A Panchromatic Overview of Starburst Galaxy Evolution

James Lowenthal Smith College Northampton, Massachusetts, USA

The "punch lines"

More than 10% of star formation in galaxies selected in UV, optical, and IR is in starbursts

- Lyman break galaxies at z~3 are starbursts with wide range of morphologies + masses but masses uncertain
- LBG analogs at z<1 (LCBGs) also show wide variety of morphologies, low mass, maximal SF, strong evolution
- ULIRGs at z<1 (usually dusty merger starbursts) are bluer and brighter in optical than "blue cloud" field galaxies, can evolve to middle of red sequence
- Submm galaxies at z>2 are strongly evolving, ULIRGlike, clustered, dusty starbursts, broad range of z

Smith College/Five College Astronomy

Department

Vermont

• North Amherst

University of Massachusetts

Amherst College

South Amherst

Hampshire

New Hampshire

Hatfield

Canary Island B Hadley, MA Elwell Island

060 • Northampton Shepherd Island

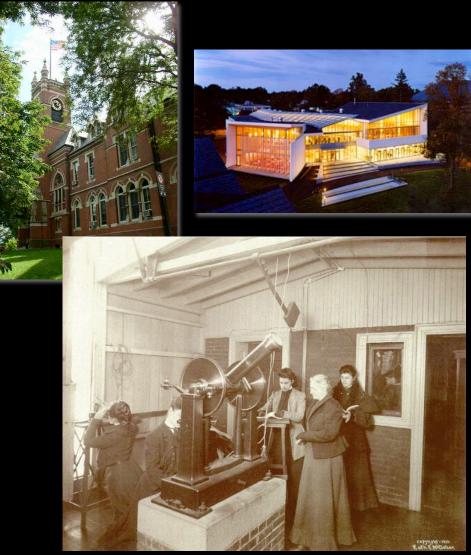
Smith College

asthampton

irginia

0

Mt. Holyoke College

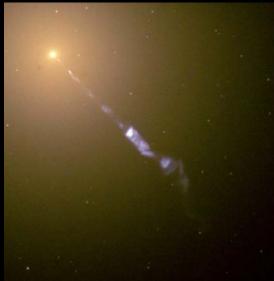

Delaware

Washington Marylan

Northampton 20 faculty, including D. **Fundian Valley** Calzetti, S. Edwards, M. Giavalisco, N. Katz, H. Mo, T. College Rhodelsi Thipp, D. Wang, M. Weinberg, necticut G. Wilson, M. Yun (A. Pope) Home of FCRAO 14-m telescope Home of 2MASS Wallew • Co-leading (with Mexico) the 50-m Large Millimeter Telescope/Gran Telescopio Milimetrico (LMT/GTM)

Smith College

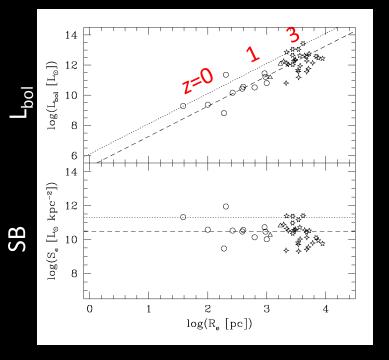
- Founded 1871
- 2500 students, all women, all undergrad (B.A.), liberal arts
- The 7 sisters: Barnard, Bryn Mawr, Mt. Holyoke, Radcliffe (Harvard), Smith, Vassar, Wellesley
- 7 liberal arts (e.g., medieval Western university): grammar, rhetoric, logic, geometry, arithmetic, music, astronomy
- Private, but supports 70% of students with financial aid; 25% are first-generation college students
- Alumnae: Julia Child ("Mastering the Art of French Cooking"), Gloria Steinem, Sylvia Plath, Madeleine L'Engle, Nancy Reagan, Barbara Bush, Julie Nixon...
- Astronomy Department: JL and Suzan Edwards (YSOs, SF, protoplanetary disks)

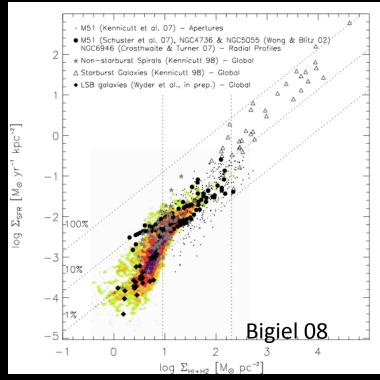

Motivating Questions

How and when do galaxies form and evolve?

What role do starburst galaxies play in those processes?

NGC 1300

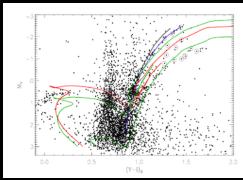


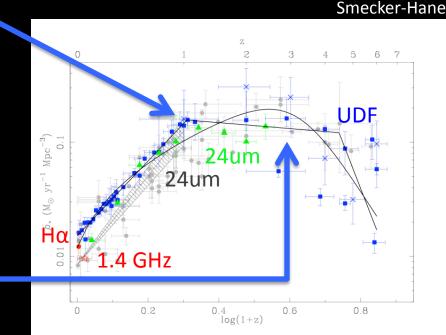

What is a Starburst Galaxy?

- M82, HII galaxies, ultraluminous inf galaxies (ULIRGs), break galaxies (LE
- Note huge range mass, luminosity, morphology, phys conditions, envirc

90 kpc ULIRG; Borne

Star formation in starbursts

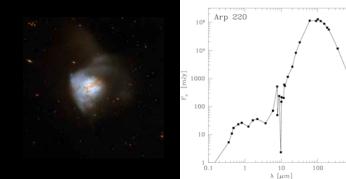


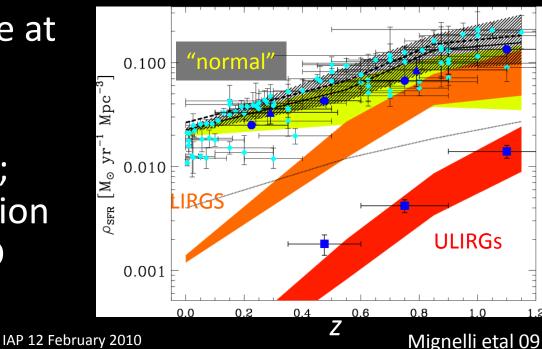

- SBs have extreme
 - specific star formation rate (SSFR) = SFR/M
 - star formation efficiency = SFR/M_{gas}
 - surface brightness
- SB's obey Schmidt-Kennicutt, but with different mode (low SF, high SFE) of SF than in non-SB galaxies? (BzK's: Daddi...)

How important are starbursts in galaxy formation and evolution?

Some hints:

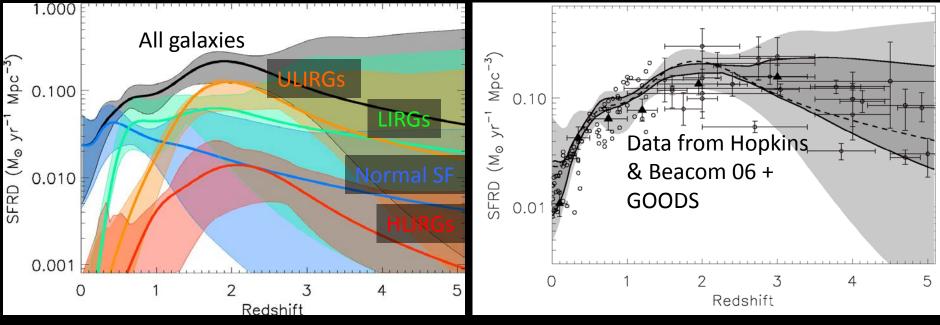
- optical z<1:
 - Multiple SF episodes in stellar pops
 - 10x rise in SF to z=1: 40% due to low-mass SBs ("downsizing")
- optical z>1: LBG, sBzK: SFR~10-100 M_☉/year; LF provides enough for >10% of current stars in galaxies (esp. if dust correction is large)





How important are starbursts in galaxy formation and evolution?

More evidence:

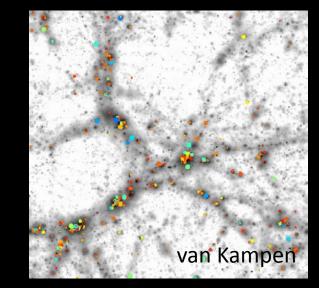

- infrared z<1: ULIRGs SFR~1000 M_☉/year; rare today, but strongly evolving (100x more at z=1)
- infrared z>1: SMGs SFR>1000 M_☉/year; similar to UV selection (LBGs) in total SFRD

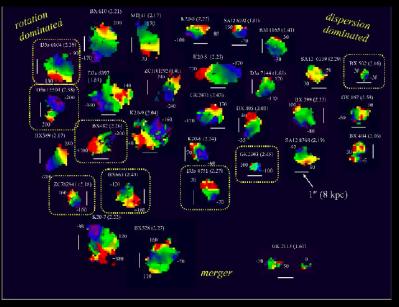
How important are starbursts in galaxy formation and evolution?

Infrared:

Le Borgne 09

At z>1, ULIRGs and LIRGs dominate normal star-forming galaxies

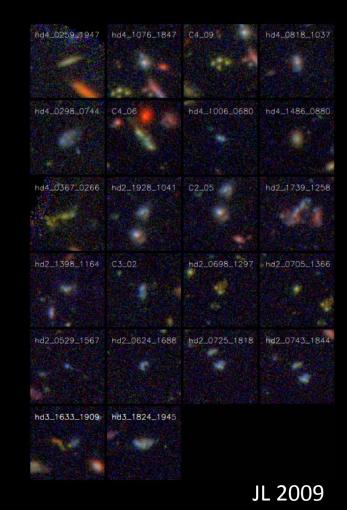

Four views of Starburst Galaxies


- Lyman break galaxies (LBGs) at z~3
- Luminous compact blue galaxies (LCBGs) at z<1
- Ultraluminous infrared galaxies (ULIRGs) at z<1
- Submillimeter galaxies (SMGs) at z>2

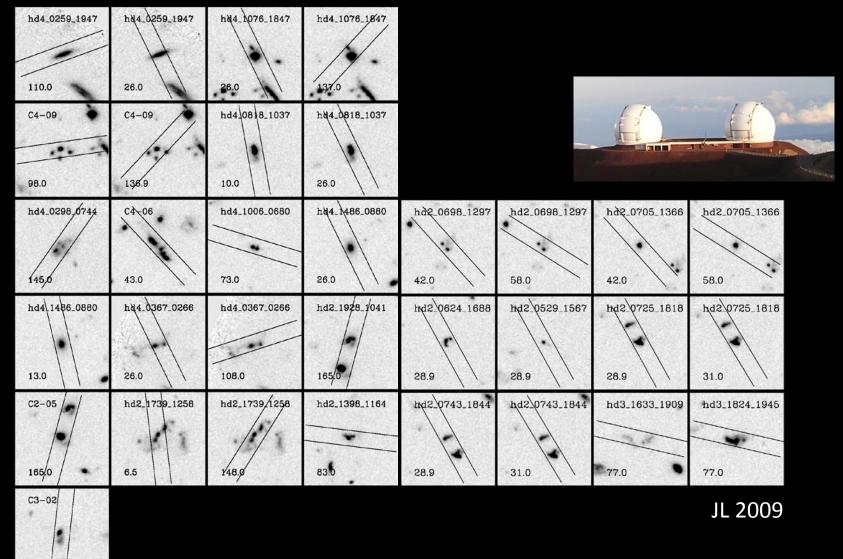
I. Dynamics of LBGs at z≈3

- What are masses of LBGs? Crucial info for interpreting role of LBGs, eventual fate, comparison to GF models.
- Can get stellar masses from stellar pop fitting, e.g. Erb, Shapley, w/ HST, Spitzer
- Can get dynamics for bright gal's z<2 (e.g. Förster-Schreiber, Genzel VLT/SINFONI IFU; Law 07; Erb 07)
- Can measure clustering to estimate total halo mass (Adelberger, Steidel)

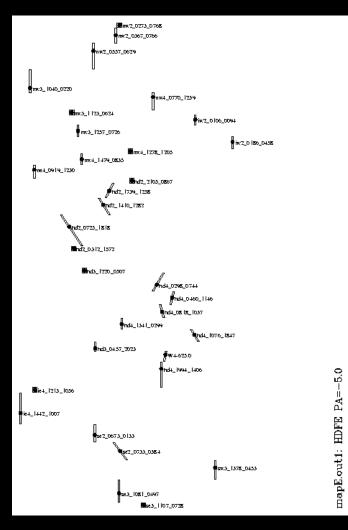
But: total masses, detailed study of fainter LBGs at higher redshift still elusive.

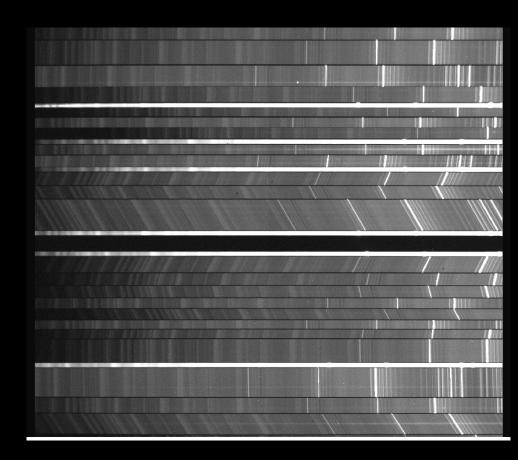


Förster Schreiber


LBG kinematics

- Project: Try long, deep, spatially-resolved spectra with Keck + LRIS slitmasks of most promising LBGs
- Choose HDF targets with best chances of showing kinematics: clumpy, elongated, multiple.
- Sample: 14/22 targets used, median I₈₁₄=25.3, 2<z<4
- Data: 10-50 ks, tilted slits, 300 km/s FWHM
- With Koo, Simard, van Kampen

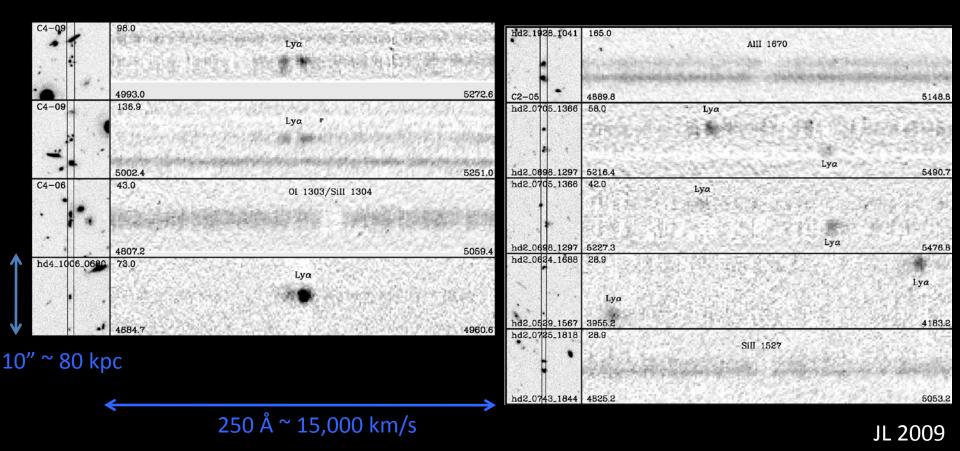

Keck/LRIS + tilted slits



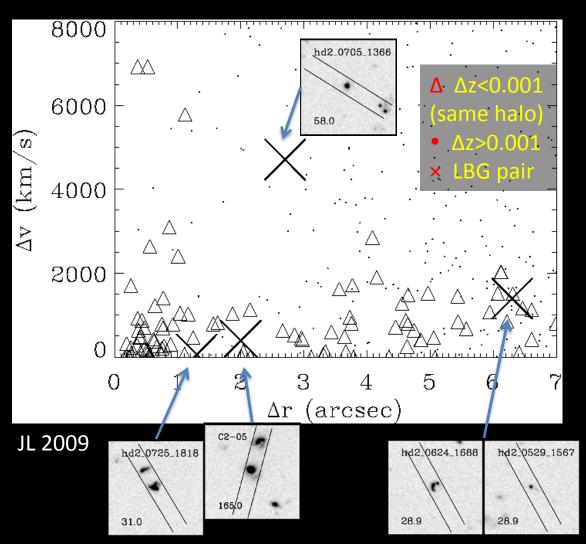
IAP 12 February 2010

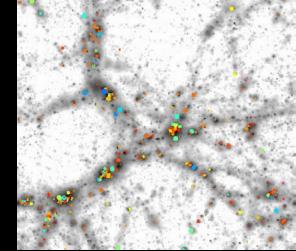
174.0

Keck/LRIS + tilted slits

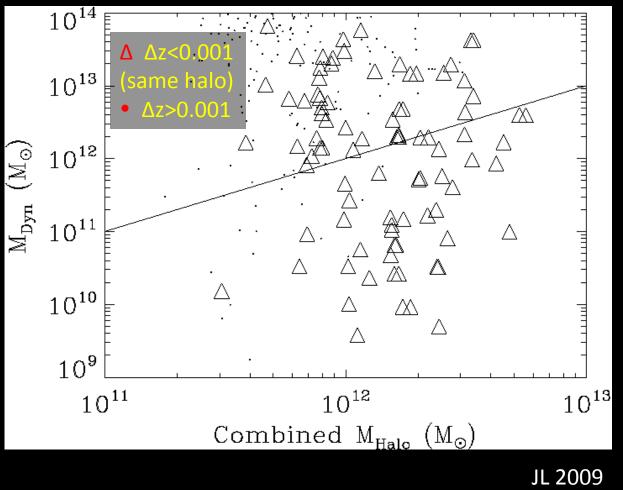


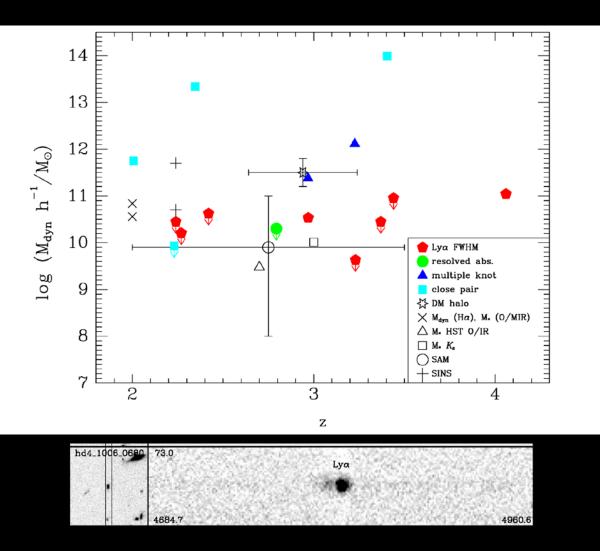
Single 2400-sec frame


Slit mask (1/8)


Extended kinematic features

- Lya: double emission from close pairs/multiple knots
- Extended continuum: (Inter)stellar absorption lines
- No sign of rotating disks

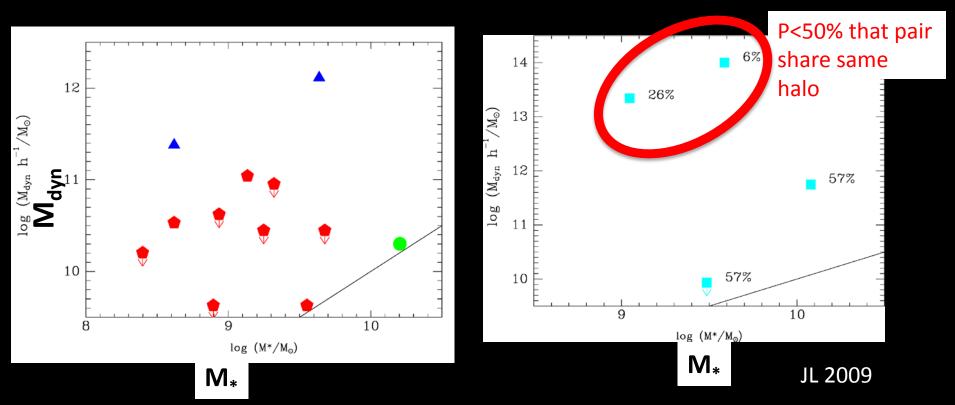

Compare 4 close pairs to semi-analytic galaxy formation model


- "Observe" LBG pairs in SAM of van Kampen
- Find real Δr, Δv similar to model distribution

Do close pairs even yield halo mass?

- Calculate $M_{dyn} = \Delta v^2 \Delta r/G$
- Surprise! no correlation between M_{dyn} and M_{halo} in model
- Proceed with caution in interpreting close pairs
- (cf Cooke '10: Lyα, interactions in pairs)

Estimated masses



Keep caveats in mind (Lya, close pairs, knots vs. halos)
Include Lya emission line widths (or upper limit): resonant scattering should *broaden* line (Kunth, Atek...) so true mass is *lower*

• M_{dyn} ranges from <10⁹ to 10¹⁴ M_{\odot} (dwarf galaxy to cluster halo)

JL 2009

Compare dynamical mass estimates to stellar masses

- Stellar masses M_{*} from Papovich 05
- M_{dyn} always > M_{*} (good!)
- No strong correlation

Conclusions I. LBG kinematics

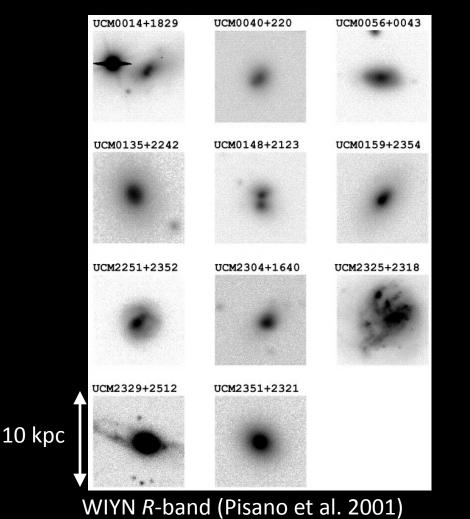
- Mixed! no clear pattern of clean dynamical signature; no disk signatures (vs. lower-z, brighter sources); LBG total masses still elusive
- 4 close pairs: <60 to 4700 km/s. Simple dynamical masses: 10^{10} to 10^{12} M_{\odot} (best pairs)
- Model results: pairs not reliable for masses
- Clumpy/elongated: $10^{10} 10^{12} M_{\odot}$
- Lya emission lines? tricky! But generally small widths, low masses ~10¹⁰M_☉
- No evidence that LBGs are uniform, high-mass (cf. Dekel, Ceverino; Katz; Keres)

II. Local analogs of Lyman break galaxies: luminous compact blue galaxies (LCBGs) at z<1 (TBD at IAP)</p>

- What are best local analogs of LBGs -- easier to study, could help interpret high-z gals?
- Top candidates for local LBGs analog: HII galaxies and luminous blue compact galaxies = LCBGs (not BCG or BCD)

Properties of LCBGs

- L ~ L* but tiny, r_e ~ 2 kpc (L_{M31}, r_{N205})
- Extreme starbursts 10-20 M_☉/yr
- High surface brightness μ_B<21 mag/arcsec²
- Narrow emission lines 30-120 km/s
- Low masses $< 10^{10} M_{\odot}$
- M_{burst}/M_{tot}>10% (from SEDs)
- Strong evolution: 40% of SF↑ to z=1
- Similar to UVLGs (GALEX: Heckman, Overzier) and Small Green Peas (SDSS: Cardamone 09)



Cf. Pérez-Gallego 09; Melbourne 07; Noeske 07; Werk 04; Ferguson 04; Pisano 01; Lilly 98; Phillips 97; Guzmán 97

LCBG Examples

z<0.05

z~0.75

0.137	0.224	0.318	0.410	0.420 *	0.423	0.437
•		•				
. 21.79	23.44	22.91	21.83	22.66	\$ 22.78	23.02
0.457	0.462	0.476	0.480	0.482	0.483	0.485
•	•	•	•		•	
22.44	23.09	22.98	21.09	21.90	23.02	23.35
0.487	0.503	0.507	0.509	0.513	0.519	0.528
	1. A. 1.		۲	•		
21.97	22.15	22.41	21.12	22.62	20.84	23.23
0.558 *	0.560	0.570	0.570	0.594	0.594	0.654
•	•			1940		. •
20.57	21.13	22.19	22.21	22.44	21.81	23.73
0.677	0.693	0.693	0.744	0.760 ·	0.784	0.788
- •	•	•			•	
21.69	22.28	* 23.44	22.82	22.24	21.84	23.49
0.821	0.840 *	0.845, 0.912	0.847	0.873	0.880	0.898 🔹
٠	•			•	•	•
22.05	21.60	22.20	22.13	21.00	23.55	22.94
0.905	0.907	0.909	0.936	0.936	0.960	1.050
	* .		••	•	•	×
22.78	21.91	22.23	21.79	21.47	(AGN) 21.14	23.29
1.084	1.221	1.344	2.269	2.990	STAR	STAR
•	•	•		•	•	•
22.74	22.17	23.00	23.25	23.52	21.88	23.20
•••		÷				
		•	•		•	•
23.48	22.20	23.61	21.71	22.70	23.42	* 22.50

HDF-FF I₈₁₄ (Phillips et al. 1997)

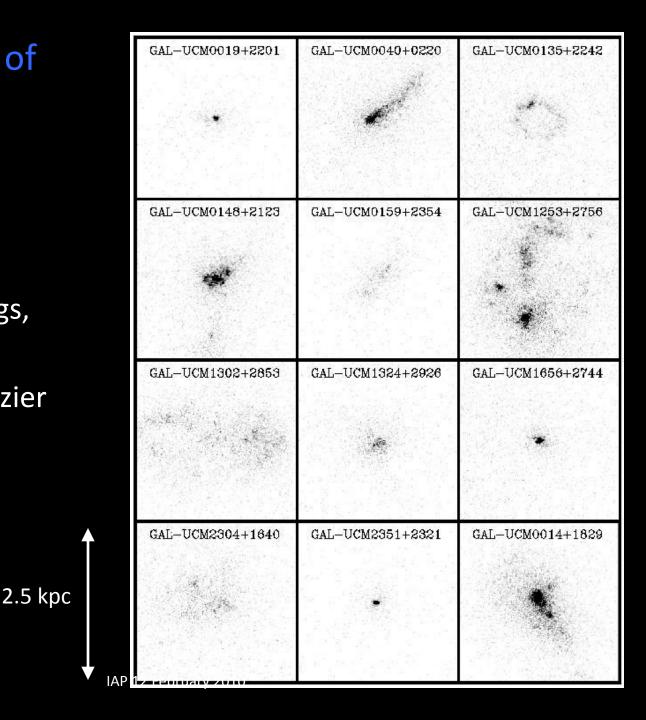
40 kpc

LCBGs at z<1

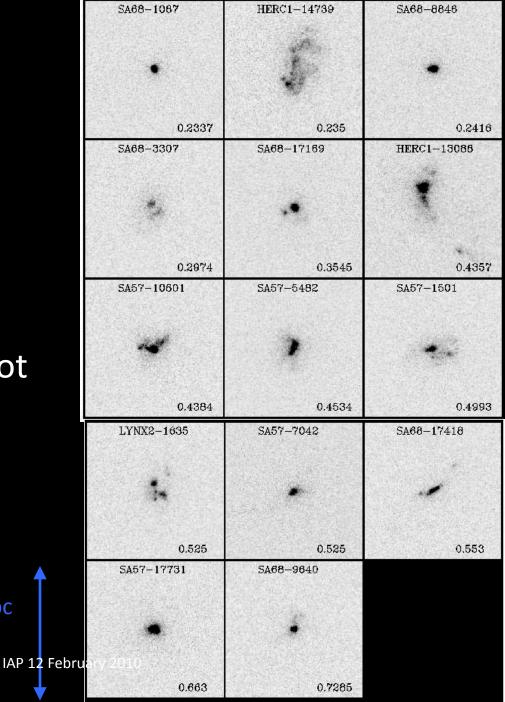
Project:

- compare LCBGs and LBGs in rest-UV and MIR with HST and Spitzer
- Search for additional SF hidden in dust
- Sample:
 - 12 HII gals at z=0 from UCM survey
 - 14 LCBGs at z<1 from LBDS</p>
- Data:
 - HST/STIS FUV and NUV images = rest-UV
 - Spitzer/IRAC+MIPS photometry

With Bershady, Gallego, Guzman, Koo



STIS FUV images of z~0 sample


- Morphologies: VERY diverse, disturbed, multiple knots, rings, etc.
- No definitive merger signature (vs. Overzier 08, 09, 10)

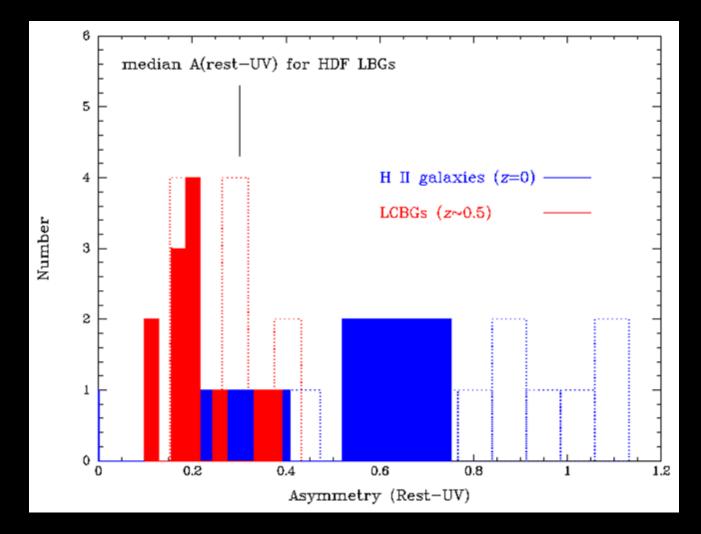
STIS NUV images of z<1 sample

Morphologies: more disturbed, multiple knot systems

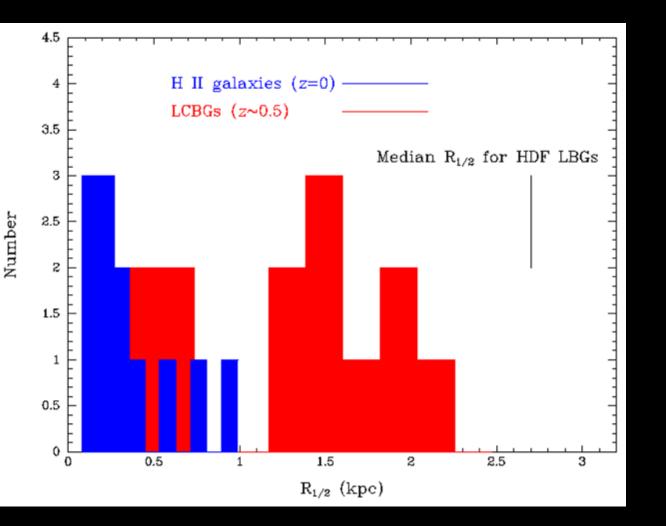
3.75" ~ 21 kpc

Rest-UV Asymmetries

February

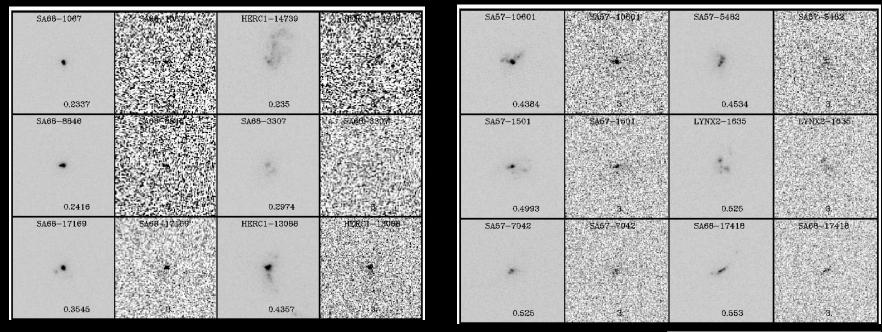

Measure image asymmetry A following Conselice et al. (2000)

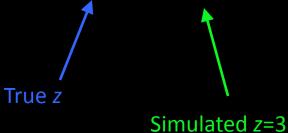
UCM1253+2756	UCM0148+2123	UCM0159+2354	
	€ ^a s		
• 0.0165 0.075 (0.467)	0.0169 0.586 0.239)	0.017 0.132 (0.536)	
UCM1324+2926	UCM0040+0220	UCM2304+1640	
æ	a de la compañía de	344. 2	
0.0172 0.551 (0.336)	0.0173 0.270 (0.425)	0.0179 0.036 (0.404)	
UCM0014+1829	UCM0019+2201	UCM1302+2853	
*	.*	and the second	
0.0182 0.513 (0.275)	0.0191 1.185 (0.520)	0.0237 -0.245(0.475)	
UCM2351+2321	UCM1656+2744	UCM0135+2242	
	*		
0.0273 0.456 (0.272)	0.033 0.653 (0.199)	0.0363 0.403 (0.201)	

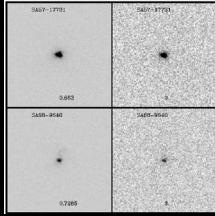

SA68-1067		HE	RC1-14739	SA68-8846	
	•		-		
0.2337	0.179 (0.055)	CONTRACTOR CONTRACTOR	0.265 (0.272)	A CONTRACT OF A CONTRACT	
SA6	8-3307	SA	58-17169	HERC1-13086	
	*		•		ť.
0.2974	0.211 (0.211)	0.3545	0.278 (0.147)	0.4357	0.496 (0.184)
SA5	7-10601	SA	57-5482	SA57-1501	
0.4384	0.476 (0.151)	0.4534	0.149 (0.173)	0.4993	0.499 (0.195)
	LYNX2-1635		57-7042		8-17418
	*				~
0.525	0.260 (0.232)	0.525	0.329 (0.215)	0.553	0.345 (0.162)
SA57-17731		SA68-9640			
010	•		*		
0.663	0.262 (0.051)	0.7285	0.269 (0.220)		

Rest-UV Asymmetries

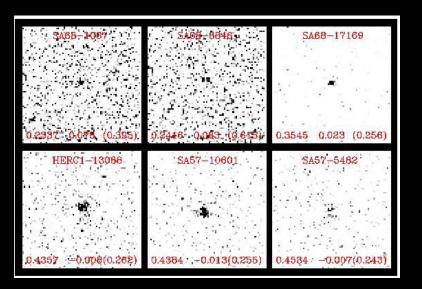
Large range in A; spans median for LBGs

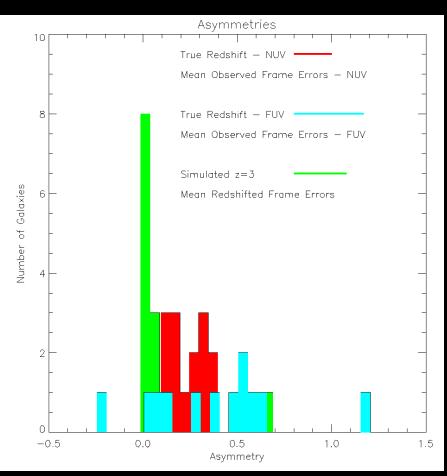



Sizes


Local LCBGs and HII galaxies are even smaller than LBGs

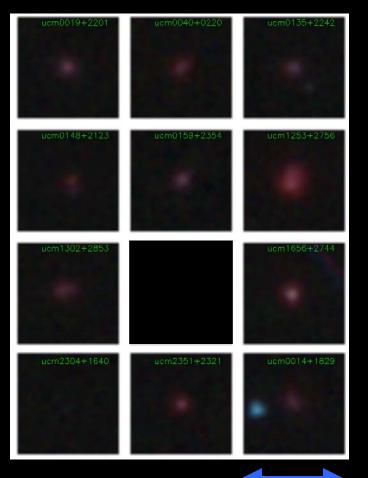
How would LCBGs look at z=3?



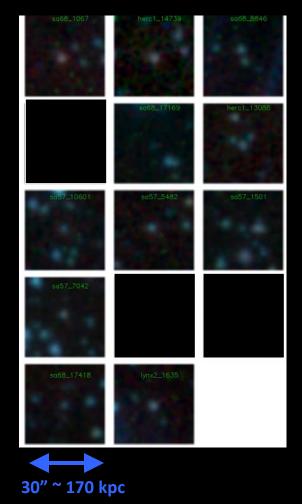

IAP 12 February 2010

Rest-UV Asymmetries of simulated z=3 view

Asymmetries drop with redshift as faint outer regions fade



New: Spitzer/IRAC (+MIPS) photometry


IRAC

ch 1,2,3

z~0 HII galaxies

z<1 LCBGs

IAP 12 February 2010

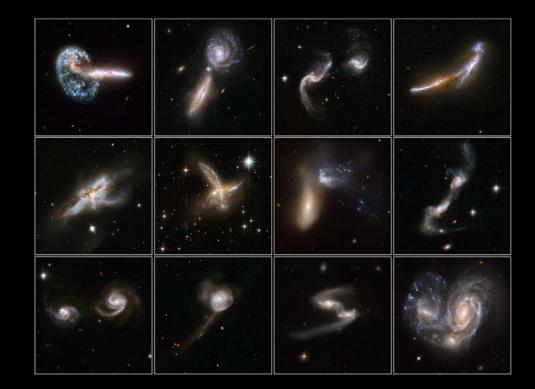
30"~12 kpc

Conclusions II (à moitié cuits): LCBGs

- LCBGs are excellent local analogs of LBGs: sizes, colors, SF props, masses.
- rest-UV images show star formation in wide range of morphologies, from rings to compact nuclei. Almost all within 2 kpc radius, but not "nuclear" starbursts.
- SF apparently stochastic, not uniform process.
- No obvious merger signatures
- CAS analysis: comparable to LBGs.
- Spitzer: LCBGs mostly detected with IRAC; MIPS photom, SED fitting to come!

III. Ultraluminous Infrared Galaxies at z<1

 What drives massive dusty starbursts? Always interactions? Role of AGN? Are progenitors always gas-rich disks? What are end products? Where do ULIRGs fall in colormagnitude diagram?


 Yuxi Chen (UMass) PhD thesis, w/ Min Yun

ULIRG background

- Huge bolometric luminosity, mostly in IR ($L_{IR} > 10^{12} L_{\odot}$)
- Dusty Starbursts/AGNs
- Galaxy mergers/interactions; final product – massive elliptical galaxies?
- QSO-ULIRG connection
- High-z SMGs may be the distant version of local ULIRGs

Evans

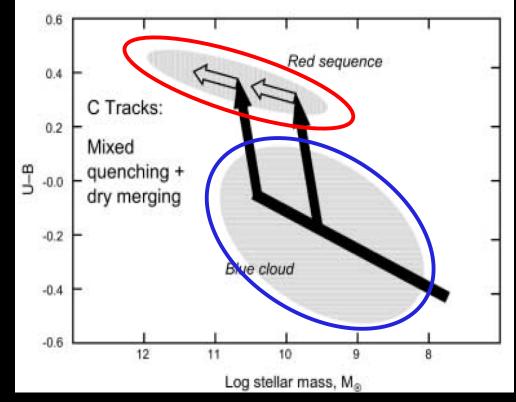
Illa: Optical properties of ULIRGs at z<1

- 1. ULIRGs at z<0.3 in SDSS: morphology + colormagnitude relation
- 2. HST/STIS + NICMOS imaging (= rest *B*, rest *I*) of ULIRGs at *z*~1: connection between z=0 and z>2 SMGs?

Samples:

- z<0.3: IRAS 1 Jy sample, 54/118 in SDSS
- Z~1: 12 brightest bona fide FIR-selected ULIRGs (no extrap. from 10 um)

1 Jy ULIRGs in SDSS



- IRAS 1 Jy sample (Kim 1995; Kim & Sanders 1998) = most luminous ULIRG sample
- 54 (46%) of 118 ULIRGs in IRAS 1Jy covered in SDSS DR5
- *z* = 0.02 0.3, <*z*>=0.151
- $L_{IR} = 10^{12.0} 10^{12.8} L_{\odot}$, $< L_{IR} > = 10^{12.2} L_{\odot}$
- 14/54 classified as Seyferts (Veilleux et al.)
- good representative subset of 1 Jy sample
- SDSS provides robust, clean, well-calibrated baseline

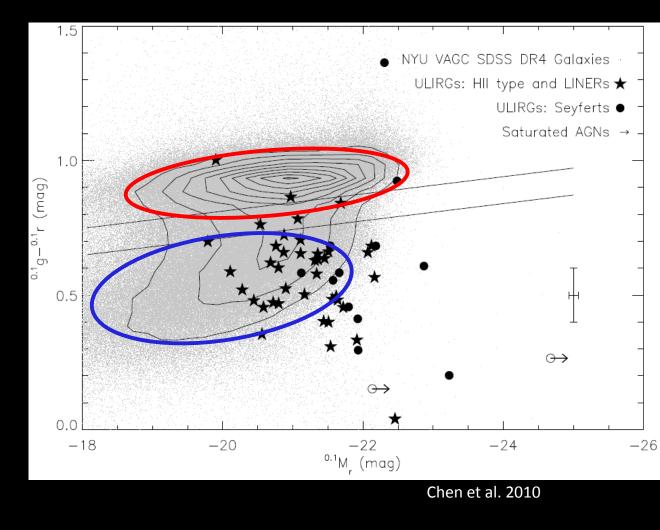
G=0.72 M20=-0.80	G=0.69 M20=-0.99	G=0.68 M20=-1.06	G=0.64 M20=-1.29	
FSC14394+5332	FSC14197+0813	FSC15001+1433	FSC11180+1623	FSC13
G=0.61 M20=-0.98	G=0.62 M20=-1.22	G=0.61 M20=-1.24	G=0.62 M20=-1.30	
FSC17179+5444	FSC13443+0802	FSC14202+2615	FSC12032+1707	FSC11
G=0.58 M20=-0.97	G=0.58 M20=-1.44	G=0.57 M20=-1.64	G=0.59 M20=-1.67	
FSC10091+4704	FSC09039+0503	FSC03209-0806	FSC12018+1941	FSC12
G=0.55 M20=-1.35	G=0.56 M20=-1.40	G=0.56 M20=-1.56	G=0.55 M20=-1.60	

Color-magnitude relation in SDSS

- Building up the red sequence
 - Wet merger of disk galaxies
 - Dry merger of early-types
 - Quenching of star formation (AGN?)
- Where do ULIRGs fall in the Color magnitude diagram?
- Where do the ULIRGs harboring AGN fall?

Faber et al. 2007

ULIRGs are optically bright and blue

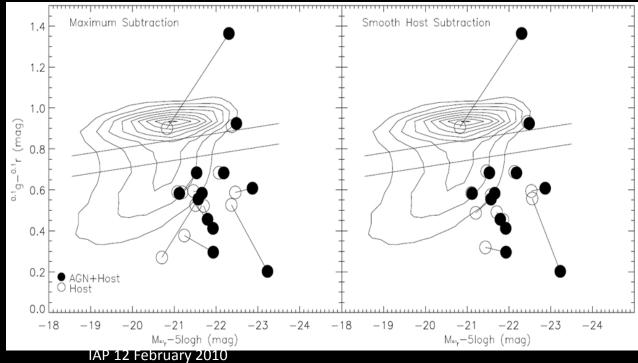

ULIRGs are...

• very luminous in the optical: On average **1 mag** brighter than SDSS galaxies at same redshift (NYU VAGC DR4; Blanton et al. 2004)

 very blue in the optical:
 <^{0.1}(g-r)> = 0.58 for ULIRGs, compared to <^{0.1}(g-r)> = 0.55 for the blue cloud. 47 (~87%) have typical blue cloud colors

• scarce in the green valley:

Only **3** (**6%**) lie in the green valley. **None** of the AGNs are in the green valley, they are among the most luminous, and most are blue.

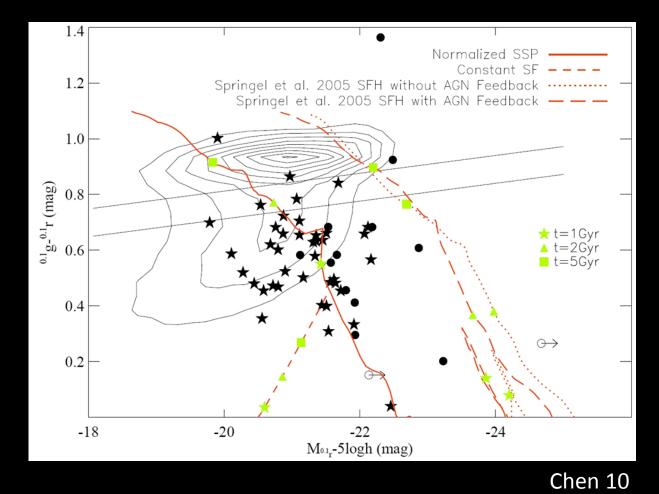

Color and Magnitude of AGN Host Galaxies

AGN ULIRGs are especially luminous and blue

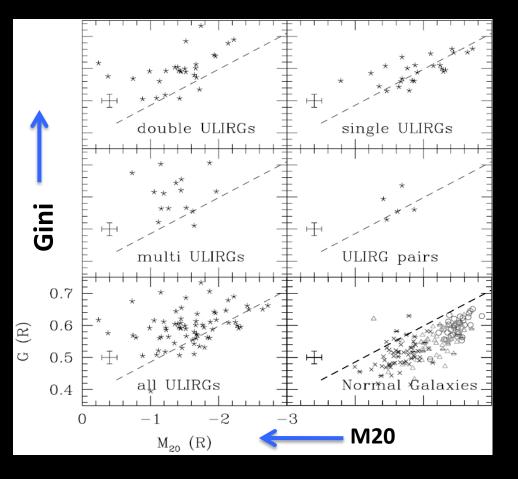
- On average **0.8 mag more luminous** than non-AGN ULIRGs
- ~83% have typical blue cloud color
- Are the blue color and high optical luminosity a result of AGN?
- Are the host galaxies "green"?

Point source subtraction:

Central point sources contribute only ~25% to total optical light
Host galaxies dominate optical luminosity
With or without central AGNs, AGN ULIRGs are not located in the green valley


Chen et al. 2010

Implications of ULIRG optical color and magnitude


- Blue colors of ULIRGs are consistent with patchy dust extinction
- ULIRGs will be even more luminous and blue if corrected for extinction
- Scarcity of ULIRGs in the green valley and red sequence implies ongoing active star formation in optically visible regions; quenching of star formation has yet to happen

SED evolutionary tracks

- Models using BC03 (Bruzual & Charlot 2003), different SFHs
- ULIRG optical colors and magnitudes can be explained by simple models
- Optical component of most ULIRGs evolve to the faint end → need dry merger to feed the massive tip of the RS! (not including dusty SF)

Quantitative Morphology Analysis

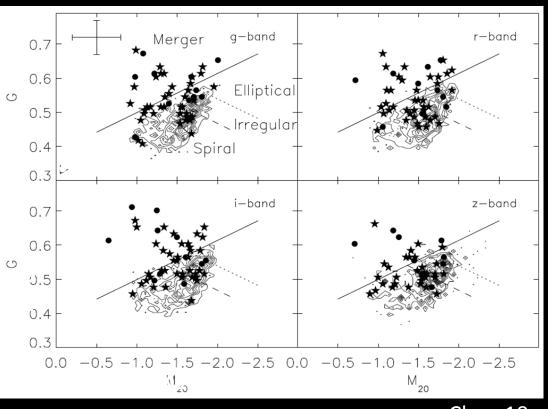
Gini (G): distribution of pixel intensities, concentration-like (Gini 1912; Abraham et al. 2003; Lotz et al. 2004)

• M20: normalized 2nd-order moment of the 20% brightest pixels, in logarithm scale (Lotz et al. 2004)

 Local ULIRGs (at high spatial resolution) are well separated from normal galaxies in the G-M20 plot (Lotz et al. 2004)

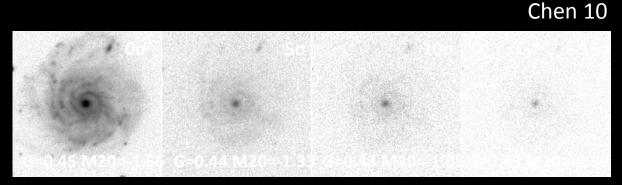
Lotz et al. 2004

G, M20 of Low-z ULIRGs


More morphologically disturbed sources have higher *Gini* and *M20*, qualitatively consistent with morphologies found for local galaxies (Lotz et al. 2004)

G=0.72 M20=-0.80	G=0.69 M20=-0.99	G=0.68 M20=-1.08	G=0.64 M20=-1.29	G=0.62 M20=-1.34	G=0.64 M20=-1.82	G=0.6 M20=-2.0
F9C14394+5332	FSC14197+0813	FSC15001+1433	FSC11180+1623	FSC13509+0442	FSC09116+0334	FSC13342+3932
G=0.61 M20=-0.98	G=0.62 M20=-1.22	G=0.61 M20=-1.24	G=0.62 M20=-1.30	G=0.61 M20=-1.68	G=0.61 M20=-1.69	G=0.6 M20=-1.8
FSC17179+5444	FSC13443+0802	FSC14202+2615	FSC12032+1707	FSC11119+3257	FSC10378+1108	FSC08201+2801
G=0.58 M20=-0.97	G=0.58 M20=-1.44	G=0.57 M20=-1.64	G=0.59 M20=-1.67	G=0.57 M20=-1.69	G=0.57 M20=-1.74	G=0.5 M20=-1.9
				•		
FSC10091+4704	FSC09039+0503	FSC03209-0806	FSC12018+1941	FSC12540+5718	FSCz11596-0112	FSC11582+3020
G=0.55 M20=-1.35	G=0.56 M20=-1.40	G=0.56 M20=-1.56	G=0.55 M20=-1.60	G=0.54 M20=-1.71	G=0.55 M20=-1.71	G=0.5 M20=-1.8
FSC10594+3818	FSC12447+3721	FSC01572+0009	FSC11028+3130	FSC14060+2919	FSC13218+0552	FSC13428+5608
G=0.53 M20=-0.92	G=0.52 M20=-1.13	G=0.52 M20=-1.30	G=0.52 M20=-1.34	G=0.53 M20=-1.40	G=0.52 M20=-1.57	G=0.5 M20=-1.6
					100	
FSC16474+3430	FSC14121-0126	FSC12112+0305	FSC13469+5833	FSC14070+0525	FSC15327+2340	F8C13451+1232
G=0.50 M20=-1.09	G=0.51 M20=-1.10	G=0.52 M20=-1.17	G=0.50 M20=-1.21	G=0.50 M20=-1.54	G=0.52 M20=-1.55	G=0.5 M20=-1.6
	160					
FSC13539+2920	FSC16333+4630	FSC16468+5200	FSC08572+3915	FSC10494+4424	FSC15206+3342	FSC08474+1813
G=0.48 M20=-1.05	G=0.47 M20=-1.28	G=0.48 M20=-1.61	G=0.49 M20=-1.62	G=0.48 M20=-1. 6 6	G=0.49 M20=-1.67	G=0.4 M20=-1.6
			÷			
FSC10190+1322	FSCz03521+0028	F\$C10035+2740	FSC09539+0857	FSC16300+1558	FSC08591+5248	F8C15225+2350
G=0.43 M20=-0.98	G=0.42 M20=-1.02	G=0.41 M20=-1.07	G=0.47 M20=-1.54	G=0.44 M20=-1.68		
		-				
FSC12265+0219	FSC11506+1331	FSC01166-0844	FSC15043+5754	FSC11387+4116		
					M ₂₀	

Gini and M20 of low-z ULIRGs


Heterogeneous distribution of G-M20:

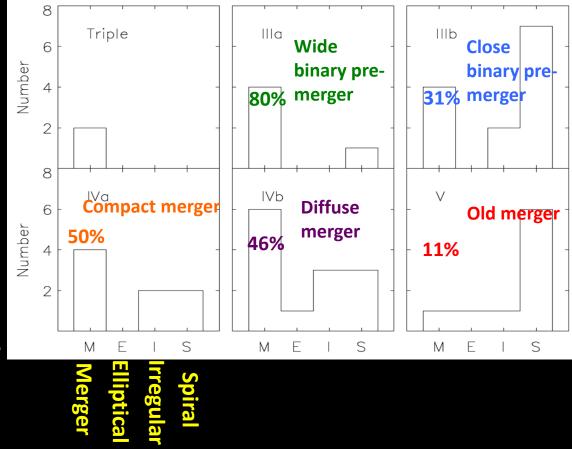
	MERGER	NORMAL
ULIRGs	42%	48%
SDSS field galaxies	5%	95%

Why?

Try simulations to measure G,M20 as f(S/N)
Large uncertainties in G, M20
G♥ and M20↑ as S/N♥

Gini-M20 and merging stages

SPH merger simulations by Lotz et al. (2008):


> • Merger-type G/M20 during first pass and maximum separation

> Normal galaxy-type G/M20 toward later stages

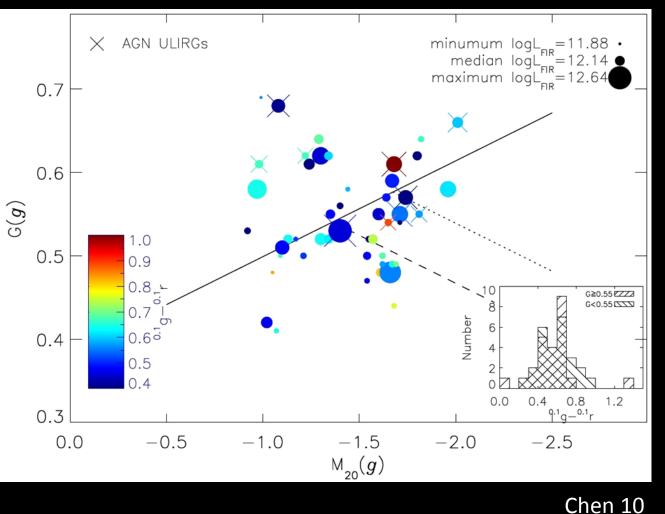
• Test simulation results:

• Compared to previous classifications of the same sources (Veilleux et al. 2002)

• At early merging stages, more ULIRGs will be classified as G-M20 mergers; toward later stages, more ULIRGs will be classified as normal galaxies

Heterogeneous distribution in G-M20 due to combination of:

- measurement uncertainties and
- different merging stages. IAP 12 February 2010

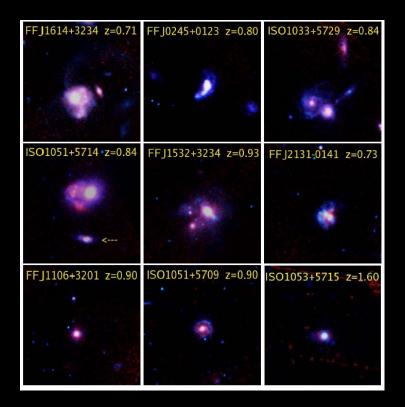

Color, L_{IR} , and morphology

 $\hfill \ \hfill \ \$

No strong correlation
 between L_{IR}, color, G M20

Optically redder
 sources → slightly lower
 Gini → non-merger
 region

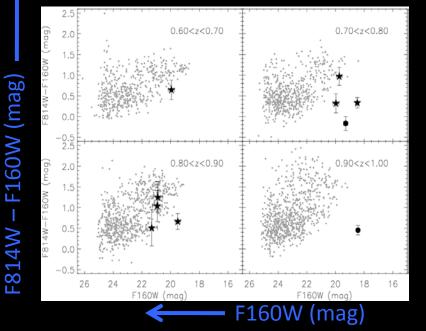
 ${\ }$ Bluer optical colors seen in more disturbed systems, maybe not at their ${\rm L}_{\rm IR}$ peak

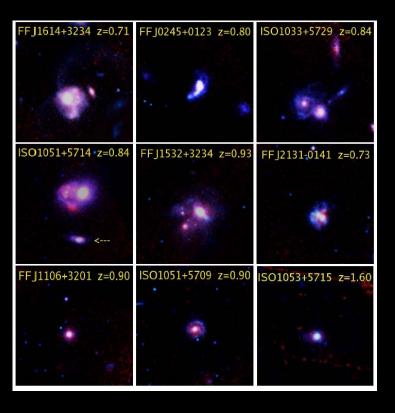

IIIb: ULIRGs at $z \approx 1$ (ongoing project)

Why *z*~1?

- Cosmic star formation peak
- Max distance to detect tidal tails etc with HST (pre-WFC3)
- Study in same way as low-z ULIRGs (original motivation for z~1 study)

Sample


- 12 ULIRGs between z=0.69 and z=1.6, L_{IR} > 10^{12} L $_{\odot},$ selected by 60 or 130 μm flux
- Most luminous ULIRGs at z~1
- HST/ACS F814W and HST/NICMOS NIC2 F160W (rest-frame *B, I*)



ULIRGs at z≈1

- Variety of morphologies: tidal tails, mergers, some very compact
- Strong color gradients

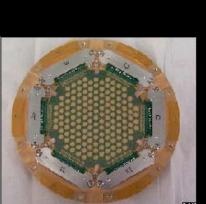
- z^{1} ULIRGs are extremely luminous:
- z~1 ULIRGs: 3.2 mag brighter than field galaxies (COSMOS, Capak, priv. comm.)
- (vs. $z^{0.1}$ ULIRGs: only 1 mag brighter than field galaxies)
- Strong luminosity evolution between *z*=0 and *z*=1?
- 83% of z~1 ULIRGs have high G (>0.55) vs. <50% at z~0; earlier merger stage at high-z?

Conclusions III: ULIRGs z<1

- ULIRGs at z~0 are brighter and bluer than Blue Cloud of field galaxies; very few Green Valley
- AGN ULIRGs are esp. bright and blue
- BC03 models: can make Red Cloud w/ or w/o AGN feedback, but not bright tip
- Robust morphology elusive: G-M20 prone to large errors, merger stage; <50% of ULIRGs fall in merger region of G-M20
- At z=1: 1/3 tidal tails; high G, highly concentrated, 2 mag more luminous than at z=0

IV. Submillimeter Galaxies at z>2

What is relation of SMGs to ultraluminous infrared galaxies (ULIRGs)? to massive ellipticals/bulges?


Submillimeter Galaxies

- $L_{FIR} > 10^{12} L_{\odot}$ (= ULIRGs!)
- Dusty starburst galaxies, some AGN
- SFRs $10^3 10^4 M_{\odot}/yr$ (LBGs: 10-100 M_{\odot}/yr)
- N ~ 0.05 arcmin⁻² (LBGs: 2 arcmin⁻²)
- Major contributor to CIB at *z*>2
- Faint/undetected in optical/NIR
- Progenitors of massive ellipticals today?
- Origin = ? (if not gas-rich spirals at z>2)

AzTEC

- Aztronomical Thermal Emission Camera
- 1-3 mm
- 144 Si₃N₄ micromesh "spiderweb" bolometer pixels
- Beam Sizes (FWHM):
 - ASTE: 28 arcseconds
 - JCMT: 18 arcseconds
 - LMT: 5 arcseconds
- Mapping speed: 25x SCUBA/JCMT (LMT: 1000x SCUBA; ~SCUBA2)

UMass Grant Wilson Min Yun Stacey Alberts Ryan Cybulski David Welch Seth Johnson Christina Williams

<u>UPenn</u> Kim Scott

UColorado Jason Austermann

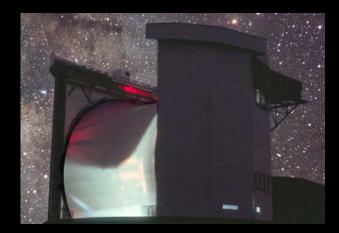
Illinois Wesleyan Thushara Perera

AzTECs

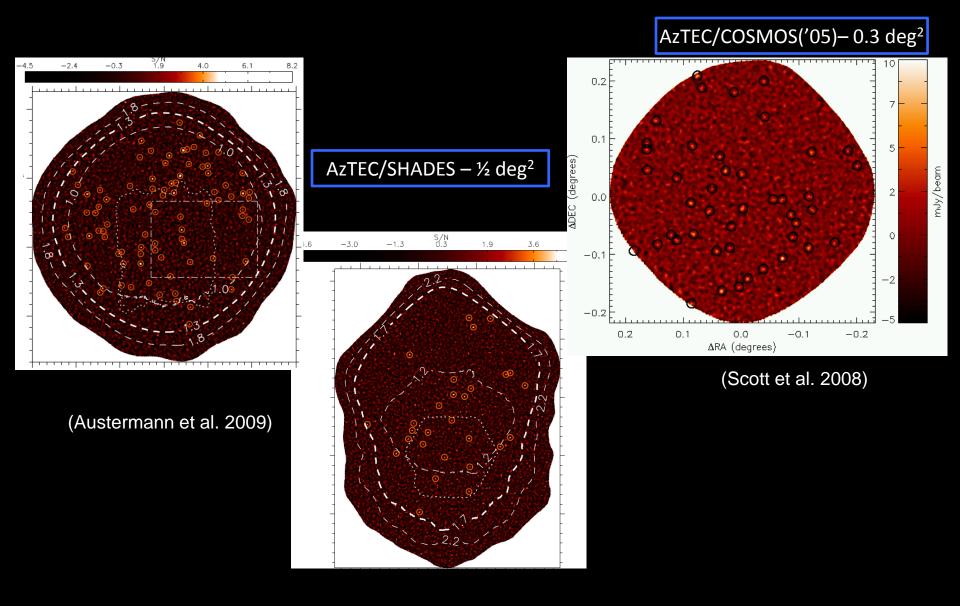
INAOE David Hughes Itziar Aretxaga Daniel Ferrusca Miguel Velazquez Milagros Zeballos Alfredo Montana Idalia Hernandez David Omar Sanchez Emally Aguilar

Sejong University

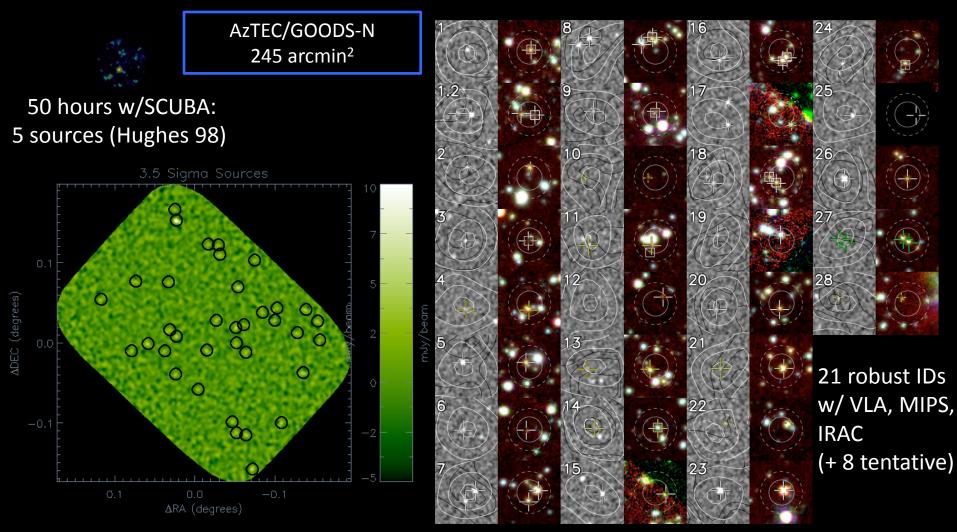
Young Woon Kang Sungeun Kim Soyoung Youn Yonhwa Kim



Caltech Jamie Bock Smith College James Lowenthal

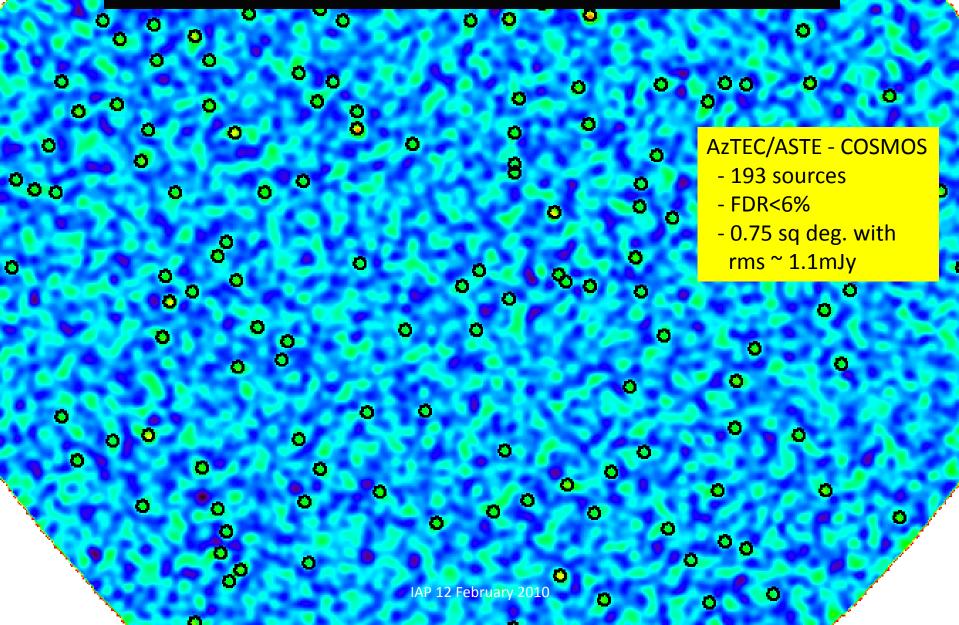

<u>Cardiff</u>

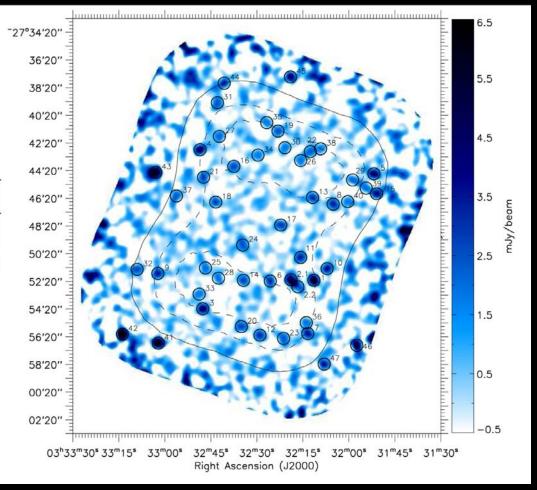
Peter Ade Phil Mauskopf Douglas Haig Simon Doyle Piers Horner


- Largest 1mm surveys yet
- 15-m JCMT (2005-2006):
 - GOODS-N
 - COSMOS
 - SHADES
- ASTE 10-m (2007-2009):
 - GOODS-S
 - COSMOS
 - SXDF
 - SEP
 - HZRG fields
 - High-z galaxy cluster fields
- (LMT/GTM 50-m in 2010?)

(G. Wilson)

30 hours w/AzTEC: 29 sources (Perera 08)


IAP 12 February 2010

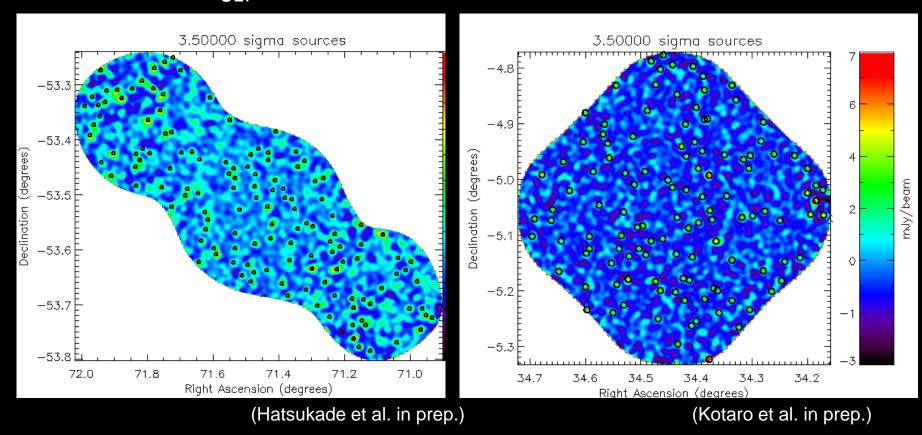

Chapin 09

0

Q

0

GOODS-S Scott et al. (submitted) - 47 sources - FDR<1


- 0.5mJy rms

(Scott et al. 2010)

(G. Wilson)

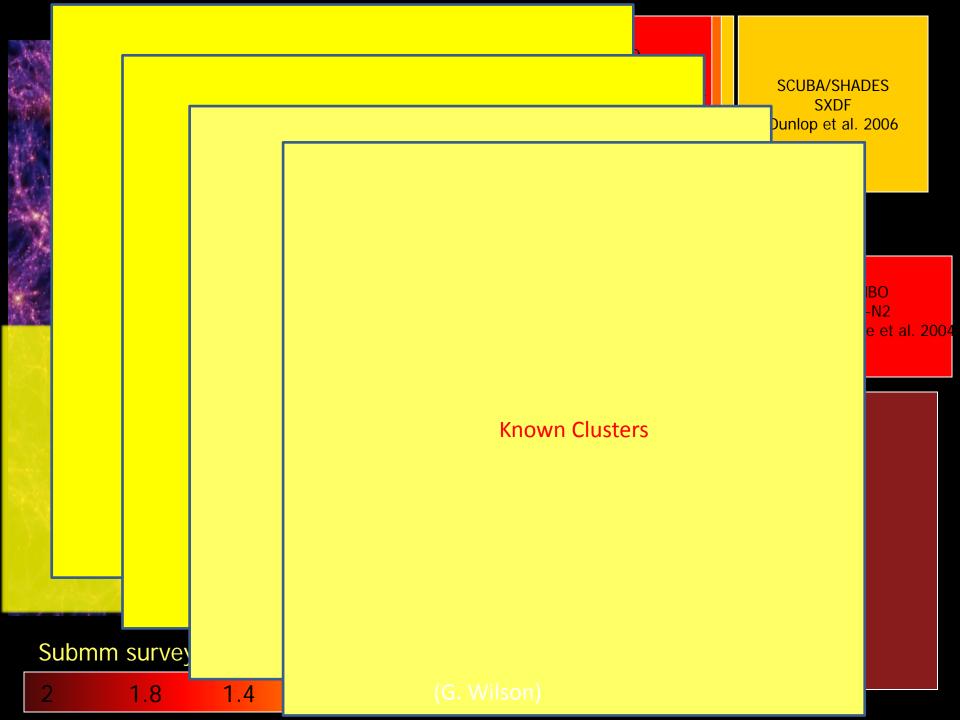
SEP

SXDF

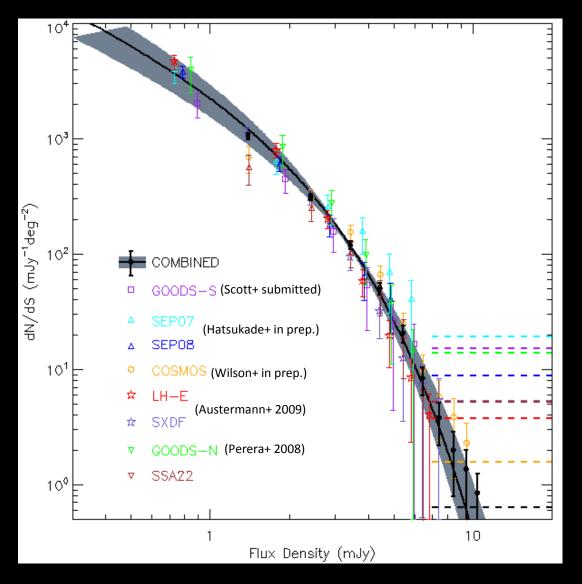
- both maps ~0.5 mJy rms

- total of ~250 new SMGs

(G. Wilson)


Plus: "ACES" Biased Field Targets

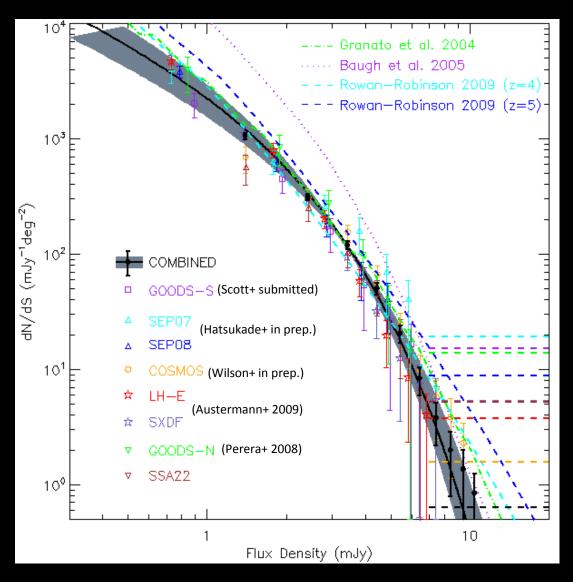
<u>Clus</u>	iters	<u>HzR</u>	<u>Gs</u>
[†] RXCJ0516.6-5430	XMMJ2215.9-1738	$^{\dagger}{ m MRC2201-555}$	TNJ1338-1942
[†] Bullet Cluster	$^{\dagger}MACSJ2129.4-0741$	MRC2008-068	TNJ2007-1316
$^{\dagger} m RXJ1347$ -1145	XLSSJ0224-0325	MRC2322-052	TNJ2009-3040
Abell 2163	SXDF/UKIDSS	$^{\dagger}{ m TXS2322-040}$	MRC2104-242
† Abell 1835	CLJ0542.8-4100		MRC0355-037
RXJ2228+2037	$^{\dagger}MACS J0025.4$		$^{\dagger}{ m PKS0529}{ m -}549$
$^{\dagger}Abell \ 3404$	$^{\dagger}MS0451$		SDSSJ1030 + 0524
$^{\dagger}\mathrm{Abell}$ 3395	$^{\dagger}MACS$ J2129.4		PKS1138-262
$^{\dagger}\mathrm{AS0592}$	RXJ0152.7-1357		TNJ0924-2201
† SCSOJ2334-5436	$^{\dagger}\mathrm{CL0016}$		MRC0316-257
	$^{\dagger}SCSOJ233556-560602$		MRC2048-272
	$^{\dagger}SCSOJ052114$ -510418		PKS2104 + 23
	$^{\dagger}SCSOJ052805-525952$		4C41.17
			SSA22-1


t

† † †

SSA22-2

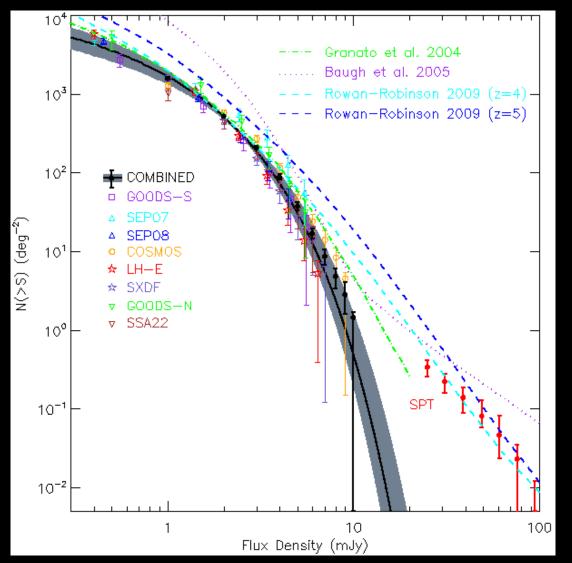
"Blank-Field" SMG Number Counts


Scott et al. in prep

- 838 sources
- 1.74 sq deg.

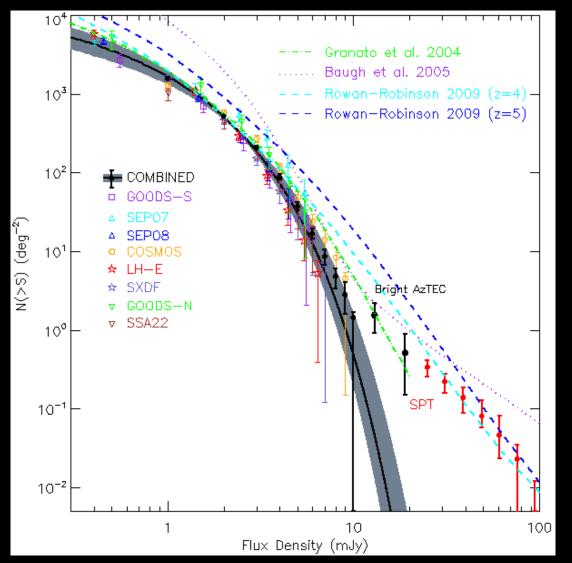
• New constraints on counts at both bright and faint end

(G. Wilson)


"Blank-Field" SMG Number Counts

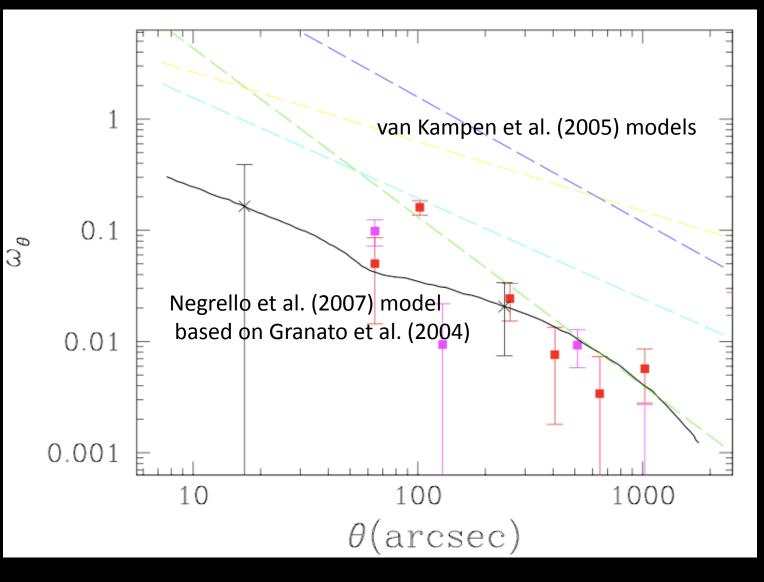
Scott et al. in prep

- 838 sources
- 1.74 sq deg.
- New constraints on counts at both bright and faint end
- Models stressed at both ends

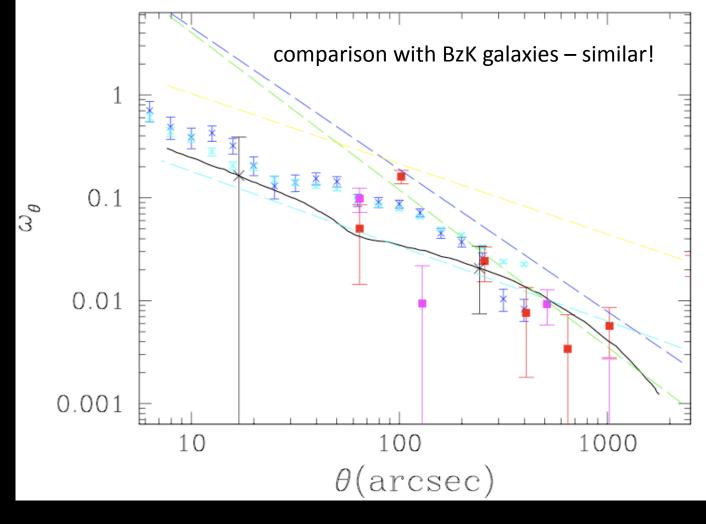

"Bright" SMG Number Counts

SPT from Vieira+ 2009 assuming S_{1.1}/S_{1.4}=2

(G. Wilson)


"Bright" SMG Number Counts

SPT from Vieira+ 2009 assuming S_{1.1}/S_{1.4}=2


(G. Wilson)

Clustering of COSMOS AzTEC Sources

⁽Yun)

Clustering of COSMOS AzTEC Sources

⁽Yun)

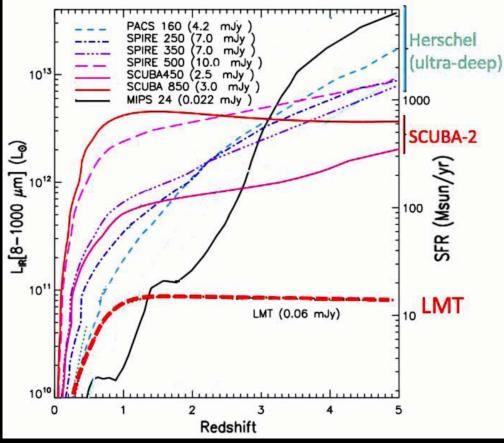
Conclusions IV: AzTEC SMGs

- "Blank field" SMG number counts (0.5<S_{1.1mm}<10mJy) now tightly constrained.
- Some evidence for a broader redshift distribution than 2 < z < 3.
- COSMOS field: first estimate of the angular correlation function of SMGs.
- Remarkably similar to $\omega(\theta)$ of BzK galaxies.
- Sample of 300 objects still not sufficient to constrain true spatial distribution → need a sample 3-10 times larger at a higher resolution Where could we find such a sample?

50-m Large Millimeter Telescope/Gran Telescopio Millimetrico

- UMass + Mexico
- Cierra la Negra (5000m)
- \$200M; largest science project ever for Mexico
- 65 μm (rms) active surface
- 6" FWHM beam at 1 mm
- Pointing to 1"
- AzTEC, Redshift, SEQUOIA, SPEED
- 1000's of SMGs/night; pathfinder for ALMA

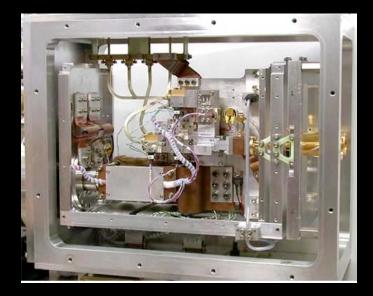
IAP 12 February 2010


LMT/GTM First Light Campaign 2010

- Telescope has all major subsytems ready and inner 32m diameter of reflector suface
- Next Steps:
 - Commission drive system
 - Holographic setting of inner segment
 - Integrate optical systems
 - First light with UMass receivers (AzTEC, Redshift)

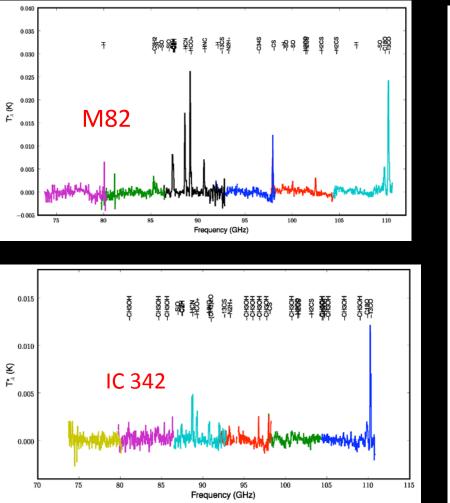
(figure courtesy M. Dickinson/D. Elbaz)

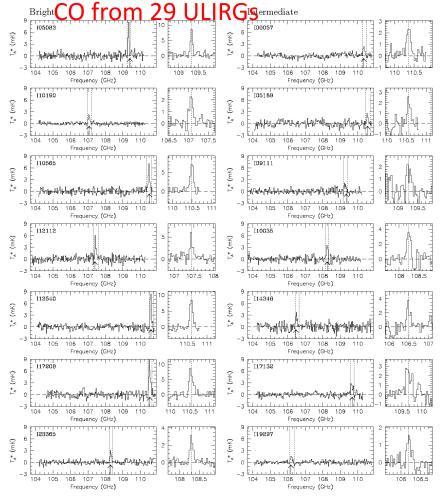
Instrument	Resolution	Mapping Speed [arcmin2/mJy2/hr]	Confusion Limit [mJy]
MAMBO/IRAM-30	11"	3	0.5
LABoCa/APEX	20"-30"	9	2
Bolocam/CSO	30"	10-13	2
AzTEC/JCMT	18"	20-30	1.5
AzTEC/ASTE	28"	20	2


Perspective on 32m dish operation:

- repeating all deep SMG surveys to date takes 24 hours (8" resolution)
- imaging 2sq deg COSMOS field to 0.1mJy rms takes 1200 hrs (key project size)
- 100 sq. deg. at 10mJy rms (SPT-bright sources) takes 6 hours

(G. Wilson)

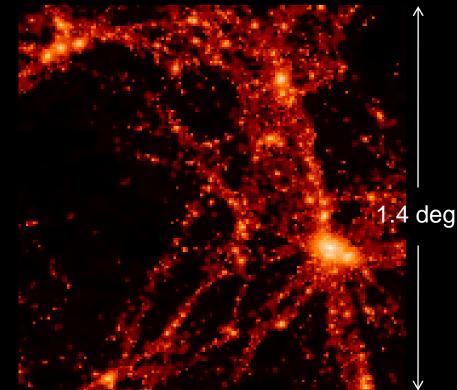

Redshift Search Receiver


- 4 receivers cover 74-111 GHz (37 GHz bandwidth!) like optical $\Delta\lambda/\lambda$
- MMIC amplifiers
- 4 pixels, 6 spectrometers each
- 31 MHz resolution (100 km/s)
- Stable baseline, sky sub
- Follow gas at high-z!
- Cf. CSO/Z-spec , IRAM/EMIR, GBT/zspectrometer, NRO 45-m...

Redshift Search Receiver: early science with FCRAO 14m

Snell 08

IAP 12 February 2010

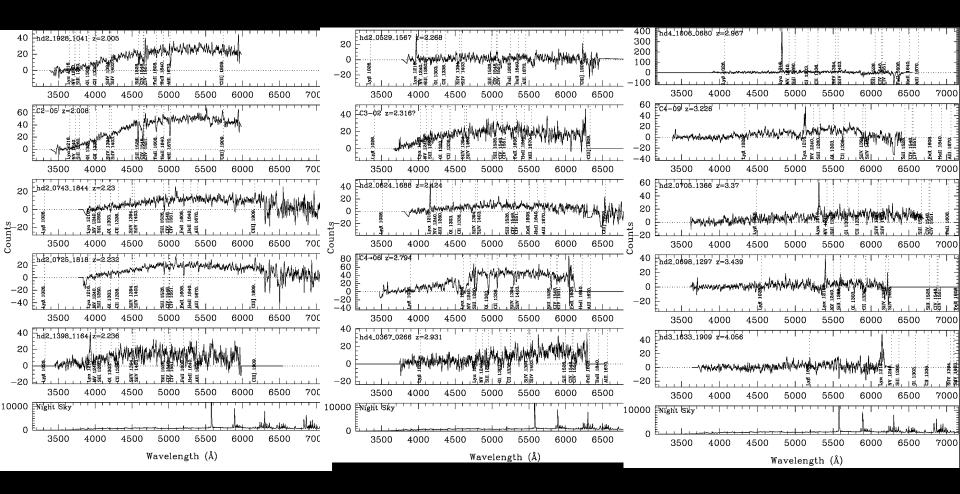

Chung 09

Planned Future LMT Continuum Inst.

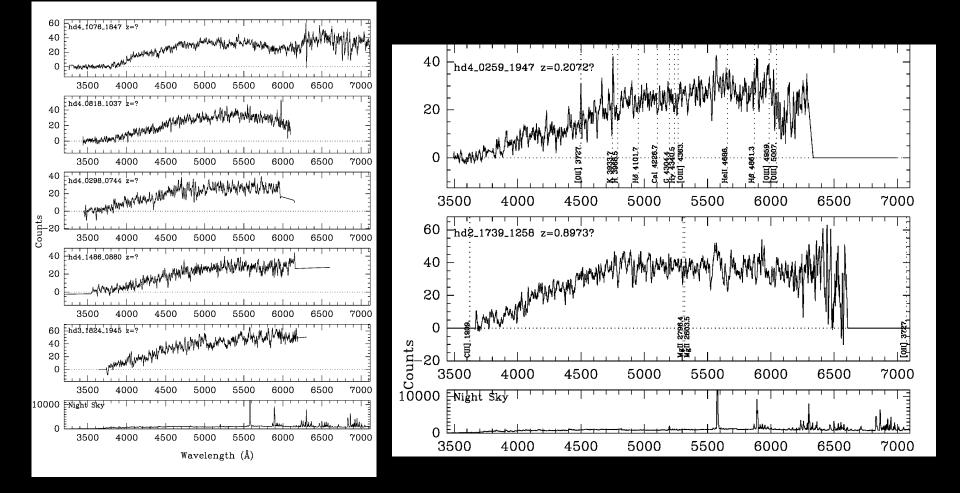
TolTEC

- 1.1mm imager filling 4' diameter field of view
- ~5000 detectors
- ~36,000 arcmin²/mJy²/hr mapping speed

Imaging the entire 2 sq. deg. COSMOS field to 0.1mJy rms (SFR~20-30 M_{sun}/yr) will require only 20 hours.


Final Summary

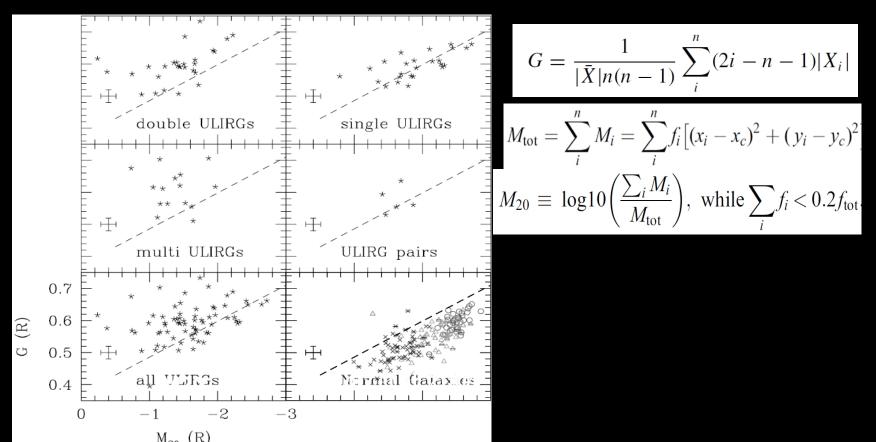
- Lyman break galaxies at z~3 are starbursts with wide range of morphologies, masses
- LBG analogs at z<1 (LCBGs) also show wide variety of morphologies, low mass, maximal SF, strong evolution
- ULIRGs at z<1 (usually dusty merger starbursts) are bluer and brighter in optical than "blue cloud" field galaxies, can evolve to middle of red sequence
- Submm galaxies at z>2 are strongly evolving, ULIRG-like, clustered, dusty starbursts, broad range of z
- Overall balance (optical vs. IR) still being debated.
 Panchromatic view required for full tally of SF in starbursts.

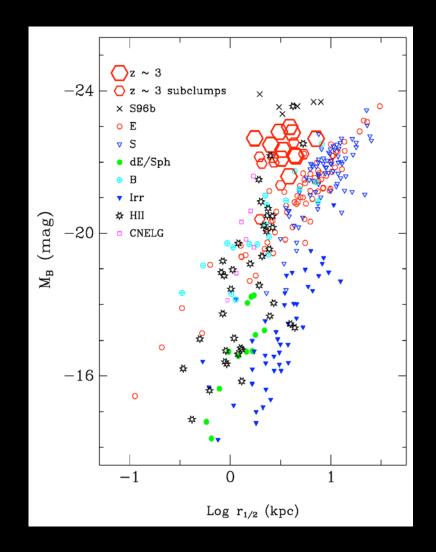

Merci!

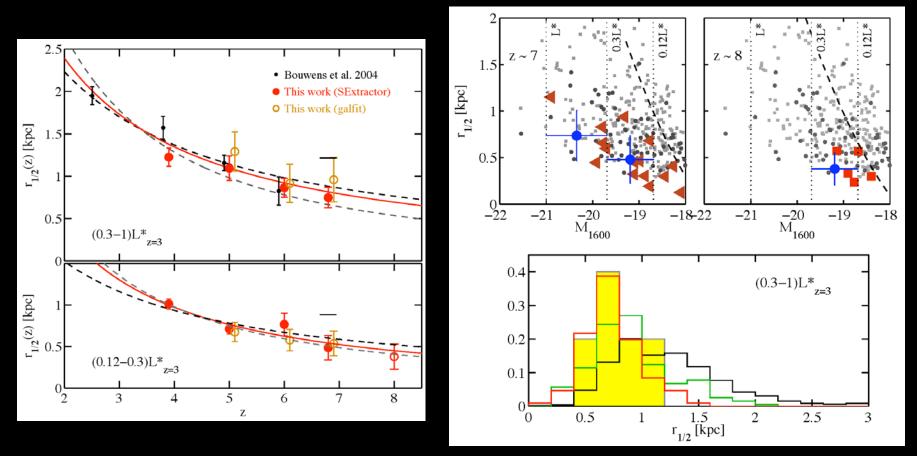
Miscellany

LBG 1D spectra 2 < z < 4

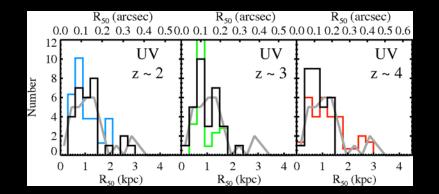
LBG 1D spectra: z uncertain

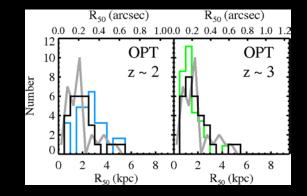


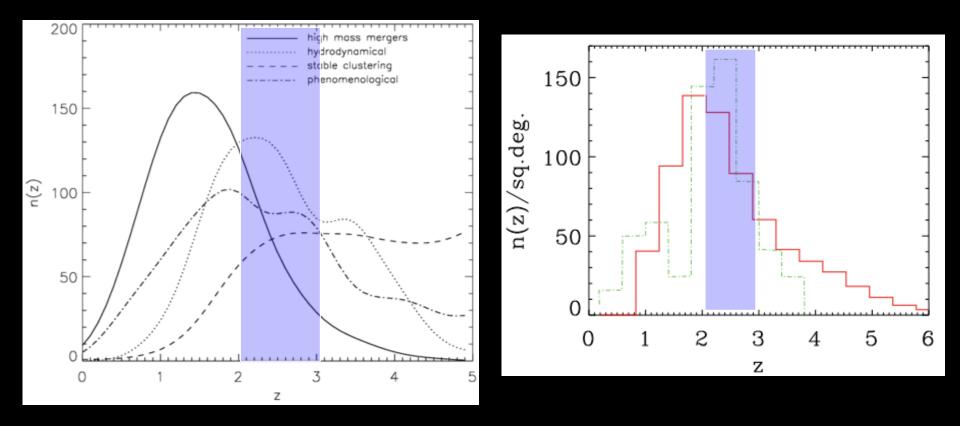

What would LCBGs and HII galaxies look like at z~3?

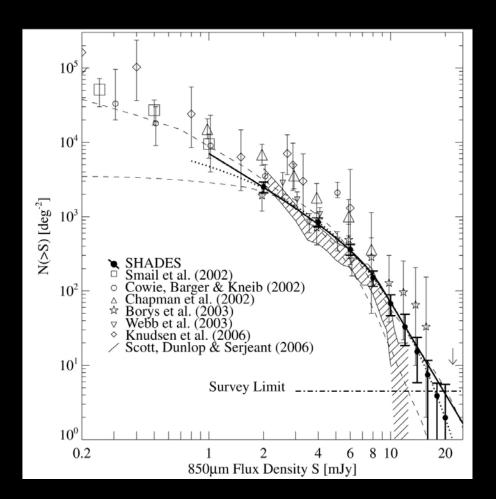

- Simulate z=3 HDF view:
 - Rebin STIS images
 - Add noise to match S/N at z=3
- Low redshift sample not visible at z=3 (but barely visible in ACS/GOODS/UDF)
- z~0.75 sample all visible at z=3; morphologies much simpler, more compact; low-SB structure lost.

Quantitative Morphology Analysis


- **Gini** the distribution of pixel intensities, concentration-like parameter (Gini 1912; Abraham et al. 2003; Lotz et al. 2004)
- M20 the normalized 2nd-order moment of the 20% brightest pixels, in logarithm scale (Lotz et al. 2004)
- Local ULIRGs with high spatial resolution are well separated from normal galaxies in the G-M20 plot (Lotz et al. 2004)






Overzier 10

Model Redshift Distributions

Blank Field SMGs

- Early work established
 - need for luminosity evolution,
 - constraints on background,
 - redshift distribution of radioselected sources
 - use of clusters as lenses to probe faint population,
 - importance of radio-ID
 - target flux levels,
 - biases,
 - analysis techniques

(G. Wilson)