The ESA/NASA/JAXA International X-ray Observatory (IXO)

The High Time Resolution Spectrometer

Didier Barret

Centre d'Etude Spatiale des Rayonnements

Didier.Barret@cesr.fr

Institut d'Astrophysique de Paris, Le 6 juin 2009

Cesa JAXA 🐼

History

- What after XMM-Newton and Chandra?
 - ✓ XEUS: ESA with JAXA candidate as large Cosmic Vision mission
 - ✓ Con-X: NASA concept, number two in 2000 Decadal survey
- Very similar science goals, but very different derived requirements and implementation approach
- Unlikely there will be two large X-ray missions at the same time, and it would be more cost effective to join forces

Cesa JAKA 🐼

IXO science IXO mission

sion The HTRS

Strong gravity Dense Matter

The merging

- In spring 2008, ESA and NASA HQs began an effort to see if the two missions could be merged
 - ✓ Which agency would lead a joint mission was NOT (and is still) discussed
- An ESA/JAXA/NASA coordination group was formed and agreement was reached at an ESA-NASA bilateral 2008 July 14th, with JAXA concurrence
- The Con-X and XEUS studies will be replaced by a single tri-agency study called the International X-ray Observatory
 - ✓ The result of this study will be submitted to the 2010 "Decadal Survey", Cosmic Visions and the JAXA approval process
 - ➡ IXO is then competing for the L mission slot

Cesa AAA MAA Introduction IXO science IXO mission The HTRS Strong gravity Dense Matter Conclusions

Cesa JAXA

NASA

Introduction

Dense Matter

Conclusions

How to organize the study?

Interesting exercise: science, hardware, politics - three cultures

ESA ITT for industrial studies released (May 2009)

IXO science

- ESA DOI for payload consortia to be submitted on June 9th
- A lot on-going *Decadal Survey* activities (cost assessment, ...)
- End of the study by ~June 2010 for selection at the end of 2010

IXO mission

The HTRS

Strong gravity

Key science goals for IXO

Black holes and matter Ş under extreme conditions

Formation and evolution of galaxies, Ş clusters, and large scale structure

Life cycles of matter and energy Ş

eesa JAXA NASA

Introduction

IXO science IXO mission

The HTRS

Dense Matter Strong gravity

Black holes & matter under extreme conditions

- How do supermassive black holes grow and evolve?
 - Complete census of AGNs of all kinds out to high redshifts
- Does matter orbiting close to a black hole event horizon follow the predictions of general relativity?
 - Time resolved spectroscopy of orbiting hot spots around black holes
- What is the equation of state of matter in neutron stars?
 - High resolution X-ray timing and spectroscopy of neutron stars

mission The HTRS

Reflexion on the accretion disk

- Fluorescence lines are produced through reflexion of X-rays on a cool accretion disk - Iron K line @ 6.4 keV
 - ✓ The profile of the line is subject to gravitational redshifts, doppler shifts, light bending effects, beaming

Fabian et al. (2000)

Cesa JAXA 🐼

Introduction IXO science

ce IXO mission

The HTRS

Dense Matter

Strong gravity

Spin constraints from the Iron line

The profile of the line constrains the spin of the black hole

Radius of the innermost stable circular orbit versus spin

Iron line profile versus spin

COSA ANA Introduction IXO science IXO mission The HTRS Strong gravity Dense Matter Conclusions

Broad line in the AGN 1H0707-495

nature

Ratio

Vol 459 28 May 2009 doi:10.1038/nature08007

LETTERS

Broad line emission from iron K- and L-shell transitions in the active galaxy 1H 0707-495

A. C. Fabian¹, A. Zoghbi¹, R. R. Ross², P. Uttley³, L. C. Gallo⁴, W. N. Brandt⁵, A. J. Blustin¹, T. Boller⁶, M. D. Caballero-Garcia¹, J. Larsson¹, J. M. Miller⁷, G. Miniutti⁸, G. Ponti⁹, R. C. Reis¹, C. S. Reynolds¹⁰, Y. Tanaka⁶ & A. J. Young¹¹

Accretion disk

Black hole

Lag spectrum between the 0.3–1-keV and 1–4-keV bands

💽 esa 🏒 🗱 🌆

nce IXO mission

mission The HTRS

RS Strong gravity

Dense Matter

How do supermassive grow and evolve?

- Intense star formation ê
 - ✓ The quasars appear very faint and buried

ĕ Strong interactions between galaxies

- ✓ Boost star formation and black hole accretion, creating highly irregular morphologies and extremely blue galaxies. The quasars are heavily obscured by dense gas
- Feedback from the black holes ê
 - ✓ Quenches star formation, allowing the galaxy color to redden. The quasar becomes optically visible as strong outflows blow out the gas
 - ➡ X-rays offers a unique window to obscured accretion

Li et al. 2007

Blue indicates massive star formation in the galaxies, while red indicates little star formation. Rays illustrates quasar activity.

eesa JAXA NASA

IXO science Introduction

IXO mission

The HTRS

Strong gravity

Dense Matter Conclusions

AGN census

- determine redshift autonomously in the X-ray band
- determine temperatures and abundances even for low luminosity galaxy groups
- make spin measurements of the brightest AGNs
- uncover the most heavily obscured, Compton-thick AGNs

eesa JAXA NASA

The HTRS

Strong gravity **Dense Matter**

Dense Matter

Conclusions

eesa JAXA

Introduction

IXO science

Black hole spins and growth

IXO will use the relativistic Fe K line to determine the black hole spin for 300 AGN within z < 0.2 to constrain the super massive black hole merger history

IXO mission

The HTRS

Strong gravity

What about intermediate mass BH?

- luminous X-ray source (ULX) Ş ultra New discovered in 2XMM catalog with unabsorbed max $L_X \sim 10^{42} \text{ erg s}^{-1}$
 - Beats previous record holder by factor 5 in Lx
 - No radio counterpart No optical counterpart down to 24th
 - ✓ Spectrum best fit by steep ($\Gamma = 3.2$) power law with relatively low absorption (NH = $8 \times 10^{20} \text{ cm}^{-2}$)
 - Micro-blazar hypothesis excluded
 - observation with XMM found Follow-up variability – now requires low temperature (kT = 0.18 keV disc blackbody component)
 - → LX and blackbody temp consistent with ULX spectrum
 - Intermediate mass black hole with mass ~500 100,000 Msol

Ş

IXO science

The HTRS IXO mission

Strong gravity

Dense Matter Conclusions

TER'

What about intermediate mass BH?

n:gene: piral galaxy ESO 243-49

- 8 ultra luminous X-ray source New discovered in 2XMM catalog with max $L_X \sim 10^{42} \text{ erg s}^{-1}$
 - variabili N.18 Lenge care in the galaxy ESO 243-49 23/11/2004 Sean A. Farrell^{1,2}†, Natalie A. Webb^{1,2}, Didier Barret^{1,2}, Olivier Godet³ & Joana M. Rodrigues^{1,2} anabili An intermeαlare-mass unavaga. 0.18 keV masses in the galaxy error of the galaxy of the Goder σ derived in accordance with the methods used for the creation of the 2XMM catalogue? with the final position and error determined by derived in accordance with the methods used for the creation of the 2XMM catalogue⁹, with the final position and error determined for taking the weighted mean of the two positions. No indication 2XMM catalogue², with the final position and error determined by taking the weighted mean of the two positions. No indication for 28/11/2009 Ultraluminous X-ray sources are extragalactic objects located outside the nucleus of the host galaxy with bolometric luminos an A. Farrell^{1,2}†, Natalle⁷, are extragalactic objects locatea 2XM, the week taking LX and Energy (keV)
 - Intermedi \rightarrow

Cesa JAXA

NASA

8

Black holes & matter under extreme conditions

- How do supermassive black holes grow and evolve?
 - Complete census of AGNs of all kinds out to high redshifts
- Does matter orbiting close to a black hole event horizon follow the predictions of general relativity?
 - Time resolved spectroscopy of orbiting hot spots around black holes
- What is the equation of state of matter in neutron stars?
 - High resolution X-ray timing and spectroscopy of neutron stars

Dense Matter

mission The HTRS

Plunging into the black hole

Best done with AGNs - 10²-10³ lower count rates than XRBs but 10⁵-10⁸ more massive, hence 10²-10⁶ more counts per orbital timescale

Can still be done with XRBs by averaging over many more orbital timescales than possible with AGNs

IXO will study detailed line variability on orbital times scale close to event horizon in nearby supermassive black holes:

✓ Dynamics of individual "X-ray bright spots" in disk to determine mass and spin

✓ Quantitative measure of orbital dynamics: Test the Kerr metric

Cesa AAA Mar Introduction IXO science IXO mission The HTRS Strong gravity Dense Matter Conclusions

Black holes & matter under extreme conditions

- How do supermassive black holes grow and evolve?
 - Complete census of AGNs of all kinds out to high redshifts
- Does matter orbiting close to a black hole event horizon follow the predictions of general relativity?
 - Time resolved spectroscopy of orbiting hot spots around black holes
- What is the equation of state of matter in neutron stars?
 - High resolution X-ray timing and spectroscopy of neutron stars

Strong gravity

Determining the EoS

Combining multiple diagnostics from multiple sources will enable ĕ us to determine the EoS

eesa JAXA NASA

IXO science

Introduction

The HTRS Strong gravity

Galaxy evolution

- How does cosmic feedback work and influence galaxy formation?
 - Spatially resolved spectroscopy of the intra-cluster medium: temperatures, ionization states and velocities
- How does galaxy cluster evolution constrain the nature of dark matter and dark energy?
 - Measurement of the growth rate of clusters out to z=2
- Where are the missing baryons in the nearby Universe? Are they in the cosmic web?
 - High resolution spectroscopy of OVII and OVIII in absorption using background AGNs

Cesa JAXA

IXO science IXO mission

nission The HTRS

TRS Strong gravity

Dense Matter

Life cycles of matter/energy

- When and how were the elements created and Š dispersed?
 - → High resolution spectroscopy of SNe: CC versus type 1a
- How do high energy processes affect planetary Ş formation and habitability?
 - Probing disks with reverberation mapping
- How do magnetic fields shape stellar exteriors Ş and the surrounding environment?
 - Unbiased X-ray survey of bright stars
- ĕ particles accelerated to extreme How are energies producing shocks, jets and cosmic rays?
 - e.g. spatially resolved hard X-ray imaging of SNe remnants

Cesa JAXA

IXO science IXO mission

The HTRS

Dense Matter

Strong gravity

Key performance requirements

The science goals are converted into performance requirements

Mirror Effective Area	3 m ² @1.25 keV 0.65 m ² @ 6 keV with a goal of 1 m ² 150 cm ² @ 30 keV with a goal of 350 cm ²	Black hole evolution, large scale structure, cosmic feedback, equation of state Strong gravity, equation of state Cosmic acceleration, strong gravity
Spectral Resolution	$\begin{split} \Delta E &= 2.5 \text{ eV within } 2 \text{ x } 2 \text{ arc min } (0.3 - 7 \text{ keV}) \ . \\ \Delta E &= 10 \text{ eV within } 5 \text{ x } 5 \text{ arc min } (0.3 - 7 \text{ keV}) \\ \Delta E &< 150 \text{ eV } @ 6 \text{ keV within } 18 \text{ arc min diameter } (0.1 - 15 \text{ keV}) \\ E/\Delta E &= 3000 \text{ from } 0.3 - 1 \text{ keV with } 1,000 \text{ cm}^2 \text{ for point sources} \\ \Delta E &= 1 \text{ keV within } 8 \text{ x } 8 \text{ arc min } (10 - 40 \text{ keV}) \end{split}$	Black Hole evolution, Large scale structure Missing baryons using tens of background AGN
Mirror Angular Resolution	≤5 arc sec HPD (0.1 – 10 keV) 30 arc sec HPD (10 - 40 keV) with a goal of 5 arc sec	Large scale structure, cosmic feedback, black hole evolution, missing baryons Black hole evolution
Count Rate	1 Crab with >90% throughput. $\Delta E < 200 \text{ eV} (0.1 - 15 \text{ keV})$	Strong gravity, equation of state
Polarimetry	1% MDP on 1 mCrab in 100 ksec (2 - 6 keV)	AGN geometry, strong gravity
Astrometry	1 arcsec at 3σ confidence	Black hole evolution
Absolute Timing	100 µsec	Neutron star studies

🕐 esa 🏒 🛣

IXO science IXO mission

Introduction

ion The HTRS

Strong gravity

Dense Matter Con

The IXO payload

- Large X-ray mirrors: 3 m² at 1 keV with Ş 5" PSF
- ě 20 m focal length
- Ş Science payload:
 - → X-ray Micro-calorimeter Spectrometer (XMS) -2.5 eV with 5 arc min FOV
 - → X-ray Grating Spectrometer (XGS), R=3000 with $1,000 \text{ cm}^2$
 - Hard X-ray Wide Field Imager (WFI) and Hard X-ray Imager (HXI) , 18 arc min FOV with 120 eV resolution - 0.3 to 40 keV
 - High Time Resolution Spectrometer (HTRS), 10⁶ counts/s with 150 eV resolution - 0.3-40 keV
 - X-ray Polarimeter (X-POL)

Strong gravity

Mission designs

- The IXO concept is compatible with both Ariane V Atlas V Ş
 - ✓ 6 ton spacecraft
 - Target orbit: direct launch into L2 \mathbf{V}
 - 5 Year mission (with consumables sized for a 10 year mission) \checkmark

eesa JAXA

IXO mission

eesa JAXA

NASA

Mission design

Separate ESA and NASA mission studies demonstrate overall mission feasibility, with no show stoppers

Introduction IXO science IXO mission The HTRS Strong gravity Dense Matter Conclusions

IXO getting deployed - NASA movie

Deployable shroud & rotating focal plane

💽 esa 🏒 🕷

Effective area

- 30 times the effective area of XMM-Newton EPIC-PN
- Effective area (HXI) underneath the WFI comparable to Simbol-X

💽 esa 🏒 🛣

The IXO payload

- Competitive mirror technologies need light optics
- Distributed payload nothing formalized yet

The HTRS characteristics

HTRS is based on Silicon Drift Detectors (SDD)

- ✓ The main advantage of SDD is their small physical size and consequently the small capacitance of the anode, which translates to a capability to handle very high count rates simultaneously with good energy resolution.
- ✓ The HTRS is an array of 37 hexagonal SDDs, placed out of focus, such that the focal beam from the IXO mirror is spread over the array.

back contact

Energy range	0.3-20 keV	
Time resolution	10 micro-seconds	
Energy resolution	<150 eV @ 6 keV (-20C)	
1 Crab count rate	~200 000 counts/s	
Count rate capability	> 10 Crab	
Deadtime & pile-up	<1% @ 1 Crab	
Overall detector size	~ 2 cm ²	
Readout time	50-75 ns	

💽 esa 🏒 🗶 🍒

Introduction IXO science

IXO mission

The HTRS

Strong gravity Dense Matter

The HTRS phase A study team

CNES: project management - CESR HTRS system manager

Count rate capability

The HTRS will be the only IXO instrument capable of coping with extreme count rates

Comparison with the other fast instrument on IXO: The Wide Field Imager in window mode

- Combine fast timing and spectroscopy
 - ✓ Larger count rates (x 10-20)
 - ✓ Improved energy resolution
 - ➡ with no energy pile-up and deadtime

💽 esa 🏒 🗱 🌆

Strong gravity Dense Matter

Science with the HTRS

- The High Time Resolution Spectrometer ĕ (HTRS) will provide IXO with the capability to observe bright X-ray sources
 - ✓ accreting neutron star and black hole X-ray binaries, including X-ray bursters
- Two science goals, under the *matter under* ĕ *extreme conditions* topic:
 - ✓ Accretion in strong gravity
 - Measuring the spin distribution of stellar mass black hole and probing strong field GR
 - ✓ The equation of state of dense matter
 - Tracking X-rays from the surface of NSs to determine their radii

Strong gravity

Dense Matter

Why care about BH spins?

- Accretion efficiency scales with spin from 10% for non spinning up to 42% for maximally rotating black holes
- BH launch jets which can shape galaxies, clusters
 - ✓ Tied to BH spins
- From a zero spin to a maximal spin, a black hole must double its mass
 - ✓ Not possible in a stellar binary
 - Current spin reflects that imparted at birth
 - A unique window on SNe/GRBs and the first BHs
- Put in the AGN context, spin may reflect the growth history of supermassive BHs

💽 esa 🏒 🕷

Introduction

IXO science IXO mission

on The HTRS

Strong gravity

vity Dense Matter

Securing spin measurements

- ~10 stellar mass black holes only slightly larger spins preferred
 - ✓ Addition 30-40 candidate black holes to be considered

Securing the spin measurements by:

- ✓ Sampling the source in multiple states with much better statistics
 - ➡ Test the robustness of the models
- ✓ Correlating the spin inferred from energy spectra with timing (and even polarimetry) measurements
 - ➡ QPOs

NASA

Cesa JAXA

Reverberation mapping

Introduction

➡ Low energy continuum spectroscopy

IXO science

IXO mission

Spins from collapsar compared to observations

Miller (2009)

The HTRS Strong gravity Dense Matter Conclusions

Improvements: spectra & timing

Multiple spin constraints

The HTRS

Strong gravity

Dense Matter

Conclusions

From QPO pairs - resonance between epicyclic frequencies

Equation of state of cold matter

Neutron stars probe the low temperature-large density region of the QCD phase diagram - key goal of modern physics

Density

Determining the equation of state of cold matter requires measuring the mass-radius relation of neutron stars, using X-rays generated at their surface or their vicinity.

IXO mission

The HTRS

Strong gravity **Dense Matter**

Constraining the NS EoS

- Thanks to its high throughput, the HTRS will provide direct constraints on the NS EoS:
 - ✓ by waveform fitting of X-ray burst oscillations & X-ray pulsations in accreting millisecond pulsars
 - ✓ by measuring predicted redshifted absorption lines in type I X-ray bursts and performing fine X-ray burst spectroscopy
 - ✓ by constraining the inner disk radius (hence the neutron star radius) from fast timing variability (kHz QPOs)
 - ✓ by waveform fitting of quasi-periodic oscillations
 - ✓ by detecting high-frequency QPOs from magnetars
 - ✓ by measuring neutron star spin distribution
- Additional constraints will be provided by the other IXO instruments, e.g. cooling neutron stars, quiescent neutron star low-mass X-ray binaries in GCs, ...

Cesa JAKA 🐼

Burst oscillations

Burst light curve and power density spectra

Waveform fitting

- X-ray oscillations are produced by hot spots rotating at the neutron star surface
- Modeling of the pulses (shape, energy dependence) taking into account:
 - ✓ Doppler boosting
 - ✓ Relativistic aberration
 - ✓ Gravitational light bending in the Schwarzschild spacetime
- Can be used to constrain the star compactness (M/R)
 - ✓ e.g. the higher the compactness, the lower the modulation amplitude

Poutanen & Gierlinski (2004)

Cesa JAXA

Introduction IXO science

nce IXO mission

ion The HTRS

Strong gravity

Dense Matter

Cesa JAXA

Burst oscillation waveform fitting

The energy response of the HTRS (<u>0.5-10 keV</u>) is optimized for type I X-ray bursts. Burst oscillations will be detected within 1 cycle (>1000 counts/cycle, 2 Crab, 300 Hz) - between 20 and 40 times larger count rates than the PCA.

The HTRS

Strong gravity

IXO mission

IXO science

Introduction

Constraints on mass and radius waveform fitting. The red ellipse shows the 95% confidence regions from 5 typical bursts. (Courtesy of Cole Miller).

Dense Matter

Conclusions

- IXO is the natural successor to Chandra (~2600 users) and XMM-Newton (~3000 users)
 - Separate studies by ESA and NASA demonstrate that the mission implementation for a 2021 launch is feasible
 - ➡ Part of Astro2010 Decadal Survey and ESA Cosmic Visions program
- Understand how black holes form, evolve, work, influence their surroundings is a key science goal of IXO
 - ✓ by probing BHs at all scale under a wide range of conditions: from stellar mass BHs to the first BHs formed in the Universe - emphasis put on stellar mass BH spin measurements with the HTRS
- Similarly, determining the equation of state of the densest matter observable in the Universe appears for the first time within reach
 - ✓ by observing the brightest phases of NSs with the HTRS

Cesa 224 M Introduction IXO science IXO mission The HTRS Strong gravity Dense Matter Conclusions