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of  simple  and  composite  stellar  populations

IMF  =  the  distribution  of  stellar  masses  

born  together .

ξ(m) dm = dN = Nr. of stars in interval [m, m + dm]
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Why  is  the   stellar  

Initial  Mass  Function  (IMF)

important ?

As  a  boundary  condition  for  

star-formation  theory

To  understand  how  

shining-matter  is distributed

To  know  how  much  dark  mass  

is  in  faint  stars

• Solar-neighbourhood                                                  

- the  average / standard  IMF                                                       

• Massive  stars                                                                     

- a  fundamental  upper  stellar  mass  limit                  

- unresolved  multiples

• Clusters :  noise  or  true  variations?                         

• A  variable  IGIMF  and  implications !

• Origin  of  the  IMF.  
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The  solar  neighbourhood

The  distribution  of  stars

i.e. Ψ(MV) = −

dm

dMV

ξ(m)

dN = Ψ dMVWe  have =  #  of  stars  with   
MV ∈ [MV, MV + dMV]

dN = ξ(m) dm =  #  of  stars  with   

m ∈ [m, m + dm]

dN

dMV

= −

dm

dMV

dN

dm
thus



There  are  two  luminosity  functions
for  the  solar  neighbourhood

I.  Count  stars  nearby  to  Sun

    Obtain            and        from   trigonometric  parallaxMV d

−→ Well  observed   individual   stars   but  

small  numbers  at  faint  end   (           )

II.  Deep  (100 - 300 pc)  pencil-beam  photographic/CCD  surveys

    Formidable  data  reduction 

    Obtain            and        from   photometric  parallaxMV d

−→

(105 images −→ ≈ 100 stars)

Large  #  of  stars  but  poor  resolution (2”-3”)   

(          )Ψphot

Ψnear

Ψ(MV) = −

dm

dMV

ξ(m)

Ψphot

- independent  of  direction

- maximum  (peak)  at  MV ≈ 12
{

Ψ(MV) = −

dm

dMV

ξ(m)

?
Stellar  

samples  

should  be  

well-mixed:

σ ≈ 25 km/s = 250 pc/10Myr

Two  solar-neighbourhood  samples:

Understand   detailed  shape  of  LF  

from  fundamental  principles :

Points  of  inflection  

in  m(Mv)  relation 

+

ξ(m) = c

Ψ(MV) = −c
dm

dMV

Ψ(MV) = −

dm

dMV

ξ(m)

faintbright



Kroupa, 2002, Science

The  mass-

luminosity  relation  

of  low-mass stars

Ψ(MV) = −

dm

dMV

ξ(m)

Ψ(MV) = −

dm

dMV

ξ(m)

  The  maximum  near  

                                   

is  universal   

and  well  understood.

MV ≈ 12; MI ≈ 9

But  we  are  still  trying  to  understand  the  

local  LF  discrepancy...

?

Ψ(MV) = −

dm

dMV

ξ(m)Two  solar-neighbourhood  samples:
. . .  understand the peak,  but  a problem  remains . . .



Counting   example:

fmult =
40 + 15 + 5

100
= 0.60

Observer  sees  100  systems:   

but   85 (= 40 + 2x15 + 3x5)  stars  are  missed.

40  are  binaries 

15  are  triples

  5  are  quadruples

unknown  is  that

Multiple  systems  :

Correct  treatment of  this  important  bias  solves  the  

LF  discrepancy !
(Kroupa,  Tout  &  Gilmore  1991,  1993)

Ψ(MV) = −

dm

dMV

ξ(m)Two  solar-neighbourhood  samples:

!

Dynamical  

Population  

Synthesis:

Assume  all  stars  

form  as  binaries  in  

typical  open  

clusters:

R ≈ 0.8 pc, N ≈ 800 stars

(Using  KTG93  MLR)

(Kroupa  1995)

Ψ(MV) = −

dm

dMV

ξ(m)

Resultant  Galactic-field  MF

for  low-mass  stars :

(Kroupa,  Tout & Gilmore  1993;  Kroupa 1995;  

Reid, Gizis & Hawley  2002)

ξ(m) ∝ m−αi

α1 = 1.3 ± 0.5, 0.08 ≤ m/M! < 0.5

α2 = 2.3 ± 0.3, 0.5 ≤ m/M! < 1

. . .  unifies  the  two   LFs.

This  MF  is  an  average   or  bench  mark :

a  mixture  of  many  populations  comprising  the  

MW  disk  characterised  

by                   and                         .             τ ≈ 5 Gyr [Fe/H] ≈ −0.3



log(m)

dN/dlog(m)

ξ(m) ∝ m−αi

O starsG starsM stars

α2 = 2.3

α1 = 1.3

No  diverging  mass  in  faint  stars !!

?

Massive  stars

Massive  stars

Scalo (1986):  A  very  detailed  study  of  local  star-counts  

together  with  assumptions  about  the  SFH,  spatial  structure  

of  the  MW  disk  and  stellar  evolution  corrections

−→

α2 = 2.3 ± 0.3, 0.5 ≤ m/M! < 1

ξ(m) ∝ m−αi

α1 = 1.3 ± 0.5, 0.08 ≤ m/M! < 0.5

Thus,  the  standard  Galactic-field  IMF  (KTG93) becomes

α3 = 2.7, 1 ≤ m/M!

Massey (various papers):  A  rigorous  spectroscopic  study  of  

OB  associations  and  clusters  in  the  MW,  LMC,  SMC

Steps:  -  spectroscopy  and  photometry  to  get

Teff , BC, Lbol, redenning

-  HRD  +  isochrones initial  stellar  masses



Massey (1995)  finds   for  OB   associations
(IMF  only  determined  for  stars  with                                                ) τms ≥ τ = age of population

SMC LMC MW

Z = 0.002 0.008 0.02

α3 = 2.3 ± 0.1 2.3 ± 0.1 2.1 ± 0.1

ξ(m) = ξ(m) = ξ(m)

1)  

α3,OB ass < α3,Scalo ?2.3                      2.7

Independence  of  density:2)  

Example:    R136  in  LMC

central  density 
 

> 39  O3  stars !

ρC ≈ 105 stars/pc
3

α3 = 2.35 ± 0.15

Massey  1995

ξ(m) ∝ m−αi

α1 = 1.3 ± 0.5, 0.08 ≤ m/M! < 0.5

α2 = 2.3 ± 0.3, 0.5 ≤ m/M! < 1

Thus,  the  standard  Galactic-field  IMF  is

α3 = 2.7, 1 ≤ m/M!

ξ(m) ∝ m−αi

α1 = 1.3 ± 0.5, 0.08 ≤ m/M! < 0.5

α2 = 2.3 ± 0.3, 0.5 ≤ m/M! < 1

But,  the  standard  stellar  IMF   is

α3 = 2.3, 1 M! ≤ m

KTG93

Kroupa 2001

?

(Scalo)

(Massey)

N.B: 10  times  fewer  O stars  for  Scalo  value  

?
α3,OB ass < α3,Scalo

2.3                      2.7

log(m)

dN/dlog(m)

ξ(m) ∝ m−αi

O starsG starsM stars
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α3,Massey = 2.3
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?

0



Not  One  
but
Two

or   even
Many  More

Multiplicity  of  massive  stars

Most  massive  stars  are  in

binary        (    ),

triple          (     )   or

quadruple  (      )  systems.

Def:  The  companion  star  fraction:

B
T

Q

(towards  understanding  the  “Scalo  vs  Massey  problem”)

CSF =
B + 2 T + 3Q

S + B + T + Q

( cf   Reipurth & Zinnecker  1993 )

Example:   

The  Orion  

Nebula  

Cluster

Example:   The  Orion  Nebula  Cluster (                 )≈ 1 Myr

The  multiplicity  of  the  8  most  massive  stars:
(Preibisch et al. 1999)

CSF =
1 + 8 + 3

2 + 1 + 4 + 1
= 1.5−→



Compare

CSF = 1.5ONC  OB  stars:

CSF = 1
pre-main-sequence  

low-mass  stars:

CSF = 0.5Galactic-field  late-

type  stars

CSF ≥ 1But ?
(true  steeper  IMF)

αtrue > α3

CSF =
B + 2 T + 3Q

S + B + T + Q

Multiplicity  of  massive  stars

Sagar & Richtler 1991: αtrue ≥ 2.7

α3

αtrue

log(m)
(2 − 14 M!)

Thus,   we  have  a  consistent  formulation

of  the  field-IMF,  and  we  begin  to  

see  a  possible  solution  for  the

Scalo vs  Massey  discrepancy

(unresolved  multiples?).  

Next,  turn  to  clusters:

Clusters

Clusters

Advantages:        Stars  have  same                         .                          d, τ, z

Disadvantages:      If   young   (to  avoid  dynamical  evolution)  

need  pre-main  sequence  models,  and                                                                                        

            high.

If   main-sequence  age

then  have  substantial  dynamical  evolution.

fmult



≡ log10m

Uncertainties  due  to  

pre-main  sequence  

tracks

Pleiades  (Stauffer  1984)

Binaries  in  clusters

and

dynamical  evolution

d = 126pc,  age = 100Myr

Stauffer  

Kaehler                             possible

fphot ≈ 0.26

fphot ≈ 0.6 − 0.7

f = 1

N-body  Models  of  Binary-Rich Clusters
(Kroupa  1995,  Kroupa 2000)

N = 200, f = 1, ρC = 13 stars/pc
3

tcross = 18 Myr, ffin = 0.83

tcross = 0.059 Myr, ffin = 0.34

N = 1600, f = 1, ρC = 105.9 stars/pc
3

t = 0

t = 0.3 Tdiss

t = 0.6 Tdiss

t = 0.9 Tdiss

N = 1.28 × 10
5

4 × (N = 8000)

(Baumgardt & Makino  2003)
f = 0

low-masshigh-mass

MF(t)  due  to  cluster  evolution

dynamical
age



Massive  stars  in   clusters

OB  stars  in  clusters / HII regions

Two  competing  processes:

Mass  segregation

tmsgr ≈ 2

(
mav

mmassive

)
trelax

for  pre-exposed  ONC
e.g. trelax ≈ 0.6 Myr

tmsgr ≈ 0.12 Myr " age of ONC

Core  decay e.g.

tdecay ≈ Nm × tcore,cross

Rcore ≈ 0.02 pc, Mcore ≈ 150 M!

t
core

cross ≈ 1.2 × 104 yr

tdecay ≈ 104
− 105 yr # age of ONC

Note: 

−→ Qualitative  consistency  with  

dynamical  ejections  from  

cluster  cores. (Clarke &  Pringle  1995;  

Pflamm-Altenburg  &  Kroupa  2006)

 10%  of  all  runaway  O  stars  are  binaries.

46 %  of  all  O  stars  are  runaways  (v>30 km/s);

4 %  of  B  stars  are  runaways. (Stone 1991)

(Gies & Bolton 1986)

Therefore,  for  massive  stars  there  are  
terrible  biases  

(unresolved  multiplicity,  mass-segregation,  ejections) 
that  prohibit 

an  interpretation  of  a  measured  MF 
as  being  a  straightforward  estimate of  the  IMF. 

Need  to  perform  N-body  modelling  of  
completely  realistic  clusters  on  the  individual  

object  basis  to  place  confident  
constraints  on  the  individual-cluster  IMF. 



Clusters  of  any  age 

are  quite  a  

horrible  place  

to  study  the  IMF.

The  alpha-plot

ξ(m) ∝ m−α(m) α(m)

αThe       - plot ξ(m) ∝ m−α(m)

Kroupa  (2001)



αThe       - plot ξ(m) ∝ m−α(m)

Scalo

Massey

Kroupa  2002

1.  No  asymmetry 

binaries  cannot  resolve  

the  Scalo vs  Massey 

discrepancy.

2. Model  worse  than  

data !?

The  ansatz  
for   binaries  

to  possibly  solve  the  
Scalo/Massey discrepancy    

fails.

Return  to  the  Massey / Salpeter discrepancy :

log(m)

dN/dlog(m)

ξ(m) ∝ m−αi

O starsG starsM stars

α2 = 2.3

α1 = 1.3

α3,Massey = 2.3

α3,Scalo = 2.7

?

0



Composite  stellar  
populations

Composite  Stellar  Populations

Stars  form  in  clusters  (Lada & Lada 2003).  

Thus,  the  Integrated  Galactic  IMF

Kroupa & Weidner (2003);  Weidner  & Kroupa  (2005, 2006)

ξIGIMF(m, t) =

∫ Mecl,max(SFR(t))

Mecl,min

ξ(m ≤ mmax(Mecl)) ξecl(Mecl) dMecl

Add-up  all  IMFs

in  all  clusters !

Composite  Stellar  Populations

Stars  form  in  clusters  (Lada & Lada 2003).  

Thus,  the  Integrated  Galaxial  IMF

Kroupa & Weidner (2003);  Weidner  & Kroupa  (2005, 2006)

ξIGIMF(m, t) =

∫ Mecl,max(SFR(t))

Mecl,min

ξ(m ≤ mmax(Mecl)) ξecl(Mecl) dMecl

The   embedded-cluster  MF (ECMF) :

ξecl ∝ M−β
ecl

; β ≈ 2 − 2.4 solar-neighbourhood  
(Lada &  Lada 2003)

few 10 M! − 1000 M!

LMC  &  SMC 
(Hunter et al. 2003)

Antennae 
(Zhang & Fall 1999)

10
3
M! − 10

4
M!

10
4
M! − 10

6
M!

Weidner  &  Kroupa  2005, 2006

(Bonnell et al.  2003)

Theoretical  point

physical  maximum  

stellar  mass ?

mmax,∗ ≈ 150 M"

(Weidner & Kroupa 2004;

Figer 2005;

Oey & Clarke 2005,

Koen  2006)

The                    relation              mmax(Mecl)



Weidner & Kroupa (2005)

Mgal = 10
7
M!

Mgal = 10
10

M!

standard  IMF α3 = 2.3

α3 ≥ 2.7IGIMF

ξ(m) ∝ m−αi

α1 = 1.3 ± 0.5, 0.08 ≤ m/M! < 0.5

α2 = 2.3 ± 0.3, 0.5 ≤ m/M! < 1

Thus,  the  standard  Galactic-field  IMF  is

α3 = 2.7, 1 ≤ m/M!

ξ(m) ∝ m−αi

α1 = 1.3 ± 0.5, 0.08 ≤ m/M! < 0.5

α2 = 2.3 ± 0.3, 0.5 ≤ m/M! < 1

But,  the  standard  stellar  IMF   is

α3 = 2.3, 1 M! ≤ m

KTG93

Kroupa 2001

(Scalo)

(Massey)

!

Origin  of   the  stellar  IMF  
&  its   required  variation :

α Ω

Can  this  be  seen  in  the  measured  IMF ?

The  different  theoretical  approaches

have  in  common  that  

higher-metallicity  environments  should  produce  

lighter  stars  on  average.

Z m

 Different  theories  on  origin  of  stellar  masses :

The  Jeans  mass  depends  on  temperature  and   density :
MJeans ∝ T

3

2 ρ−
1

2 (e.g.  Bonnell,  Larson  &  Zinnecker  2006)

Stars  define  their  own  masses  through  accretion  and  

feedback . (Adams & Fatuzzo 1996;  Adams & Laughlin  1996)



 Different  theories  on  origin  of  stellar  masses :

The  Jeans  mass  depends  on  temperature  and   density :
MJeans ∝ T

3

2 ρ−
1

2 (e.g.  Bonnell,  Larson  &  Zinnecker  2006)

Stars  define  their  own  masses  through  accretion  and  

feedback . (Adams & Fatuzzo 1996;  Adams & Laughlin  1996)

No  empirical  evidence  of  this   has  

been  found !

Origin of IMF
(Motte, Andre & Neri 1998)

1.3 mm  continuum 

mapping  of   Oph     .ρ

Origin of IMF

850    m  and  450    m  

mapping  of   

NGC 2068 and 2071.

(Motte, Andre et al. 2001)

µ µ

(Bonnell,  Larson &  Zinnecker  2006, PPV)

Strongest  [Z/H]  

dependence ?

Dynamically  

linked  to 

fragmentation  

region

Elmegreen  (2004)   also  
proposes 

a  three-part  IMF.

Is  a  consensus  emerging  
on  the  

fundamental  physics  
active  in  the  

three  mass regimes ? 

But  then,  
what  about  

the  
[Z/H]  

dependence 

?



• LF structure  understood  (universal peak at 

Mv=12).

• IMF reasonably-well  constrained  for                   .

• OB stars: IMF  remains an  uncertain issue (mass-

segregation,  ejections,  unresolved multiples).   

• .

• Universality: evident  but  not  understood  fully.

• Composite  stellar  populations:  A  variable  

IGIMF,  resolution  of  Scalo  vs  Massey 

controversy, and  implications !?

• Origin of IMF: frozen-in  from  pre-stellar cores ?

Conclusions

m <
∼

1 M!

mmax∗ ≈ 150 M" ?

THE   END

According  to  the  standard  stellar  IMF :

mass  range %  by  number %  by  mass

0.01 - 0.08 37.2 4.1

0.08 - 0.5 47.8 26.6

0.5 - 1 8.9 16.1

1 - 8 5.7 32.4

8 - 120 0.40 20.8

<m> 0.38

[M!]

M!



Which   IMF  form   is  “best”  ?

Personal  opinion:   the  3-part   

  power-law  form

-  has  been  demonstrated  to fit 

   a  large  number  of populations   

   using  a  consistent  approach;

-  is  mathematically  very  easy 

   to  handle;

-  nice  for  experiments   

   (eg.varying  # Mdwarf / #Ostars).

None  results  from  some  

“IMF  theory”.

THE   END


