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The basic premises of the MOND paradigm

• The appearance of a new acceleration constant in dynamics, a0

• Standard limit (a0 → 0): The Newtonian limit

• MOND limit (a0 →∞) : (a0, G, mi) → (Ga2
0, mia

−1
0 )

(a0, G) → a0G For pure gravity
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Some immediate consequences

a ∼ MG
R2 ν

(
MG
R2a0

)

ν(x) ≈
{

1 : x À 1
x−1/2 : x ¿ 1

• a/aN ≈ (aN/a0)−1/2 À 1

• a ≈ (MGa0)1/2/R

• V (M, R) ≈ (MGa0)1/4

Various theories on these, but generically they give the basic results

g = gN ν(gN/a0)
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Independent galactic Kepler-like laws of
galactic dynamics

• Asymptotic constancy of orbital velocity: V (r) → V∞

• The mass-velocity relation (baryonic TF relation): V 4
∞ = MGa0

• σ4 ∼ MGa0 relation (“isothermal” spheres, deep MOND virial relation)

• Discrepancy appears always at V 2/R = a0

• Isothermal spheres have surface densities Σ̄ ≤ a0/G

• Added stability of discs with Σ̄ ≤ a0/G

• Disc galaxies have a disc AND a spherical “DM” components

• Negative density of “dark matter” in some locations.
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The mass-velocity (baryonic Tully-Fisher)
relation

from McGaugh 2006
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Rotation Curves of Disc Galaxies

Sanders (2005) Sanders and McGaugh (2002)
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Sanders and McGaugh 2002
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a0 =?
a0 can be derived in several independent ways:

a0 ≈ 1.2× 10−8 cm s−2

• a0 ≈ cH̄0

• a0 ∼ c(Λ/3)1/2
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Solar System: the Pioneer Anomaly

from Anderson et al. 2002
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What is behind the phenomenological
success of MOND?

• DM?

. DM distribution is determined exactly from that of the baryons.

. But DM to baryon ratio varies greatly and also differs from cosmological
value.

. It is inconceivable that DM will ever explain MOND: for individual galax-
ies the outcome depends on the unknown history of formation, interac-
tions/mergers, ejection of most baryons, etc..

• New physics?

. Cosmological connection?

. Nonrelativistic theory?

. Relativistic theory: cosmology (only MOND “black hole”); lensing
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Example: debris galaxies

EFE  −  i=44 deg

NGC 5291N NGC 5291S NGC 5291SW

a) b) c)

d) e) f)

NGC 5291N NGC 5291S NGC 5291SW

NGC 5291N NGC 5291S NGC 5291SW

g) h) i)

no EFE  −  i=45 deg no EFE  −  i=45 deg no EFE  −  i=45 deg

no EFE  −  i=39 degno EFE  −  i=34 degno EFE  −  i=50 deg

EFE  −  i=57 deg EFE  −  i=39 deg

Gentile et al. (2007)

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

R(kpc)

V
(k

m
 s

−
1 )

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

R(kpc)
V

(k
m

 s
−

1 )
0 0.5 1 1.5 2 2.5 3

0

10

20

30

40

50

60

70

R(kpc)

V
(k

m
 s

−
1 )

Milgrom (2007)

10



MOND and galaxy clusters

• Early 1990s: MOND does not explain the discrepancy in cluster cores

• Measured acceleration within a few 100 kpc are > a0

• Modify MOND to account for this?
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BDM in clusters according to MOND

Sanders 1999

Angus et al. 2007
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Angus et al. 2007

Candidates: neutrinos; BDM (MACHOS, massive BHs, cold-gas clouds)

Total amount needed-contributes little to the total NS baryon density
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The bullet cluster

Clowe et al. 2006

Results expected from what we know on isolated clusters (Angus et al. 2006)

BDM is largely non-dissipational

The high-relative-velocity problem
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The “ring” cluster (Cl 0024+17)
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How does it work?
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• MOND defines the transition radius rt ≡ (MG/a0)1/2.

• Analog to rG = MG/c2

• Spherical mass: for Rmass < rt a peak appears, generically

• Other configurations

• MOND also defines a universal surface density Σ0 ≡ a0/G
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The analog feature in galaxies?
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The cooling-flow conundrum
The puzzle: no signs of cooling (lines, mass deposits)

Peterson and fabian 2006
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Heating is required
Desiderata:

• Smoothly distributed across the core and doesn’t vary much with time.

• Heating rate depends on position through the square of some density, hinging
always on two body interactions.

• Naturally gives a core temperature that is a fraction of the virial temperature
of the cluster.

Present preferred candidate is AGN heating

DM is not deemed relevant as it is supposed to be made of weakly interacting
particles
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MOND and the CF problem
Doesn’t enter the gasdynamics but forces a new outlook on the role of baryons:

• As opposed to WI CDM, it implies baryons as DM, which might be effective

• Requires much less DM hence releasing constrains on BDM from clusters.

• This BDM is not required in galaxies hence is not subject to many constraints
we have on BDM
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Possible candidates and mechanisms:

• Supermassive BHs dynamical friction

• Cold dense gas clouds

Properties of such heating comply with the desiderata listed above

• An amply sufficient energy reservoir.

• Smoothly distributed across the core and doesn’t vary much with time

• Heating goes like the square of some density

• Core temperature that is a fraction of the virial temperature

• Cool clouds could be the source of the hot gas itself.
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Heating by gas clouds
Considered extensively during the nineties (but with more stringent constraints
from galaxies and cluster, which are now relaxed). Fell into disfavor as THE DM

Σ of clouds is constrained:

ĖB/Ėc ∼ η(Mhidden/Mgas)(Thidden/Tgas)(τcool/τcross)(Σtotal/Σcloud)

Σ ∼ 104ηΣB ∼ ·103ηMB,13R
−2
2 gr cm−2

Support of cloudlets? Magnetic? hydrostatic:

r ∼ 1013T10η
−1M−1

B,13R
2
2 cm; M = 10−4T 2

10η
−1M−1

B,13R
2
2M¯
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Observed effects

• Lensing

• Discrete flashes
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