

Contents

- *Solar-neighbourhood* - the average / standard IMF
- Massive stars
 - a fundamental upper stellar mass limit
 - unresolved multiples
- *Clusters* : noise or true variations?
- A *variable IGIMF* and implications
- Origin of the IMF.

Pavel Kroupa: AlfA, University of Bonn

The solar neighbourhood

Pavel Kroupa: AlfA, University of Bonn

The distribution of starsWe have $dN = \Psi dM_V$ = # of stars with
 $M_V \in [M_V, M_V + dM_V]$ $dN = \xi(m) dm$ = # of stars with
 $m \in [m, m + dm]$ thus $\frac{dN}{dM_V} = -\frac{dm}{dM_V} \frac{dN}{dm}$ *i.e.* $\Psi(M_V) = -\frac{dm}{dM_V} \xi(m)$

(towards understanding the "Scalo vs Massey problem")

Mostmassive stars are inbinary (\mathcal{B}) ,triple (\mathcal{T}) orquadruple (\mathcal{Q}) systems.

Def: The companion star fraction:

$$CSF = \frac{\mathcal{B} + 2\mathcal{T} + 3\mathcal{Q}}{\mathcal{S} + \mathcal{B} + \mathcal{T} + \mathcal{Q}}$$

(cf Reipurth & Zinnecker 1993)

Pavel Kroupa: AlfA, University of Bonn

Example: The Orion Nebula Cluster ($\approx 1 \text{ Myr}$) The multiplicity of the 8 most massive stars: (Preibisch et al. 1999) $\begin{pmatrix} \theta^{1} \text{ Ori A} & \mathcal{T} \\ \theta^{1} \text{ Ori B} & \mathcal{Q} \\ \theta^{1} \text{ Ori C} & \mathcal{B} & - & \underline{\text{the}} \text{ exciting star} \\ \theta^{1} \text{ Ori D} & \mathcal{S} \\ \theta^{2} \text{ Ori A} & \mathcal{T} \\ \theta^{2} \text{ Ori B} & \mathcal{S} \\ LP \text{ Ori } & \mathcal{T} \\ \forall \text{ Ori } & \mathcal{T} \end{pmatrix}$ $\longrightarrow \qquad CSF = \frac{1+8+3}{2+1+4+1} = 1.5 \\ \text{ separation } \lesssim 1 \text{ AU} - 1000 \text{ AU} \\ \text{ mass-ratios } 0.1 \lesssim q \leq 1$

Composite Stellar Populations

Stars form in clusters (Lada & Lada 2003). Thus, the Integrated Galactic IMF

 $\xi_{\text{IGIMF}}(m,t) = \int_{M_{\text{ecl},\text{min}}}^{M_{\text{ecl},\text{max}}(SFR(t))} \xi(m \le m_{\text{max}}(M_{\text{ecl}})) \xi_{\text{ecl}}(M_{\text{ecl}}) dM_{\text{ecl}}$ Kroupa & Weidner (2003); Weidner & Kroupa (2005, 2006) **Add-up all IMFs**in all clusters !
Pavel Kroupa: AlfA, University of Borm

Conclusions

- *LF* structure understood (universal peak at Mv=12).
- *IMF* reasonably-well constrained for $m \lesssim 1 M_{\odot}$.
- **OB stars:** IMF remains an uncertain issue (mass-segregation, ejections, unresolved multiples).
- $m_{\max*} \approx 150 M_{\odot}$?
- Universality: evident but not understood fully.
- Composite stellar populations: A variable *IGIMF*, resolution of *Scalo vs Massey* controversy, and implications !?
- Origin of IMF: frozen-in from pre-stellar cores ?

Pavel Kroupa: AlfA, University of Bonn

According to the standard stellar IMF :

mass range $[M_{\odot}]$	% by number	% by mass
0.01 - 0.08	37.2	4.1
0.08 - 0.5	47.8	26.6
0.5 - 1	8.9	16.1
1 - 8	5.7	32.4
8 - 120	0.40	20.8
<m></m>	0.38 M_{\odot}	

Pavel Kroupa: AlfA, University of Bonn

mass range		η_N			η_M		ρ^{st}	Σ^{st}
$[M_{\odot}]$	[[per cent]		[per cent]		$[M_{\odot}/\text{pc}^3]$	$[M_{\odot}/\text{pc}^2]$
		α_3			α_3		α_3	α_3
	2.3	2.7	4.5	2.3	2.7	4.5	4.5	4.5
0.01-0.08	37.15	37.69	38.63	4.08	5.39	7.39	3.21×10^{-3}	1.60
0.08-0.5	47.81	48.50	49.71	26.61	35.16	48.21	$2.09 imes 10^{-2}$	10.45
0.5-1	8.94	9.07	9.30	16.13	21.31	29.22	$1.27 imes 10^{-2}$	6.35
1 – 8	5.70	4.60	2.36	32.38	30.30	15.09	$6.54 imes10^{-3}$	1.18
8 – 120	0.40	0.14	0.00	20.80	7.83	0.08	$3.63 imes10^{-5}$	$6.53 imes 10^{-5}$
$\overline{m}/M_{\odot} =$	0.380	0.292	0.218				$\rho_{tot}^{st} = 0.043$	$\Sigma_{tot}^{st} = 19.6$
		$\alpha_3 =$	= 2.3	<i>α</i> ₃ =	= 2.7		ΔM_{c}	M_{cl}
	m_{max}	N_{cl}	M_{cl}	N_{cl}	M_{cl}	m_{to}	[per	cent]
	$[M_{\odot}]$		$[M_{\odot}]$		$[M_{\odot}]$	$[M_{\odot}]$	$\alpha_3 = 2.3$	$\alpha_3 = 2.7$
	1	16	2.9	21	3.8	80	2.1	0.5
	8	245	74	725	195	60	3.8	0.9
	20	806	269	3442	967	40	6.5	1.6
	20			1 1 0 104	2302	20	12	3.5
	40	1984	703	1.1×10^{-1}	2502			
	20 40 60	1984 3361	703 1225	1.1×10^{-1} 2.2×10^{4}	6428	8	21	7.8
	40 60 80	1984 3361 4885	703 1225 1812	1.1×10^{-1} 2.2×10^{4} 3.6×10^{4}	$6428 \\ 1.1 \times 10^4$	8 3	21 24	7.8 9.7
	40 60 80 100	1984 3361 4885 6528	703 1225 1812 2451	1.1×10^{-1} 2.2×10^{4} 3.6×10^{4} 5.3×10^{4}	$6428 \\ 1.1 \times 10^4 \\ 1.5 \times 10^4$	8 3 1	21 24 36	7.8 9.7 24

Pavel Kroupa: AlfA, University of Bonn

THE END

general	$dN = \xi(m) dm = \xi_L(m) dlm$		
	$\xi_L(m) = (m \ln 10) \xi(m)$		gen
Scalo's IMF index (111)	$\Gamma(m) \equiv \frac{d}{dlm} (\log_{10} \xi_L(lm))$		Gam
	$\Gamma = -x = 1 + \gamma = 1 - \alpha$		ind
	e.g. for power-law form:	$\xi_L = A m^{\Gamma} = A m^{-x}$	
		$\xi = A' m^{\alpha} = A' m^{-\gamma}$	
		$A' = A/\ln 10$	
Salpeter(1955) (108)	$\xi_L(lm) = A m^{\Gamma}$	$\Gamma = -1.35 (\alpha = 2.35)$	S
	$A = 0.03 \text{ pc}^{-3} \log_{10}^{-1} M_{\odot}; 0.4$	$\leq m/M_{\odot} \leq 10$	•
Miller-Scalo(1979) (90)	$\xi_L(lm) = A \exp \left[-\frac{(lm-lm_o)^2}{2\sigma_{lm}^2}\right]$	$\Gamma(lm) = -\frac{(lm-lm_o)}{\sigma_{lm}^2} \log_{10} e$	MS
thick long-dash-dotted line	$A = 106 \text{ pc}^{-2} \log_{10}^{-1} M_{\odot}; \ lm_o$	$= -1.02; \sigma_{lm} = 0.68$	
Larson(1998) (74)	$\xi_L(lm) = A m^{-1.35} \exp \left[-\frac{m_o}{m}\right]$	$\Gamma(lm) = -1.35 + \frac{m_o}{m}$	La
thin short-dashed line	$A = -;$ $m_o = 0.3 M_{\odot}$	•	•
Larson(1998) (74)	$\xi_L(lm) = A \left[1 + \frac{m}{m_a}\right]^{-1.35}$	$\Gamma(lm) = -1.35 \left(1 + \frac{m_o}{m}\right)^{-1}$	Lb
thin long-dashed line	$A = -;$ $m_o = 1 M_{\odot}$	•	
Chabrier(2001) (22, 23)	$\xi(m) = A m^{-\delta} \exp \left[-\left(\frac{m_o}{m}\right)^{\beta}\right]$	$\Gamma(lm) = 1 - \delta + \beta \left(\frac{m_o}{m}\right)^{\beta}$	Ch
thick short-dash-dotted line	$A = 3.0 \mathrm{pc}^{-3} M_{-1}^{-1}; m_0 = 71$	6.4 M_{\odot} : $\delta = 3.3$: $\beta = 0.25$	

Table 1: Summary of different proposed analytical IMF forms (the modern power-law form, the standard IMF, is presented in eq. 4). Notation: $lm \equiv \log_{10}(m/M_{\odot}) = \ln(m/M_{\odot})/\ln 10$, dN is the number of single stars in the mass interval *m* to m + dm and in the logarithmic-mass interval *lm* to lm + dlm. The mass-dependent IMF indices, $\Gamma(m)$ (eq. *Gam*), are plotted in Fig. 5 using the line-types defined here. Eq. *MS* was derived by Miller&Scalo assuming a constant star-formation rate and a Galactic disk age of 12 Gyr (the uncertainty of which is indicated in the lower panel of Fig. 5a). Larson (74) does not fit his forms (eqs. *La* and *Lb*) to solar-neighbourhood star-count data but rather uses these to discuss general aspects of likely systematic IMF evolution; the m_o in eq. *La* and *Lb* given here are approximate eye-ball fits to the standard IMF.

Pavel Kroupa: AlfA. University of Bonn

THE END