Gamma-Ray Bursts

Recent developments based on Fermi and Swift Observations

Peter Mészáros, Pennsylvania State University

IAP Nov. 2010

(Less) standard GRB hadronic radiation: UHE CR, \vee , γ

- If protons present in (baryonic) jet $\rightarrow p^+$ Fermi accelerated (as are e⁻)
- $\mathbf{p}, \gamma \rightarrow \pi^{\pm} \rightarrow \mu^{\pm}, \nu_{\mu} \rightarrow \mathbf{e^{\pm}}, \nu_{e}, \nu_{\mu}$ (Δ -res.: $E_p E_{\gamma} \sim 0.3 \text{ GeV}^2$ in jet frame)
- $\rightarrow E_{\nu,br} \sim 10^{14} \text{ eV}$ for MeV γ s (int. shock)
- $\rightarrow Ev_{,br} \sim 10^{18} \text{ eV}$ for 100 eV ys (ext. rev. sh.) : ICECUBE
 - $\rightarrow \pi^0 \rightarrow 2\gamma \rightarrow \gamma\gamma$ cascade **GLAST, ACTs.**
- Test hadronic content of jets (are they pure MHD/e[±], or baryonic ...?)
- Also (if dense): $\mathbf{p}, \mathbf{\gamma} \to \pi^{\pm} \to \mu^{\pm}, \mathbf{v}_{\mu} \to \mathbf{e}^{\pm}, \mathbf{v}_{e}, \mathbf{v}_{\mu}$
- E_v ~ GeV (internal shock) ; E_γ ~ TeV (ext shock/IGM)
- \rightarrow photon cut-off: diagnostic for int. vs. ext-rev shock

So far:

- Seen (for sure) only EM radiation (lots)
- Are these photons *leptonic* or *hadronic* origin?
- Answer:
- X-ray to radio \Rightarrow surely leptonic
- MeV: probably leptonic (but...)
- GeV: debated
- But one of few UHECR candidate sources!

6

Theoretical Issues:

- Is the single component Band spectrum up to GeV due to internal or external shocks?
- Is it of purely leptonic, hadronic or mixed?
- Besides delay providing QG upper limits (based on zero intra-source GeV-MeV delay): what are astrophysical causes of delay?
- Is 2nd component a ≠ rad.mech. from 1st?

Plethora of Models

- Radiative e[±] ext. shock (Ghisellini et al)
- Unmag. adiab. ext. shock (Kumar & Barniol)
- Critique thereof (Piran & Nakar)
- Klein-Nishina IC ext. shock (Wang, He, ..)
- Structured adiab. ext. shock (Corsi et al)
- Cocoon int. shock upscattering (Toma et al)
- Photosp. int. shock upscattering (Toma et al)
- Critique phot & magn. outflow (Zhang, Pe'er)
- Hadronic models (Razzaque et al, Asano et al)

Radiative ext. shock model

Ghisellini et al, 0910.2459

- GeV light curves roughly $F_E \sim t^{-1.5}$ for most LAT obs.
- Spectrum roughly $F_E \sim E^{-1}$, not strongly evolving
- Argue it is external shock, with $L \sim t^{-10/7}$ as expected for `radiative' f'balls $\Gamma \sim r^{-3} \sim t^{-3/7}$
- To make 'radiative', need `enrich' ISM with e^{\pm}
- Argue pair-dominated f'ball obtained from backscatt. of E>0.5 MeV photons by ext. medium, → cascade
- External shock (afterglow) delay: explain GeV from MeV delay (MeV prompt is something else (?))

- Problem: $r \gtrsim 10^{16}$ cm needed, where $n_{\pm} \lesssim n_p$ (e.g. '01 ApJ 554,660)

Adiabatic Unmag. Ext. Shock

Kumar & Barniol-Duran, MNRAS, arXiv.0905.2417, 0910.5726

- t>4 s at >100 MeV, E>E_c, E_m (sync.) \Rightarrow sp. indep. of Γ , n
- Interpret $F_E \sim t^{-1.2\pm0.2} \Rightarrow$ adiabatic ext. shock
- Get ϵ_B , n from argument that ES at t<50 s should not dominate spec. at <500 keV (of unspec. origin)
- \rightarrow ES params. from >0.1 GeV predict XR, O \checkmark

Problems:

- I) densities extremely low (<halo?)
- 2) In SNR, evidence for $B >> B_{compr}$
- 3) Adiabaticity reliant on low n cond

KN adiabatic ES model

Wang, He et al, 0911.4189 (also He et al in prep.)

- KN effects influence IC emission through Y parameter
- Calc. Y(γ_{L}), where $\nu_{L}(\gamma_{L}) = 0.1 \text{GeV}$; also calc. Y(γ_{c}), Y(γ_{m})
- At t ≤ 10 s, Y($\gamma_{L} \geq 1$ (SSC weak: KN) $\rightarrow 0.1$ GeV SY (strong)
- but Y(γ_c , γ_m) >> 1 \rightarrow SSC strong (not KN) \rightarrow X, O Sy weak
- Y(γ L) incr. in time (less KN, strong IC) \rightarrow SY @ GeV gets weaker \rightarrow GeV light curve **steeper** than simple t^{-1.2} adiab. decay
- Early **steep** LAT decay (SY modified by SSC w. decr. KN), followed by **flatter** decay (SY w/o SSC)
- Argue Kumar's late X not steep enough & early LAT too flat , while KN can make LC in LAT & X steeper, as seen

Cocoon + jet IS upscatt

Some general issues on prompt & high energy emission

- Radiation mechanism?
- Electron distribution?
- Role of turbulence?
- Poynting how much? ...

Relativistic turbulent model

Narayan-Kumar 09, MN 394:L117, K-N 09, MN 395:472; Lazar et al 09, ApJ 695:L10

- Objections to IS model (unchanged since ~1999):
 i) fast cool → spectrum F_v~v^{-1/2};
 ii) Acell. all e- → v_{pk} below MeV;
 iii) Low rad. efficiency;
- Propose: relativistic eddys of γ_t in frame of bulk Γ
- Shock radius R, shell size $r \sim R/\Gamma$ in shell frame
- Max. size of eddy in eddy frame : $r_e \sim r/\gamma_t \sim R/\Gamma \gamma_t$
- Expect eddys to move ballistically for r_e, collide w. another eddy and change directions, etc., γ_t times

MHD / Poynting jets?

ICMART model

("Internal Collision Magnetic Reconnection Transient") Zhang, Yan, arXiv:1011.1197

- Int. coll. w. $1 \le \sigma \le 100$, where $\sigma = B'^2/4\pi \rho' c^2$ (MHD)
- Magn. reconn. in intern. shock (aided by turbulence)
- Accel e⁻ : direct (recon.) or stochast. (turb.) → rad: SY
- Need reconn. over λ_{par} ≤ 10⁴ cm lengths , envisage blobs w. same directions spiral but staggered, have↓↑ regions of B_{perp} →turb. resist. →reconn. (early colls. distort B, at large r much distort., recon)

ICMART model, cont.

- Reconnect at $r \ge 10^{15}$ cm, there $\sigma_f \ge 1, Y \le 1$, no IC
- $n_{e,p} \sim 1/(1+\sigma_i) \ll n_e$ (bar. models) \rightarrow weak photo.
- n_p also << than baryon model, \rightarrow no hadr. comp.
- E_{pk} drops during pulse, hard to soft evol.
- Reverse shock possible, at late stage $\sigma_f \sim I$.
- Two variabilities: I) Centr. eng., ii) Recon./turb.
- Solve: i) low effic.; ii) fast coolg sp.; iii) electron excess; iv) no bright photosph. (need $\sigma < 3x 10^3$)

(Other recent MHD model: Granot et al arXiv:1004.0959 - dynamics mainly)

Pop. III GRBs?

Mészáros & Rees, 2010, ApJ 715:967

- z~20 pop.III stars 300-1000 $M_{\odot} \rightarrow$ collapsar
- Accr. too cool for v-cool \rightarrow BZ, Poynting jet
- L~10⁵² β_1 -1 R_{12} -3/2 M_3 ^{3/2} erg, t_{ac}~10⁵ (1+z/20) s
- If mostly B, $e \pm \rightarrow$ emission is leptonic,
- pair annih. photosphere: $\Delta t_{prompt} \sim 10^{5}([1+z]/20)s$ $E_{an}^{ob} \sim 50 \text{ keV} (20/1+z) \text{ peak} + PL (IC)$
- External shock (indep. of ext. density): $E_{sy}^{ob} \sim 2.5 \text{ keV}(20/1+z)$, $E_{ssc}^{ob} \sim 75 \text{ GeV}(20/1+z)$
- Flux : $F \sim 10^{-7}$ erg cm⁻²s⁻¹ $\eta_{-1}\Omega_3^{-1}\beta_1^{-1}R_{12}^{-3/2}$ M₃^{3/2}

Some issues with high-z:

- GRB 090423, **z=8.2**, T90=13 s (**1.4 s** in RF)
- GRB 080913, **z=6.7**, T90=8 s (**<1 s** in RF)
- Both appear "*short*" in RF, yet they are difficult to explain with *compact merger* at that z; likelier due to *massive star collapse*
- In disagreement with statistics at low z
- Are high z GRB progenitors ≠ ? and how?
- Is increasingly low metallicity causing this?

Mészáros, grb08

Other recent theoretical papers

(won't have time to discuss, sorry)

- Acceleration of high- σ relativistic flow: Granot et al, arXiv:1004.0959
- Dynamics of strongly magn. ejecta in GRB: Lyutikov, arXiv: 1004.2429
- Accel. of UHECR in blazars & GRB: Dermer, Razzaque, preprint
- Leptonic & hadronic model GRB 090510, Razzaque et al, preprint
- Ruffini, Izzo, et al, 2010, GRB080916C & 090902B (see talk later)
- Very High Γ models (low+high baryon): loka, 2010, arXiv:1006.3073
- Pe'er, et al, 2010, phot. thermal+non-thermal, arXiv:1007.2228

Prospects & Perspectives

- Swift and Fermi have greatly expanded and deepened our probing into the GRB physics
- Jet structure is essential, and being probed; also the role and existence/absence of reverse shocks
- Prompt emission mechanisms are being challenged: new factors may play role pairs, hadrons, magnetic fields, photospheres, turbulence, reconnection,...
- Debate whether magnetic fields play larger role than previously assumed - quantitative magnetic models remain sketchy; so do turbulent/reconnection models. They warrant continued attention, together with pair, photosphere, cocoon, leptonic and hadronic models

Ô→

Shock formation

- **Collisionless** shocks (rarefied gas)
- "Internal" shock waves: where ?

If two gas shells ejected with $\Delta \Gamma = \Gamma_1 - \Gamma_2 \sim \Gamma$, starting at time intervals $\Delta t \sim t_{v_1}$, they collide at r_{is} ,

$$r_{is}$$
 ~ 2 c Δt Γ^2 ~ 2 c t_v Γ^2 ~ 10¹² t_{-3} Γ_2^2 cm
(internal shock)

[Alternative picture: magnetic dissipation, reconnection]

 "External" shock: merged ejected shells coast out to r_{es}, where they have swept up enough enough external matter to slow down, E=(4p/3)r_{es}³ n_{ext} m_p c² Γ²,

r_{es}~ (3E/4pn_{ext}m_pc²)^{1/3} Γ^{-2/3} ~ 3.1O¹⁶(E₅₁/n_O)^{1/3} Γ₂^{-2/3} cm (external shock)

Mészáros grb-gen06

Snapshot (leptonic) Afterglow Fits

Collapsar & SN : a direct link - but always ?

- Core collapse of star w. $M_t \sim 30 M_{sun}$
 - \rightarrow BH + disk (if fast rot.core)
 - \rightarrow jet (MHD? baryonic? high Γ ,
 - + SNR envelope ejecta (always?)
- 3D hydro simulations (Newtonian SR) show that baryonic jet w. high Γ can be formed/escape
- SNR: convincing observations, e.g. late l.c. hump, reddening, prompt XR flash of shock outbreak, etc.; and ..
- *Direct* observational (spectroscopic) detections of GRB/ccSN

Collapsar & SN ANIMATION

Credit: Derek Fox & NASA

Mészáros, L'Aqu05

ES Sy shock model critique Piran-Nakar, 1003.5919 Late photons (E >10 GeV, t > 100 s) cannot arise from ES Synchrotron (from general accel + sy constraints) → must be ≠ process few mJy IR flux from RS → quench GeV emiss. (by IC), unless B is amplified in shock If no amplification → need B_{ext} ≥ 100 µG (adiabatic; (unless n_{ext} very low, n<10⁻⁶) - or B higher for radiative If ES Sy model is true, → no late >10 GeV phot (t>100 s), and → no simult.. < mJy IR flux should be observed Other recent ES Sy critique: Zhuo Li, 1004.0791, argue need Sno^{5/8} mG < B_u < 10² no^{3/8} mG → upstr. preamplification

Photosp. critique: mag. outflow?

Zhang & Pe'er , 09, ApJ 700:L65

- Argue (based on $r_a \sim ct_{var}$ and assuming 080916c Band is ES Sy) that phot. radius r_{ph} is too low (below $\tau_{YY} \sim I$), and T_{ph} too low to be MeV; also object to thermal spectrum
- Hence conclude outflow probably Poynting, or at least much more baryon-poor than usual baryonic fireball
- However, assumed "traditional" r_{ph} and its T_{ph}; this is different, if include additional e[±] and use more recent numerical simulations of jet/phot/cocoon, e.g.Morsony 09.
- The latter was used in the Toma et al phot+IS model, where T_{ph} ~ MeV (i.e. GBM), without invoking Poynting, and IS-UP provides LAT, either as Band or Band+PL
- However: latest Pe'er et al (arXiv.1007.2228) likes phot!

