Recent results in exoplanetology with the SOPHIE spectrograph

Rodrigo F. Díaz LAM

IAP , Friday January 20th, 2012

- 1. Extrasolar planets & the RV method
 2. SOPHIE. Past performances
- **3. SOPHIE & exoplanets**
- **4. The new fibre link. New performances**
- 5. The future. The realm of small planets

1. Extrasolar planets & the RV method
2. SOPHIE. Past performances
3. SOPHIE & exoplanets
4. The new fibre link. New performances
5. The future. The realm of small planets

- 1. Extrasolar planets & the RV method
 2. SOPHIE. Past performances
 3. SOPHIE & exoplanets
 4. The new fibre link. New performances
- 5. The future. The realm of small planets

1. Extrasolar planets & the RV method **2. SOPHIE.** Past performances **3. SOPHIE & exoplanets 4. The new fibre link. New performances 5.** The future. The realm of small planets

Formation and evolution models

- Formation and evolution models
- Internal structure of giant and telluric planets

- Formation and evolution models
- Internal structure of giant and telluric planets
- Atmospheric composition and dynamics

- Formation and evolution models
- Internal structure of giant and telluric planets
- Atmospheric composition and dynamics
- Better understanding of stellar activity

- Formation and evolution models
- Internal structure of giant and telluric planets
- Atmospheric composition and dynamics
- Better understanding of stellar activity
- Test tidal dissipation theory

- Formation and evolution models
- Internal structure of giant and telluric planets
- Atmospheric composition and dynamics
- Better understanding of stellar activity
- Test tidal dissipation theory
- **Galactic census**

- Formation and evolution models
- Internal structure of giant and telluric planets
- Atmospheric composition and dynamics
- Better understanding of stellar activity
- Test tidal dissipation theory
- Galactic census
- Are we alone?

- Formation and evolution models
- Internal structure of giant and telluric planets
- Atmospheric composition and dynamics
- Better understanding of stellar activity
- Test tidal dissipation theory
- Galactic census
- Are we alone?

Comparative Exoplanetology

Credit: ESO

A SOPHIE spectrum

Friday, January 20, 2012

5000

Bisector velocity span

a measurement of the symmetry of the lines

Bisector velocity span

a measurement of the symmetry of the lines

The photon noise

the fundamental limit to the RV precision

$$\sigma \propto \frac{\sqrt{FWHM}}{constrast \times S/N}$$

1. Extrasolar planets & the RV method **2. SOPHIE.** Past performances **3. SOPHIE & exoplanets 4. The new fibre link. New performances** 5. The future. The realm of small planets

Meet SOPHIE

A high-resolution spectrograph at the 1.93-m telescope of the Observatoire de Haute-Provence

Meet SOPHIE

Meet SOPHIE (II)

Fiber-fed (3" on the sky) crossdispersed echelle spectrograph.ThAr used for wavelength calibration.High mechanical and temperature stability.

Dispersive elements kept at constant pressure.

Two operation modes:

High Resolution: R = 70,000

High Efficiency: R = 40,000

Meet SOPHIE (III)

Perruchot, Bouchy, Chazelas, et al. (2011)

High Resolution: R = 70,000

High Efficiency: R = 40,000

 \bigcap

Assessing SOPHIE's performance

Previous precision and limitations

Series on the blue sky

Precision better than 1 m/s over little more than an hour.

Previous precision and limitations

Series on known constant stars (standards)

Previous precision and limitations

Series on known constant stars (standards)

Friday, January 20, 2012
Previous precision and limitations

Dispersion on large number of stars

Previous precision and limitations

The seeing effect

Boisse, Bouchy, Chazelas, et al. (2011)

Previous precision and limitations

Search for extrasolar planets

Follow-up of transiting candidates (CoRoT, SuperWASP, Kepler)

Characterisation of transiting planets via Rossiter-McLaughlin effect

Search for extrasolar planets

- Follow-up of transiting candidates (CoRoT, SuperWASP, Kepler)

— Characterisation of transiting planets via Rossiter-McLaughlin effect

SOPHIE Consortium

Large consortium formed for the scientific exploitation and improvement of SOPHIE.
 80 nights per semester (sometimes around 100 !)
 Five research sub-programmes

- SP1: High-precision programme.
- SP2: Hot Jupiters around solar-type stars.
- SP3: Planets around M-dwarves.
- SP4: Planets around hot stars (A & F).
 - SP5: Long-term follow-up of ELODIE planets/candidates.

A planet or a brown dwarf?

A multiple planet system around HD9446

Díaz, Santerne, Sahlman, et al. (A&A, In press)

_ow-mass star
P = 632 d
ecc = 0.37
Mc sin i = 92 Mjup

×*

×.

 $\times \times$

- Search for extrasolar planets

Follow-up of transiting candidates (CoRoT, SuperWASP, Kepler)

Characterisation of transiting planets via Rossiter-McLaughlin effect

Follow-up of transiting candidates

Follow-up of transiting candidates

Grazing eclipsing binaries Low-mass eclipsing M-stars

Blended eclipsing binaries / Triple systems

Follow-up of transiting candidates

To discard impostors

and characterise the planet (mass, eccentricity, etc.)

- The CoRoT space mission
- December 2006 April 2013 (extended mission)
- 0.3-m telescope; 4 CCDs (2 kpix); 2 for ExP;
 1 down since 2009
- Orbit around Earth ~900 km
 - >140,000 stars observed in 22 fields
- About 650 planetary candidates
- > 70% false positives
- New extension being evaluated

First screening process to discard false positives

First screening process to discard false positives

First screening process to discard false positives

The family of

planets

Follow-up of Kepler candidates

- **The Kepler space mission**
- March 2009 2012 (possible extension)
- 0.95-m telescope; 42 CCDs (2 kpix)
- Orbit around Sun (L1)
- >150,000 stars observed continuously in a single field
- More than 1200 planetary candidates
 Low fraction of false positives expected

Follow-up of Kepler candidates

Kepler candidates

- KOI 428 b Santerne, Díaz, Bouchy et al. (2011)
- ----- KOI 196 b Santerne, Bonomo, Hébrard et al. (2011)

- KOI 135 b, KOI 204 b, KOI 203 b Bonomo, Hébrard, Santerne, et al. (2012)
- Many others on their way

KOI 196 b, a Hot Jupiter with a high albedo

Santerne, Bonomo, Hébrard et al. (2011)

High geometric albedo, Ag = 0.30 ± 0.08.

Only two other planets with such a high albedo (Kepler-7 b, HAT-P-7 b).

Estimation based on galactic population models. Does not consider unblended binaries !

Based on results of 24 giant planet candidates with concluded follow-up. Kp < 14.7Depth < 2%Rp > 0.6 Rjup-Only Rank 2

Based on results of 24 giant planet candidates with concluded follow-up. Kp < 14.7Depth < 2%Rp > 0.6 RjupOnly Rank 2

False Positive Rate ~30 %

measured for giant planet candidates

False Positive Rate ~30 %

measured for giant planet candidates

Follow-up of SuperWASP candidates

- [The SuperWASP survey of transiting planets
 - Wide Area Search for Planet.
 - Two locations to cover
 Southern and Northern
 sky.
 - Over 60 planets found.

The WASP / SOPHIE family

WASP-12 b, a Hot Jupiter in an eccentric orbit

WASP-48 b, an inflated Hot Jupiter

WASP-11 b, a compact sub-Jupiter

WASP-11 b, a compact sub-Jupiter

SOPHIE & exoplanets

- Search for extrasolar planets

-{ Follow-up of transiting candidates (CoRoT, SuperWASP, Kepler)

Characterisation of transiting planets via Rossiter-McLaughlin effect

A method to measure the spin-orbit angle of planets

Winn (2009)

HD209458 b

HD209458 b

HD209458 b

By 2008, the obliquity of about 1/5 of the known transiting planets had been measured.

All orbits were aligned and prograde, in agreement with the expected result of planetary formation and migration in a protoplanetary disk

30

The first case of a misalig

-11.3 ± 1.5	0
1.503 ± 0.010	$\rm kms^{-1}$
2454493.944 ± 0.009	BJD
29	${ m m~s^{-1}}$
0.85	
23	
2454494.549 ± 0.014	BJD
1.3 ± 0.2	Mo
1.6 ± 0.2	$ m R_{\odot}$
$12.4 \pm 1.9^{\dagger}$	M_{Jup}
82.5 ± 1.5	0
$12.5 \pm 1.9^{\dagger}$	M_{Jup}
1.5 ± 0.2	R _{Jup}
70 ± 15	0
	$\begin{array}{c} -11.3 \pm 1.5 \\ 1.503 \pm 0.010 \\ 2454493.944 \pm 0.009 \\ \qquad $

HD 80606 b; P = 111 days; ecc = 0.93

Naef, et al. (2001)

HD 80606 b; P = 111 days; ecc = 0.93

HD 80606 b; P = 111 days; ecc = 0.93

HD 80606 b; P = 111 days; ecc = 0.93

Hébrard, Désert, Díaz, et al. (2010)

Moutou, Díaz, Udry et al. (2011)

The Earth as a transiting extrasolar planet

Vidal-Madjar, Arnold, Ehrenreich et al. (2010)

Improving SOPHIE

The new fibre link

Operation "Nouvelle Bonnette"

Operation "Nouvelle Bonnette"

- **Some other improvements:**
 - New Guiding System
 - ADC correction
 - New N2 refilling system
 - New Thermal Isolation
 - Improvements in data reduction pipeline

Perruchot, Bouchy, Chazelas, et al. (2011)

Installation of the new fibre link (as of June CONFIGURATION spectrograph 2011).

Only three good-quality octagonal fibres available.

New Series on the blue sky

New Series on the blue sky

E Series on known constant stars (standards)

Dispersion: about 2 m/s over 119 days. Still room to improve.

E Series on known constant stars (standards)

Dispersion: about 2 m/s over 119 days. Still room to improve.

E Series on known constant stars (standards)

Dispersion: about 2 m/s over 119 days. Still room to improve.

E Series on known constant stars (standards)

Trend is probably due to ageing of ThAr lamp. This will be corrected soon. In all, there's a factor of about 6 in the precision improvement.

E Series on known constant stars (standards)

Trend is probably due to ageing of ThAr lamp. This will be corrected soon. In all, there's a factor of about 6 in the precision improvement.

E Series on known constant stars (standards)

Trend is probably due to ageing of ThAr lamp. This will be corrected soon. In all, there's a factor of about 6 in the precision improvement.

E Series on known constant stars (standards)

Dispersion: 2.5 m/s over 21 days; photon noise = 1.4 m/s

E Series on known constant stars (standards)

Dispersion: 2.5 m/s over 21 days; photon noise = 1.4 m/s

E Series on known constant stars (standards)

Dispersion: 2.5 m/s over 21 days; photon noise = 1.4 m/s

Series on known constant stars (standards)

Trend is repeated on many stars.

Series on known constant stars (standards)

Trend is repeated on many stars.

Dispersion on large number of stars

Dispersion on large number of stars

Dispersion on large number of stars

The realm of small planets

The realm of small plog plog in the real of the small plog in the second second

Observation of known small-mass planets

-20 -20 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.

<u>HD190360 c (Vogt et al. 2005)</u> P = 17.10 ± 0.02 d; K = 4.6 ± 1.1 m/s m₂ sin(i) = 18.1 ± 4.8 Mearth

HIRES@Keck
$$\sigma = 3.5 \text{ m/s}$$

The realm of small plog of ets

Observation of known small-mass planets

-20 -20 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.

HD190360

3 V [m/s]

<u>HD190360 c (Vogt et al. 2005)</u> P = 17.10 \pm 0.02 d; K = 4.6 \pm 1.1 m/s m₂ sin(i) = 18.1 \pm 4.8 Mearth

HIRES@Keck $\sigma = 3.5 \text{ m/s}$

P = 17.33 ± 0.22 d; K = 6.7 ± 1.0 m/s

 σ = 1.1 m/s over about 50 days

But slightly eccentric orbit...

The realm of small planets

Observation of known small-mass planets

keck2sophie HD190360 c (Vogt et al. 2005) $P = 17.10 \pm 0.02 \text{ d}; \text{ K} = 4.6 \pm 1.1 \text{ m/s}$ 5 $m_2 sin(i) = 18.1 \pm 4.8$ Mearth RV [m/s] n HIRES@Keck σ = 2.7 m/s over 27 days -5 HD190360 sophie $P = 17.33 \pm 0.22 \text{ d}; \text{ K} = 6.7 \pm 1.0 \text{ m/s}$ 5 RV [m/s] $\sigma = 1.1 \text{ m/s}$ over about 50 days But slightly eccentric orbit... -5 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 φ

The realm of small planets

" I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me. "

– Isaac Newton

" I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me. "

- Isaac Newton

Thank you very much

Additional slides

Series on known constant stars (standards)

E Series on known constant stars (standards)

Trend is reverted at the time of installation of new ThAr lamp.

Room for further improvement

New Systematic effects already identified

Room for further improvement

New Systematic effects already identified

