IGM Metallicity Wide Spread and Cosmic Evolution

Jacqueline Bergeron

Institut d'Astrophysique de Paris - CNRS - UPMC Paris6

IAP, 14 April, 2006

Open questions

- Where are the metals at high redshift, $z \sim 2-3$?
 - at high $z\text{, at least }{\sim}90\%$ of the baryons are in the Ly- α forest
 - only ~10-15% of the metals expected from star-formation activity in high z galaxies have been measured up to now (in IGM, galaxies, damped Ly α absorbers) expected metallicity: $\langle [Z/H] \rangle \sim -1.7$ to -1.4

 inhomogeneous metal enrichment of the IGM: relative contribution to the cosmic metals of the general IGM vs metal-rich sites?

- main contributor to ionizing radiation field: nuclear burning or accretion? \rightarrow derived metallicity strongly depends on ionization level
- spatial distribution of metals clustering: do they trace large-scale structures?
- Hot and/or highly-ionized gas could be the answer
 - large-scale outflows of metal-rich gas around star-forming galaxies consistent with numerical simulations which include strong feedback

(Pettini 1999, Theuns et al. 2002, Aguirre et al. 2001 & 2005, Cen et al. 2005, Ferrara et al. 2005)

Open questions/2

• The reionization epoch, $z \sim 7-15$

- tracable by 21 cm excess brightness and 21 cm absorption spectra

• Metals at the reionization epoch

 no transmitted flux in the Ly-α forest at z ≥ 6 (→ H I/H ≥ 0.01)
 → observations only of the "metal forest" thus no information on the metallicity from optical/NIR alone
 No clear evidence for evolution of the cosmic metal density at 2 < z < 5 → early pollution of the IGM by the first stars and galaxies chemical composition at earlier times

- Search for "bright" very rare background targets at $z\gtrsim 8$
 - GRBs, population III SNe, QSOs and very luminous radio sources dedicated space- and ground-based telescopes

Evolution of the Ly- α forest

Predicted IGM metallicity / 1

- Hydrodynamic simulations &
 - wind mass & energy \propto SFR (full & dashed lines)
 - or
 - no superwind: only low mass galaxies $(M < 10^9 M_{\odot})$ loose their metals (dotted line)
- Spread in $\langle Z/Z_{\odot} \rangle$ of ~ 40 at $\delta = 1$ - $\langle Z/Z_{\odot} \rangle > 0.01$: $f_{\rm volume} \sim 4\%$
- Higher (Z/Z_☉) at δ = 1 than previous teams for superwinds
 (Aguirre et al. 2001, Cen, Nagamine & Ostriker 2005)

Metallicity of galaxies at $z\sim 2$ -3

- Optical spectroscopy (H II regions)
 - Local starbursts and spirals : correlation luminosity-metallicity
- Near-IR spectroscopy (ionized gas) : $[O II], [O III], H\beta$
 - LBGs at $z \sim 3$ overluminous for their metallicity \rightarrow low mass-to-light ratio
 - Massive star-forming galaxies at $z \sim 2$: solar metallicities

(Pettini et al. 2001, Shapley et al. 2003)

High-ionization absorber surveys

- \bullet Best UV tracer of a high-z hot/highly ionized IGM phase
 - $\operatorname{O}_{\mathrm{VI}} \operatorname{\mathbf{doublet}} (\lambda\lambda 1031, 1037) \ o \$ lies in the Lylpha forest
 - problem: \nearrow blending with Lyman lines for $\nearrow z$ limits O VI searches: too high incompleteness for z > 3-3.5
 - coupling O VI, N V, C IV to constrain the ionization level \rightarrow metallicity problem using N V : preliminary results show that [N/C] \neq solar

• Results of early O VI surveys

- $\sim 1/3$ of O VI absorbers have line widths b < 14 km s $^{-1}$ or $T < 2 \times 10^5$ K $\, \rightarrow \,$ favors a radiative ionization process
- inferred overdensity of O VI absorbers $\delta \equiv (
 ho/\overline{
 ho}) =$ 4 to 80
- a few systems have [O/H] > -1 (high ionic ratio N(O VI)/N(H I)) not present in every sightline and often associated with low N(H I) (< $10^{13.0}$ cm⁻²) → the early surveys were not well suited for their search: not enough sightlines or too high N(H I) limit (> $10^{13.6}$ cm⁻²)

(Carswell et al. 2002, Simcoe et al. 2002& 2004, Bergeron et al. 2002)

The VLT O ${\rm VI}$ sample

• The UVES Large Programme

- 21 bright QSOs (most with V < 17), of which 19 at 2 < z < 4
- Resolution: b= 6.6 km s $^{-1}$; λ range: 3050-10000 Å
- $-\,{\rm S/N}\sim 30/100$ at 3200/5500 Å
- Our analyzed O VI sample
 - $-\,12$ QSOs at 2.1 < z < 2.8
 - \rightarrow enough sightlines to build a metal-rich sample
 - sample of 152 detected O VI absorbers, $12.7 < \log N(O VI) < 14.6$
 - 60 individual H ${\rm I}$ components associated with this O ${\rm VI}$ sample

• The O VI subsamples

– use photoionization models with [O/H] = -1 to derive observational identification criteria

* $N(O_{VI})/N(H_{I}) > 0.25$: O_{VI} metal-rich/type 1 subsample

* $N(C_{IV})/N(H_I) > 0.015$: C IV-only metal-rich/type 1 subsample

The O VI subsamples

O VI & C IV Column Densities vs H I Column Density

- The $O_{\rm VI}$ subsamples
 - Type 0 : low abundance
 - Type 1 : high abundance
- The C IV-only subsample - Type 1 : high [C/H]
- Red dashed line : N(O VI)/N(H I) = 0.25
- Black dashed line : N(C IV)/N(H I) = 0.015

Metal-poor and metal-rich O VI absorbers

Strong N(H I) absorber metal-poor $z \sim 2.1$ (left panel)

Weak N(H I) absorber metal-rich $z \sim 2.1$ (right panel)

Temperatures

• O VI line width distribution

- absorbers with $b <\!\!12$ km s $^{-1}$ or $T <\!\!1.4 imes 10^{5}$ K
 - * metal-poor : 39%
 - high b tail : weak absorbers, low S/N
 - * metal-rich : 53%
 - no unambiguously broad absorbers
 - \rightarrow photoionization : dominant process

Abundances

• Radiative ionization process : assumptions

- hard UV metagalactic flux (main contribution at $z\sim2.5$: QSOs)

- O VI and C IV co-spatial (Si IV usually not detected)
- [O/C] = 0
- Metal-rich vs metal-poor populations : markedly different metallicities
 - difference in metallicity for the metal-poor (type 0: IGM) and metal-rich (type 1: metal-enriched sites) populations confirmed by

investigating other ionization processes for the metal-rich population :

photoionization by a hard UV metagalactic flux plus

- * Gas temperature fixed by $b(O_{VI})$ additional collisional heating source
- * Constant gas density overdensity : $\delta \equiv (\rho/\overline{\rho}) \approx 10$

- $O\,{\rm VI}$ and $C\,{\rm IV}$ then usually trace different phases

 \rightarrow similar mean metallicity than in the above case

Abundances : results

- Photoionization : case 1 bimodal [O/H] distribution \rightarrow two distinct populations median [O/H]type 0 1 -2.06 -0.35
- \bullet metal-rich $O\,{\rm VI}$ population
 - associated H I $10^{12.5} < {\rm N}({\rm H~{\rm I}}) < 10^{15.0}$ cm $^{-2}$ or 0.1 $< \tau({\rm H~{\rm I}}) < 30$
 - contributes ${\sim}40\%$ to cosmic [O/H]
 - its (metallicity) \sim [Fe/H] of galaxy clusters at $z \sim$ 0.3-1

(Bergeron & Herbert-Fort 2005)

Metal enrichment: statistical approach Pixel optical depth method

• Correlation of metal-line optical depth with H I optical depth

– no information for $au({
m Ly}lpha$ or ${
m Ly}eta) > {
m ln}({
m S}/{
m N}) \sim 3.5$

good statistics

* information at lower $\tau(CIV)$ than obtained by the analysis of individual systems * estimate of incompleteness using simulated spectra

- median opacities in bins of au
 - ightarrow average over a range of metallicities for each bin of $au({
 m H\,{\sc i}})$

– problem due to the different velocity widths ($\propto A^{-0.5}$) in the metal ion and H $_{
m I}$

(Cowie & Songaila 1998)

- Correlation between lines of a metal doublet (C IV)
 - avoids the problem of different velocity widths
 - yields the contribution of a given metal to the cosmic density

(Songaila 2005)

POD : UVES-LP Results - $\langle z \rangle \sim 2.5$

• log $\tau_{\text{CIV}} = 1.3 \times \log \tau_{\text{HI}} - 3.2$ previous results: (1) gray line (2) dotted line log (C IV/H I) = -2.6

(Aracil et al. 2004)

• log (O VI/H I) ~ -2.0 weak O VI absorption is only detected close ($|\Delta v| \leq 400 \text{ km s}^{-1}$) to strong Ly- α absorption (τ (Ly $\alpha > 4$)

Type 1 population : Nearest strong H_{\perp} absorber

- The O VI type 1 population and weak O VI absorptions should exhibit similar properties overlapping N(H I) range
- Δv between type 1 systems and the nearest strong H I absorption
 - 2/3 of O VI & C IV-only metal-rich systems have a strong Ly- α system, τ (Ly- α) > 4, at $|\Delta v| <$ 400 km s⁻¹
- Study of individual O VI systems and POD analysis both suggest a link to gas outflows from overdense regions

Gas density of O VI absorbers Further evidence for two O VI populations

- Gas overdensity of the O VI absorbers, $\delta \equiv (\rho/\overline{\rho})$: assumptions
 - photoionization : hard UV metagalactic flux \rightarrow gas density vs ionization parameter or
 - hydrostatic equilibrium (+ photoionization) \rightarrow gas density vs N(H I) (Schaye 2001)
- Photoionization
 - U is fixed by the OVI/CIV ionic ratio (assuming [O/C] solar) $\overline{\rho}$ is the mean baryonic density at each z(OVI)- $\delta(U) = 4.0 \ U^{-1}([1 + z]/3)^{-3}$
- Hydrostatic equilibrium

 $-t(dyn) \sim t(sound\ crossing\ time) \rightarrow \mathbf{N}(\mathbf{H}) \sim n_{\mathbf{H}}L_{\mathbf{Jeans}}$ to derive N(H I): assumptions on T_{gas} ($\sim 4 \times 10^4$ K) and photoionization rate $-\delta(G) = 4.7 \times 10^{-9} \ \mathbf{N}(\mathbf{H} I)^{2/3}([1+z]/3)^{-3}$

Overdensity : $\delta(G)$ vs $\delta(U)$

- Type 0 absorbers $\delta(G)$ and $\delta(U)$ are correlated with $\delta(G)$ somewhat larger than $\delta(U)$
 - Type 0 absorbers probe the IGM hydrostatic equilibrium is roughly valid
- Type 1 absorbers $\delta(G)$ and $\delta(U)$ are uncorrelated
 - hydrostatic equilibrium does not apply Type 1 absorbers do not trace the general IGM, but rather gas outflows in the vicinity of metal-rich sites

$\Omega_{\rm b}({\rm O\,VI})$ and ${\rm O\,VI}$ column density distribution

- $\Omega_{\rm b}({\rm O\,VI})$: (O VI) cosmic density
 - $egin{aligned} &-\Omega_{ ext{b}}(ext{O VI}) = \{H_0 m_O/c
 ho_{crit}\}\{\sum N(ext{O VI})/\sum_i \Delta X_i\}\ &= 2.2 imes 10^{-22}\{\sum N(ext{O VI})/\sum_i \Delta X_i\} \end{aligned}$

 m_O : oxygen atomic mass, ρ_{crit} : critical density, $\sum_i \Delta X_i$: total redshift path cosmological parameters (Ω_{Λ} , Ω_{m} , Ω_{b} , h = 0.7, 0.3, 0.04, 70) $dX/dz \equiv (1+z)^2 \{0.7+0.3(1+z)^3\}^{-0.5} \cong \{(1+z)/0.3\}^{0.5}$ when z > 1 (comoving)

- result : $\Omega_{
 m b}(
 m O\,{
 m VI})$ = $1.5 imes10^{-7}$
- O VI column density distribution
 - $-f(N)dNdX = \{n/(\Delta N\sum_i \Delta X_i)\}dNdX$

n : number of O VI absorbers in a column density bin ΔN centered on N for a total redshift path $\sum_i \Delta X_i$

- Fit of f(N) used to derive (i) incompleteness correction factor for $\Omega_{\rm b}(0 \text{ VI})$, $\Omega_{\rm b} \propto \int N f(N) dN$ (ii) number of 0 VI absorbers per unit redshift, $dn/dz \propto \int f(N) dN$

Column density distribution of O ${\rm VI}$ absorbers

- Sample for 12 sightlines $\sum_i \Delta X_i = 12.12$
 - $egin{aligned} &- ext{power law fit} : f(N) = K N^{-lpha} \ & o lpha(ext{O VI}) = 1.83 \pm 0.15 \ f(N = 10^{13.5}) = 1.7 imes 10^{-13} \end{aligned}$
 - $-\log N(O_{\rm VI}) < 13$: incompleteness
 - $-\log N(O_{\rm VI})$ >14.5: sample variance

(Bergeron & Herbert-Fort 2006)

- Comparison with $f(N)(\mathsf{C}_{\mathrm{IV}})$
 - O VI and C IV distributions have similar slopes, but $f(N(O VI))/f(N(C IV))\sim 6$ at log N = 13.5

O VI absorbers : corrected Ω_b

• $\Omega_b(O VI)$

 $-\,\Omega_{
m b}=2.20 imes 10^{-22}\int Nf(N)dN$

– using the slope and normalization parameter of the power-law fit and restricting the integration range to 13.0< log (N(O VI)) < 15.0 yields : $\Omega_{\rm b}({\rm O~VI}) \approx (2.2 \pm 0.2) \times 10^{-7}$ i.e. an incompleteness correction factor of 1.5 at \overline{z} =2.2

• $\Omega_{\rm b}({\rm O})$

- using a conservative ionization correction factor, (O VI/O) = 0.15, yields $\Omega_{\rm b}(O) = 1.5 \times 10^{-6}$ or $\log (\Omega_{\rm b}(O)/\Omega_{\rm b}(O)_{\odot}) \equiv \langle [O/H] \rangle = -2.4$ with the solar abundances of Anders & Grevesse (1989)
- The above value of $\Omega_b(O)$ is a lower limit, as we have to include broad O VI absorbers without associated HI absorption this requires a statistical analysis of "pseudo" O VI doublets in simulated spectra of the Ly- α forest (work in progress)

C IV and O I at $z \sim 5-6$

• $\Omega_{
m b}({
m C\,{\scriptscriptstyle IV}})\sim 5 imes 10^{-8}$ at 2< z< 5 - C IV at z>5.5 in NIR

• OI absorbers $(10^{13.7} < N(OI) < 10^{15.0} \text{ cm}^{-2})$ recently detected at $z \sim 6$ (optical) $\Omega_{\rm b}(OI) \sim 7 \times 10^{-8}$ at $z \sim 6.0$ i.e. 1/3 of $\Omega_{\rm b}(OVI)$ at $z \sim 2.5$

(Songaila 2001, Pettini et al. 2003, Becker et al. 2005)

IGM metal enrichment summary current status

• Metallicity at $z\sim$ 2-5 : assuming a metal production of 1/30 solar

 $\begin{array}{l} - \text{ O VI individual systems }: \text{ distinguish metal-rich/metal-poor systems whatever N(H I)} \\ * \left< \left[\text{O/H} \right] \right> = -2.4 \quad \text{at } z \sim 2.5 \\ \text{ for } 10^{13} < \text{N(O VI)} < 10^{15} \text{ cm}^{-2} \quad (\text{assuming } \left< (\text{O VI/O} \right) \right> = 0.15) \\ - \text{C IV individual systems} \\ * \left< \left[\text{C/H} \right] \right> = -2.9 \quad \text{at } 2 < z < 5 \\ \text{ for } 10^{12} < \text{N(C IV)} < 10^{15} \text{ cm}^{-2} \quad (\text{assuming } \left< (\text{C IV/C} \right) \right> = 0.30) \\ - \text{C IV statistical analysis }: \text{H I + C IV} \\ \text{ signal down to log } \tau(\text{C IV}) \simeq -3.0 \quad \rightarrow \quad \left< \text{N(C IV)} \right> \sim 10^{10.3} \text{ cm}^{-2} \\ * \left< \left[\text{C/H} \right] \right> = -2.8 \quad \text{with some } \searrow \text{ of } \left[\text{C/H} \right] \text{ with } \searrow \delta \quad (10^{-0.5} < \delta < 10^2) \\ \end{array}$

- No clear evidence for cosmic evolution of $\Omega_{\rm b}({
m C\,{\scriptscriptstyle IV}})$ for 2 < z < 5ightarrow early metal enrichment

(Songaila 2001 & 2005, Pettini et al. 2003, Schaye et al. 2003, Aracil et al. 2004, Bergeron & Herbert-Fort 2005)

Probing IGM metal enrichment with ELTs

- Where are the missing metals at $z\sim$ 2-5?
 - A hot phase traced by $O\,{\rm VII-}O\,{\rm VIII}\,$: possibly detectable with future X-ray satellites
 - The lower density IGM, $\delta \sim 1$: detectable with future ELTs
 - * [Z/H] : hydrodynamic simulations with/without galactic superwinds $\rightarrow N(C IV) \simeq 10^{10.4}/10^{8.8} \text{ cm}^{-2}$ for [Z/H] $\simeq -2.1/-3.7$

 \rightarrow must gain a factor of 100 in the detection limit of individual C $_{\rm IV}$ doublets

- Metal forest at $z\sim$ 7-15
 - $\begin{array}{c|cccc} \text{ IGM absorption signatures:} & \text{C} \text{ IV} & \text{C} \text{ II} & \text{O} \text{ I} & \text{Si} \text{ II} \\ \text{detectable in the NIR for} & \textbf{z} < 12.5 & 14.7 & 15.1 & 15.7 & (\lambda < 2.1 \mu) \end{array}$

* column densities

* clustering

- O I absorbers at $z \sim 6$ detected in QSOs and one GRB (+ C II, Si II) (Becker et al. 2005, Kawai et al. 2005)

Background sources/1

• GRBs and population III SNe

- GRBS : mean afterglow fluxes 1.5 to 0.05 μJy at z ~ 10

 1 to 10 days after explosion (K_{AB} 23.6 to 27)
 brightest afterglow : 20 × mean fluxes
 GRB050904: z = 6.3, J_{AB} ~ 20 1 day lag (z_{sp} : Subaru 3.4 day lag)
 population III SNe (pair instability - M = 140-260 M_☉) : K_{AB} ~ 25 at z ~ 10-15 with possible time lag of weeks between discovery and ELT spectroscopy

- Detection limits : 4σ limit for R= 10^4 & S/N=50
 - $\begin{array}{l} -\operatorname{\sf N}(\operatorname{\sf C\,II})_{\min}\simeq 4\times 10^{12}\ {\rm cm}^{-2}\ {\rm and}\ \operatorname{\sf N}(\operatorname{\sf O\,I})_{\min}\simeq 1\times 10^{13}\ {\rm cm}^{-2}\\ \to {\rm metal-enriched\ sites\ only} \end{array}$
 - clustering signatures down to 30 km s^{-1}
 - for the brightest GBRs ($R=4 \times 10^4$ & higher S/N)
 - \rightarrow factor 4-10 lower column densities plus velocity scale and temperature estimate

GRBs and population III SNe

type	z	$\lambda_{ m obs}$	${\sf m}_{ m AB}/{\sf flux(nJy)}$	R	lag(day	•) S/N	Δt (hr) S/N	$\Delta t(hr)$
						1	.00m		30m
average GRB	10	K	$23.6/1500^{\dagger}$	10^{4}	1	40	1.8	15	15
average GRB	10	K	27.4/40	10^{4}	10	15	90	-	-
† brigthest	GRB	s:2	0 times brigh	ıter	& sir	milar	fluxes	after	10 days
type	z	$\lambda_{ m obs}$	$m_{\mathrm{AB}}/flux(nJy)$	R	S/N	$\Delta t(hr)$	R	S/N	$\Delta t(hr)$
					100m			30m	
pop III SN	e 9	J	24.4/650	10^{4}	40	1.7	2000	40	8
pop III SN	e 12	Н	24.8/440	10^{4}	40	4.0	2000	40	50
pop III SN	e 16	K	25.2/300	10^{4}	40	14	2000	20	70

Time lag discovery \rightarrow ELT follow-up : weeks

Background sources/2

• QSOs

- massive BH at $z \sim$ 10 ?
 - $z \sim 6 \ {
 m QSOs}$: BH masses \sim (1-3) $imes 10^9 \ {
 m M}_{\odot}$ for L = L $_{
 m Edd}$
 - progenitors: BH growth : Eddington rate and accretion efficiency = 0.15
 - ightarrow M = (1-3)×10⁶ M_{\odot} at z = 10 ightarrow 10³ M_{\odot} progenitor at z = 20-30
- merging of thousands of $10^3~\text{M}_{\odot}$ BHs ?
- primordial BH ?
- number density main problem : search strategy of very rare objects results of current NIR searches will help (e.g. UKIDSS)
- $-\,\mathrm{M_{BH}} > afew \; 10^5 \;\mathrm{M_{\odot}} \;
 ightarrow \mathsf{J}_{\mathrm{AB}}/\mathsf{K}_{\mathrm{AB}} < 29/28$
- Detection limits : 4σ for R=2000 & S/N=50
 - $-\,{
 m N}({
 m O}\,{
 m I})_{
 m min}\simeq5 imes10^{13}\,\,{
 m cm}^{-2}$
 - \rightarrow sub-DLAs from metal-enriched sites
 - clustering signatures down to 150 km s⁻¹

\mathbf{QSOs}

type	z	$\lambda_{ m obs}$	R	$m_{ m AB}/{ m flux(nJy)}$	S/N	$\Delta t(hr)$	$m_{ m AB}/flux(nJy)$	S/N	$\Delta t(hr)$
					100m			30m	
QSO	9	J	2000	27.4/40 [†]	40	1.7	26.2/120 [‡]	40	8
QSO	12	Н	2000	27.8/27 [†]	40	4.0	26.6/80 [‡]	40	50
QSO	16	K	2000	$28.2/18^{\dagger}$	40	14	27.0/55 [‡]	20	70

$$^{\ddagger}
u_{rest} imes L_{
u_{rest}} = 3 imes 10^{44} ext{ erg s}^{-1} ext{ at } \lambda_{
m rest} = 1300 {
m \AA} \ \sim 30 \
u_{rest} imes L_{
u_{rest}} \ (10^8 {
m M}_{\odot} ext{ galaxy at same } z) \ \sim 10^{-2.5} \
u_{rest} imes L_{
u_{rest}} \ (z = 6 ext{ SDSS QSO})$$

- Minimum M_{bh}

R=2000, S/N=20, $\Delta t=$ 50 hr with a 100m telescope

Probing the dark ages

- One of the 5 SKA Key science projects (observations of the redshifted H I 21 cm line) together with - Origin and evolution of Cosmic Magnetism
 - Galaxy evolution, cosmology and dark energy
- Reionization
 - whole sky 21 cm absorption/emission

first sources of Ly $\!\alpha$ radiation and heating of the gas

- 21 cm discrete absorptions from start of reionization to nearly complete reionization spectra of very powerful background radio sources
- Structure formation
 - maps of neutral gas

through multifrequency observations

growth of structures

fluctuations of 21 cm brigthness temperature

• Simulations : HORIZON project with participation to DEISA "extreme computing initiative"

Simulated 21 cm absorption spectrum

 \bullet intervening H ${\mbox{\tiny I}}$ absorption

Highly luminous background souce at z=10 with S(120 MHz)=20 mJy

(Carilli et al. 2002, Haiman et al. 2004)

- very few sources expected at z > 8 & S > 10 mJy: 10^{-2} deg^{-2} (M_{BH} > 10^7 M_{\odot}) GRB radio afterglows : too faint possibly hypernovae : flux up to 1 mJy?

 metallicity coupling O I/ELT to H I/SKA absorptions for discrete strong absorbers

• SKA observations of powerful radio galaxies 10 days, resolution : $\Delta \nu = 1 \text{ kHz}$

H $\scriptstyle I$ 21 cm brighness fluctuations

• Maps of 21 cm brigthness temperature (5×5 arcmin²) at z = 12.1, 9.2 and 7.6 (left to right) with a width $10h^{-1}$ comoving Mpc and depth $\Delta \nu = 0.1$ MHz assuming a late, single epoch of reionization and $T_S \gg T_{CMB}$ HII regions have negative brigthness temperatures relative to $\langle HI \text{ signal} \rangle$ \rightarrow information on the the sources responsible for reionization

(Furlanetto et al. 2004, Zaldarigga et al. 2004)

Angular power spectrum of 21 cm fluctuations

• Predicted power spectrum

during reionization at z=10peak at a few arcmin (black curve) fully neutral medium (dotted curve)

- SKA sensitivity (short dash line)
- LOFAR sensitivity (long dash line)

(Furlanetto & Briggs 2004, Zaldarriaga et al. 2004)

Conclusions

- IGM metal enrichment
 - highly inhomogeneous
 - O VI absorbers

* bimodal distribution of [O/H] at $\langle z \rangle \sim 2-2.5$: IGM proper & metal-enriched sites ($\langle [O/H] \rangle \simeq -0.35$) (progenitors of galaxy clusters) * photoionization : dominant process

- * large fraction of $\tau(H_{I}) < 1$ O VI absorbers trace metal-rich sites
- * Can the IGM proper be enriched by superwinds?
- \rightarrow probing [Z/H] in $\delta \leq 1$ regions at $z \sim 3$ (C iv) with ELTs
- Metal cosmic density
 - O VI populations : ~15% of metals expected from SF activity 2.5 times higher than derived for Carbon (C IV)
 - in LBGs + DLAs : ~10% of expected metals
 - \rightarrow missing metals : probing a hotter phase ($T>3\times10^5$ K) with XEUS, Constellation X

Prospectives

- IGM metallicity at $m{z}\gtrsim7$
 - search for O I and C II in the NIR (high N(H I)) \rightarrow ELTs
 - search for H $\scriptstyle I$ 21 cm absorption (close to the onset of reionization) \rightarrow SKA
 - clustering of absorbers : low vs high mass star/galaxy formation sites?
- Search for very rare, bright sources at the reionization epoch
 - GRBs, pop III SNe : dedicated space- and ground-based telescopes
 - QSOs, bright galaxies few deg² surveys \rightarrow 8-10 m telescopes, JWST, ELTs
 - radio sources few 10² deg² surveys \rightarrow LOFAR, SKA
- Simulations of galaxy and structure formation