Tracing the growth of the first black holes

Marta Volonteri

Institut d'Astrophysique de Paris

M. Begelman, J. Bellovary, B. Devecchi, F. Governato, S. Van Wassenhove

Stellar mass BHs

formation through
 stellar evolution
 mass < few tens Msun

Massive BHs

powering quasars
 mass > 10⁵ Msun

Galaxies

mass: 10⁹-10¹² solar masses

 $R_{halo} \sim GM_{halo} / \sigma^2$ $R_{bulge} \sim GM_{bulge} / \sigma^2$

MEGAPARSEC

KILOPARSEC

Massive Black Holes mass: 10⁵-10⁹ solar masses

 $R_{bondi} \sim GM_{BH}/c_s^2$

PARSEC

 $R_{inf} \sim GM_{BH} / \sigma^2$

PARSEC

 $R_{sch} = 2GM_{BH}/c^2$

MICROPARSEC

Shiny black holes out there....

Hubble Deep Field visible light – starlight all galaxies "black" black holes? Chandra Deep Field X-ray – high energy processes active galaxies & black holes

MBH- host relations: co- evolution of MBHs and galaxies

NUCLEI

Nuclear scales (sub-pc scale)

Bridge from frictiondriven to gravitational radiation-driven decay
Spin evolution Iet formation

GALAXIES

<u>Galaxy scales (kpc-pc</u> <u>scale)</u>

- -Which galaxy mergers lead to MBH binaries?
- -Merger-driven quasar/ AGN activity

CONTEXT

<u>Cosmic scales</u> (<u>Gpc-kpc scale</u>) –How and when MBHs form

-How many galaxies host MBHs

Semi-analytical models \rightarrow cosmic evolution \rightarrow statistical samples \rightarrow observables

GW AGN events bir

AGN/QS pairs MBH occupation fraction, LF of QSOs/AGN

WHEN do you make the first massive black holes?

The highest redshift quasar currently known, ULASJ112010641, at z=7.1 has estimates of the SMBH mass MBH~2 ×10⁹ Msun (Mortlock et al. 2011)

As massive as the largest -SMBHs today, but when the Universe was 0.75 Gyr old!

For a BH accreting at a given fraction fEdd of the Eddington limit, the mass grows in time as:

$$M(t) = M_{in} e^{(\frac{1-\varepsilon}{\varepsilon} f_{\rm Edd} \frac{t}{0.45 \,\rm Gyr})}$$

 $M_{fin} = 2 \times 10^{9} \text{ Msun}$ $t_{H}(z=7) \sim 0.75 \text{ Gyr}$ $f_{Edd} = 0.3 - 1; \underline{\varepsilon} \sim 0.1$

 \Rightarrow M_{in}>300-ish Msun

can you make a massive black hole 'seed'?

af Mikael Wulff & Anders Morgenthaler

wm@pol.dk

Hierarchical Galaxy Formation small scales collapse first

Baryons: need to cool => possible only in the most massive halos >10⁶-10⁸ M_{sun} , i.e. the rarest at these highest redshifts

HOW can you make the first massive black holes?

collapse

PopIII stars remnants

Some simulations suggest that the first stars are massive M~100-600 Msun (e.g., Abel et al. 2002; Bromm et al. 2003)

✓ Metal free dying stars with M>260Msun leave remnant BHs with Mseed≥100Msun (Fryer, Woosley & Heger 2003)

Problem: are the first stars massive enough?

M_{*}>260 M_{sun} → M_{BH}>150 M_{sun} Recent simulations revise the initial estimates of the stellar masses to possibly much lower values, just a few tens Msun

M_{*}~30-150 M_{sun}→ M_{BH}<<100 M_{sun}

If BH mass too small difficult to settle down into galaxy center => dynamics suppresses accretion/growth opportunities

Gas-dynamical collapse

(e.g. Bromm & Loeb 2003, Begelman, MV & Rees 2006)

Globally unstable gas infalls towards the galaxy center and a supermassive star forms

The stellar core collapses into a small black hole, embedded in what is left of the star The black hole swallows the envelope growing up to a million solar masses

Deep potential well for gas infall and collapse
 Global dynamical instabilities to trigger inflow and dissipate angular momentum

Zero or low-metallicity to avoid star formation - SNe can blow away the gas reservoir

Stellar-dynamical processes

Devecchi & MV 2009

<u>Local dynamical instabilities</u> can lead to mass infall instead of fragmentation and global star formation

VERY LOW, but NON-ZERO METALLICITY:

Inflow \Rightarrow within an inner, compact, region stars form abundantly \Rightarrow very dense cluster

mass segregation: massive stars sink to the center

 \checkmark stellar collisions form a very massive star \Rightarrow massive black hole

HOW can you make the first massive black holes?

Testing MBH seed formation: two techniques

- I. Semi-analyical modelling
 - Analytical "recipes" for MBH formation and growth
 - Monte-Carlo realizations of the merger history of dark matter halos in a LCDM cosmology
 - computationally inexpensive =>statistical samples

MV, Haardt & Madau 2003, MV & Natarajan 2009, MV & Begelman 2010

2. Cosmological simulations

- No need to use global quantities or smooth functions
- Gravity and hydrodynamics naturally included
- Either high resolution or large volume due to computational costs

Galaxies

mass: 10⁹-10¹² solar masses

$$\frac{R_{halo} \sim GM_{halo} / \sigma^{2}}{R_{bulge} \sim GM_{bulge} / \sigma^{2}} \qquad \text{MEGAPARSEC}$$

Massive Black Holes

mass: 10⁵-10⁹ solar masses

$$R_{sch} = 2GM_{BH}/c^2$$

MICROPARSEC

PARSEC

Simulations of MBH seed formation

- GASOLINE SPH N-body code (Wadsley et al. 2004)
 - Star formation, supernova feedback, metal diffusion, metal line cooling
- New additions:
 - Seed BH formation
 - MBH mergers
 - MBH accretion
 - MBH feedback

Seed MBH Prescription

- Forming Seed MBHs
 - Form seed black holes out of cold, dense, zerometallicity gas (n>10² cm⁻³, T<10⁴ K)
 - Probability of forming a black hole ("efficiency")
 - Seed mass same as gas particle ($10^4 10^6 M_{\odot}$)

Local prescription – driven by gas physics

Testing MBH seed formation

- High resolution "zoomed-in" cosmological simulations. We can accurately model the environment of BH formation and evolution
- Three galaxies to z=5
- •Four values of BH formation efficiency (0.05, 0.1, 0.3, 0.5)

h603

hzl

h258

Testing MBH seed formation

hz l at z = 5: M = 6 x 10¹¹ M_{\odot} at z = 0: Massive elliptical

h258 at z = 5: M = 3 x 10¹⁰ M_{\odot} at z = 0: Milky Way mass

h603

At z = 5: M = 8 x 10⁹ M_{\odot} at z = 0: Low-mass disk galaxy

MBH seeds form early

Black holes form earlier in more biased halos

Different efficiencies just change how many MBHs form

Efficiency = 0.1

MBH seeds form early

MBH formation is truncated due to contamination by heavy elements, while stars continue forming

h258 eff = 0.1 z = 5

Halo Mass at time of MBH formation

M~10⁸ Msun << than assumed in cosmological simulations (10¹⁰ Msun) => implications for AGN feedback on the first galaxies

Eff = 0.1

What is the smallest halo hosting a MBH?

MBH fraction at the end of MBH formation epoch (z~5)

can we find signatures of massive black hole 'seeds'?

MBHS are grown from seed BHs at high-z. These seeds are incorporated into larger and larger halos, accreting gas and dynamically interacting after mergers.

MV, Haardt & Madau 2003

Since the "average" MBH grows by several orders of magnitude the initial conditions are washed out

"The night in which all cows are black" (Hegel)

Look for uncontaminated clues

Testing MBH seed formation: two techniques

1. Semi-analyical modelling

- Analytical "recipes" for MBH formation and growth
- Monte-Carlo realizations of the merger history of dark matter halos in a LCDM cosmology
- computationally inexpensive =>statistical samples

2. Cosmological simulations

- No need to use global quantities or smooth functions
- Gravity and hydrodynamics naturally included
- Either high resolution or large volume due to computational costs

The MBH cosmic journey (MV & Natarajan 2009)

Relationship between MBHs and their hosts establishes first in the most massive galaxies: high-bias => earliest growth

The MBH cosmic journey

MBHs hosted in low-mass galaxies provide the least contaminated clues

Occupation fraction and MBH- σ @ z=0

(MV, Lodato & Natarajan 2008)

MBHs in Milky Way Satellites

(Van Wassenhove, MV et al. 2010)

Gas-dynamical collapse: less, more massive BHs & asymptotic behavior ~10⁴-10⁵ Msun

PopIII remnants: more, lower mass BHs &minimum mass ~100 Msun => steadier slope

Summary – forming MBHs

- Implement *physically motivated* MBH formation in cosmological simulation
- MBHs form abundantly at early times; star formation and metal pollution shut MBH formation at z~7
- The first MBHs form in ~10⁸ Msun halos
- MBHs @ low masses tell the story