Supersymmetry and Dark Matter post LHC2010 and XENON100

Why Supersymmetry?

Gauge Hierarchy Problem

Gauge Hierarchy Problem

$$\delta m_H^2 \simeq g_f^2, g^2, \lambda \int d^4k \frac{1}{k^2} \sim O(\frac{\alpha}{4\pi}) \Lambda^2$$

Scalar masses corrected by loops

Gauge Hierarchy Problem

$$\delta m_H^2 \simeq O(\frac{\alpha}{4\pi})(\Lambda^2 + m_B^2) - O(\frac{\alpha}{4\pi})(\Lambda^2 + m_F^2) = O(\frac{\alpha}{4\pi})(m_B^2 - m_F^2)$$

Scalar masses corrected by loops

$$|m_B^2 - m_F^2| \lesssim 1 \text{ TeV}^2$$

Why Supersymmetry?

- Gauge Hierarchy Problem
- Gauge Coupling Unification

Running of the Gauge couplings in the standard model

Running of the Gauge couplings in the supersymmetric standard model

Why Supersymmetry?

- Gauge Hierarchy Problem
- Gauge Coupling Unification
- Dark Matter

(Supersymmetric) Dark Matter

+ gravity

(also gravitational multiplet with gravitino (spin 3/2) and graviton (spin 2).

SUSY Dark Matter

MSSM and R-Parity

Stable DM candidate

1) Neutralinos

$$\chi_i = lpha_i \widetilde{B} + eta_i \widetilde{W} + \gamma_i \widetilde{H}_1 + \delta_i \widetilde{H}_2$$

2) Sneutrino

Excluded (unless add L-violating terms)

3) Other: Axinos, Gravitinos, etc

Why Supersymmetry?

- Gauge Hierarchy Problem
- Gauge Coupling Unification
- Dark Matter
- Improvement in low energy phenomenology

MSSM with R-Parity (still more than 100 parameters)

What is the MSSM

1) Add minimal number of new particles: Partners for all SM particles + 1 extra Higgs EW doublet.

2) Add minimal number of new interactions: Impose R-parity to eliminate many UNWANTED interactions.

 $R = (-1)^{3B+L+2S}$

SUSY Superpotential + Soft terms

$$W = h_{u}H_{2}Qu^{c} + h_{d}H_{1}Qd^{c} + h_{e}H_{1}Le^{c} + \mu H_{2}H_{1}$$

$$\mathcal{L}_{\text{soft}} = -\frac{1}{2}M_{\alpha}\lambda^{\alpha}\lambda^{\alpha} - m_{ij}^{2}\phi^{i*}\phi^{j}$$

$$-A_{u}h_{u}H_{2}Qu^{c} - A_{d}h_{d}H_{1}Qd^{c} - A_{e}h_{e}H_{1}Le^{c} - B\mu H_{2}H_{1} + h.c.$$

SUSY Superpotential + Soft terms

$$W = h_{u}H_{2}Qu^{c} + h_{d}H_{1}Qd^{c} + h_{e}H_{1}Le^{c} + \mu H_{2}H_{1}$$

$$\mathcal{L}_{soft} = -\frac{1}{2}M_{\alpha}\lambda^{\alpha}\lambda^{\alpha} - m_{ij}^{2}\phi^{i*}\phi^{j}$$

$$-A_{u}h_{u}H_{2}Qu^{c} - A_{d}h_{d}H_{1}Qd^{c} - A_{e}h_{e}H_{1}Le^{c} - B\mu H_{2}H_{1} + h.c.$$

$$\langle H_1 \rangle = \begin{pmatrix} v_1 \\ 0 \end{pmatrix} \qquad \langle H_2 \rangle = \begin{pmatrix} 0 \\ v_2 \end{pmatrix} \qquad \tan \beta = \frac{v_2}{v_1}$$

SUSY Superpotential + Soft terms

$$W = h_{u}H_{2}Qu^{c} + h_{d}H_{1}Qd^{c} + h_{e}H_{1}Le^{c} + \mu H_{2}H_{1}$$

$$\mathcal{L}_{soft} = -\frac{1}{2}M_{\alpha}\lambda^{\alpha}\lambda^{\alpha} - m_{ij}^{2}\phi^{i*}\phi^{j}$$

$$-A_{u}h_{u}H_{2}Qu^{c} - A_{d}h_{d}H_{1}Qd^{c} - A_{e}h_{e}H_{1}Le^{c} - B\mu H_{2}H_{1} + h.c.$$

$$\langle H_1 \rangle = \begin{pmatrix} v_1 \\ 0 \end{pmatrix} \qquad \langle H_2 \rangle = \begin{pmatrix} 0 \\ v_2 \end{pmatrix} \qquad \tan \beta = \frac{v_2}{v_1}$$

R-parity conservation assumed

MSSM with R-Parity (still more than 100 parameters)

- MSSM with R-Parity (still more than 100 parameters)
- Gaugino mass Unification

- MSSM with R-Parity (still more than 100 parameters)
- Gaugino mass Unification
- A-term Unification

- MSSM with R-Parity (still more than 100 parameters)
- Gaugino mass Unification
- A-term Unification
- Scalar mass unification

- MSSM with R-Parity (still more than 100 parameters)
- Gaugino mass Unification
- A-term Unification
- Scalar mass unification
- $B_0 = A_0 m_0$ (VCMSSM)

- MSSM with R-Parity (still more than 100 parameters)
- Gaugino mass Unification
- A-term Unification
- Scalar mass unification
- $B_0 = A_0 m_0$ (VCMSSM)
- $m_0 = m_{3/2} (mSUGRA)$

The Constrained and Very Constrained MSSM

- CMSSM as a 4+ parameter theory
- NUHM1 as a 5+ parameter theory
- VCMSSM models 3+ parameter theory (mSUGRA)
- No-Scale models 1+ parameter theory

The CMSSM

Parameters: $m_{1/2}$, m_0 , A_0 , $tan \beta$, $sgn(\mu)$

Electroweak Symmetry Breaking conditions:

$$\frac{m_1^2 - m_2^2 \tan^2 \beta + \frac{1}{2} M_Z^2 (1 - \tan^2 \beta) + \Delta_{\mu}^{(1)}}{\tan^2 \beta - 1 + \Delta_{\mu}^{(2)}}$$

$$B\mu = -\frac{1}{2}(m_1^2 + m_2^2 + 2\mu^2)\sin 2\beta + \Delta_B$$

 $\mu^2 =$

CMSSM Spectra

Unification to rich spectrum + EWSB

The Relic Density

At high temperatures $T \gg m\chi$; χ 's in equilibrium $\Gamma > H$ $n\chi \sim n\gamma$ $\Gamma \sim n\sigma v \sim T^3 \sigma v$; $HM_p \sim \sqrt{\rho} \sim T^2$ As $T < m\chi$; annihilations drop $n\chi$

 $n\chi \sim e^{-m\chi/T} n\gamma$

Until freeze-out, $\Gamma < H$

WMAP

WMAP

 $m_{1/2}$ - m_0 planes

CMSSM

Ellis, Olive, Santoso, Spanos

Impact of CDM

Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer, Isidori, Olive, Paradisi, Ronga, Weiglein Effective four-fermion Lagrangian

$$\mathcal{L} = \bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}_{i}\gamma_{\mu}(\alpha_{1i} + \alpha_{2i}\gamma^{5})q_{i} + \alpha_{3i}\bar{\chi}\chi\bar{q}_{i}q_{i}$$

 $+ \alpha_{4i}\bar{\chi}\gamma^5\chi\bar{q}_i\gamma^5q_i + \alpha_{5i}\bar{\chi}\chi\bar{q}_i\gamma^5q_i + \alpha_{6i}\bar{\chi}\gamma^5\chi\bar{q}_iq_i$

The terms proportional to α_1 , α_4 , α_5 , α_6 , lead to velocity-dependent cross sections

Remaining terms:

α₂: Spin-dependent cross sectionα₃: Spin-independent cross section

Elastic cross section for direct detection

Mastercode - MCMC

Long list of observables to constrain CMSSM parameter space

- MCMC technique to sample efficiently the SUSY parameter space, and thereby construct the χ² probability function
- Combines SoftSusy, FeynHiggs, SuperFla, SuperIso, MicrOmegas, and Dark SUSY
- Purely frequentist approach (no priors) and relies only on the value of x² at the point sampled and not on the distribution of sampled points.
- 25 million points sampled (CMSSM)

$$\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}}$$
$$+ \chi^{2}(M_{h}) + \chi^{2}(\text{BR}(B_{s} \to \mu\mu))$$
$$+ \chi^{2}(\text{SUSY search limits})$$

$$+\sum_{i}^{M} \frac{(f_{\mathrm{SM}_{i}}^{\mathrm{obs}} - f_{\mathrm{SM}_{i}}^{\mathrm{fit}})^{2}}{\sigma(f_{\mathrm{SM}_{i}})^{2}}$$

Buchmueller, Cavanaugh, Colling, De Roeck, Dolan, Ellis, Flacher, Heinemeyer, Olive, Rogerson, Ronga, Weiglein

LHC REACH VS CMSSM

Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer, Isidori, Olive, Paradisi, Ronga, Weiglein

 $\Delta \chi^2 \text{ map of } m_0 - m_{1/2} \text{ plane}_{\text{Mastercode}}$

Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer Isidori, Olive, Ronga, Weiglein

Neutralino mass and Relic Density from MCMC analysis Mastercode

Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer, Isidori, Olive, Ronga, Weiglein

Elastic cross section from MCMC analysis Mastercode

1**0**⁻⁴⁰ С Ч ີ 10⁻⁴ ບິງ 10⁻⁴ 9 $\Delta\chi^2$ CDMS: 2004+2005 (reanalysis) +2008 Ge 0.9 8 XENON10 2007 (Net 136 kg-d) ົ<u>ດ</u> ວີ10⁻⁴² SuperCDMS (Projected) 25kg (7-ST@Snolab) 0.8 7 0.7 6 **10**⁻⁴³ 0.6 5 0.5 **10⁻⁴⁴** 4 0.4 **10⁻⁴⁵** 3 0.3 **10⁻⁴⁶** 2 0.2 **10**⁻⁴⁷ 0.1 10^{-48∟} 10¹ 0 0 10⁻⁴⁵ 10⁻⁴⁶ 10⁻⁴⁴ 10⁻⁴³ 10⁻⁴² **10⁻⁴⁷** 10⁻⁴¹ 10⁻⁴⁰ 10^{2} 10³ $\sigma_{\rm p}^{\rm SI}$ [cm²] m_{μ} [GeV/ c^2]

Buchmueller, Cavanaugh, De Roeck, Ellis, Flacher, Heinemeyer, Isidori, Olive, Ronga, Weiglein

$m_{1/2}$ - m_0 planes incl. LHC

CMSSM

Ellis, Olive, Santoso, Spanos

COMPARISON OF BEST FIT POINTS PRE AND POST LHC

Model	Minimum	Probability	$m_{1/2}$	m_0	A_0	$\tan\beta$	$M_h \; ({\rm GeV})$
	$\chi^2/{ m dof}$		(GeV)	(GeV)	(GeV)		(no LEP)
CMSSM pre-LHC	22.5/19	26%	310^{+120}_{-50}	60^{+90}_{-10}	-60^{+410}_{-840}	10^{+10}_{-4}	108.6
post-2010-LHC	26.1/19	13%	470^{+140}_{-70}	170^{+330}_{-80}	-780^{+1410}_{-820}	22^{+27}_{-13}	115.7
post-Xenon (50 ± 14)	26.2/20	16%	470^{+140}_{-70}	170^{+330}_{-80}	-780^{+1410}_{-820}	22^{+27}_{-13}	115.7
NUHM1 pre-LHC	20.5/17	25%	240^{+150}_{-50}	100^{+70}_{-40}	920^{+360}_{-1260}	7^{+11}_{-2}	119.4
post-2010-LHC	24.1/18	15%	530^{+220}_{-90}	110^{+80}_{-20}	-370^{+1070}_{-1000}	27^{+24}_{-10}	117.9
post-Xenon (50 ± 14)	24.2/19	19%	530^{+220}_{-90}	110^{+80}_{-20}	-370^{+1070}_{-1000}	27^{+24}_{-10}	117.9
VCMSSM pre-LHC	22.6/20	31%	300^{+60}_{-40}	60^{+20}_{-10}	30^{+50}_{-30}	8^{+3}_{-1}	110.0
post-2010-LHC	27.9/20	11%	470^{+150}_{-80}	110^{+110}_{-30}	120^{+300}_{-190}	13^{+14}_{-8}	115.0
post-Xenon (50 ± 14)	28.1/21	14%	470^{+150}_{-80}	110^{+110}_{-30}	120^{+300}_{-190}	13^{+14}_{-8}	115.0
mSUGRA pre-LHC	29.4/19	6.0%	550^{+170}_{-90}	230^{+80}_{-40}	430^{+190}_{-90}	28^{+5}_{-2}	107.8
post-2010-LHC	30.2/20	6.7%	650^{+70}_{-130}	270^{+50}_{-50}	530^{+130}_{-130}	30^{+4}_{-3}	122.2
post-Xenon (50 ± 14)	30.3/21	8.6%	650^{+70}_{-130}	270^{+50}_{-50}	530^{+130}_{-130}	30^{+4}_{-3}	122.2

Buchmueller, Cavanaugh, Colling, De Roeck, Dolan, Ellis, Flacher, Heinemeyer, Isidori, Olive, Rogerson, Ronga, Weiglein $\Delta \chi^2$

 $\Delta \chi^{z}$

Most recent result from Xenon100

Bucnmueller, Cavanaugn, Colling, De Koeck, Dolan, Ellis, Flacher, Heinemeyer, Isidori, Olive, Rogerson, Ronga, Weiglein

Buchmueller, Cavanaugh, Colling, De Roeck, Dolan, Ellis, Flacher, Heinemeyer, Isidori, Olive, Rogerson, Ronga, Weiglein

Most recent result from Xenon100

$m_{1/2}$ - m_0 planes incl. LHC

CMSSM

Ellis, Olive, Santoso, Spanos

$m_{1/2}$ - m_0 planes incl. LHC

Ellis, Olive, Santoso, Spanos

Indirect Detection

Neutrinos from Neutralino Annihilations in the Sun

 Gamma-rays from Annihilations in the Galactic Halo

Buchmueller, Cavanaugh, Colling, De Roeck, Dolan, Ellis, Flacher, Heinemeyer, Isidori, Olive, Rogerson, Ronga, Weiglein

Indirect Detection in the CMSSM

Ellis, Olive, Savage, and Spanos

Annihilations in the Halo

Annihilations in the Halo

Gamma-ray signals

Thursday, July 7, 2011

Summary

- Frequentist method (no priors) shows strong preference for relatively light neutralinos, low tan β, and co-annihilation region
- LHC beginning to make in significant inroads
- XENON100 also making inroads (cf. value of $\Sigma_{\pi N}$)
- Indirect Detection more difficult typically sensitive to focus point region where cross sections are higher