data |map, α) =
∏
n

∫
p(dn |map, α) (2)

p(dn |map, α) =

∫
p(dn | sn,map) p(sn |α)dsn (3)

p(data |α) =

∫
p(data |map, α) p(map)dmap (4)



polemic: The baryon acoustic feature

I build galaxy catalog from noisy imaging and spectroscopy data

I build two-point function from catalog

I fit baryon acoustic feature to two-point function
I Can we write down the likelihood instead?

I model the density field
I model how galaxies populate that field
I enormous marginalization
I impossible? (e.g., Dodelson et al. 9712074)

I If we fail, will S/N rise with survey size?
I certainly not guaranteed



polemic: Missing data

I Most machine-learning methods hate missing data.

I Interpolation or data censoring (both very, very bad) are
required.

I Any model that properly accounts for uncertainty also
properly accounts for missing data.

I Missing data is (extreme) uncertainty; uncertainty is (mild)
missing data.

I If you have a justified generative model p(Dn|ωn), you
automatically deal with missing data.



polemic: Don’t convolve your data, convolve your model!

I If you are uncertain about something (a redshift, a
classification) so that you don’t know which bin to put it in:

I Don’t put a bit of your data point into each bin!
I That re-convolves your noisy result with the noise again.

I Do put a bit of your distribution model into each bin.
I That is, convolve your model for the object with the

uncertainty.
I Obvious, but frequently done wrong.



polemic: Catalogs are dangerous (Hogg & Lang 1008.0738)

I No objects are detected or classified with perfect confidence.

I Different investigators have different objectives and priors.

I As new data become available, the balance will shift for many
objects.

I Catalogs become wrong, likelihood functions are forever.
I and I mean functions, not optima


