Dynamical Formation of Black Hole Binaries in Star Clusters

Hyung Mok Lee

Seoul National University, Seoul, Korea

in collaboration with Chunglee Kim, Jong Suk Hong, Yeong-Bok Bae, Chris Belczynski and Dawoo Park

> IAP Colloquium June 26-30, 2017

- Based on the following papers
 - Lee (1995) MNRAS, 272, 605
 - Lee (2001) CQG, 18, 3977
 - Bae, Lee & Kim et al. 2014, MNRAS, 440, 2714
 - Hong & Lee 2015, MNRAS, 448, 754
 - Park et al. 2017, MNRAS, in press

Outline

- Globular Clusters
- Dynamical Formation of BH Binaries in Globular Clusters
- Properties of the Dynamical Binaries
- Summary

Short Description of Globular Clusters

- Nearly spherical objects
- Extremely dense systems
- Considered to be the oldest objects in the Galaxy
- Our Galaxy has ~150 clusters, and about 50 more could be hidden by Galactic extinction.
- Stars are formed at the same time
 - GCs have been thought to be ideal objects to study Nbody dynamics and stellar evolution

Physical Parameters

- Typical masses: $10^4 10^6 M_{sun}$.
- Metallicity is lower than the Sun
- Current luminosity function is nearly log-normal: maybe a consequence of long dynamical evolution

Hyung Mok Lee

Globular Clusters Host Many Compact Binaries

- Millisecond pulsars
 - ~80 times more frequent per stellar mass than the Galaxy at large
- X-ray binaries
 - Also over abundant in globular clusters by a large factor

Most Galaxies also Host Globular Clusters:

- Specific frequency *S_N*: number of GCs per luminosity
- *S_N*~1 for spirals, and much higher for ellipticals
- Are extragalactic GCs similar to Galactic GC?
- What is the mean S_N ?

Harris 1999

IAP Colloquium, June 26-30, 2017

Dynamics of Globular Clusters

- Self-gravitating
- Composed of mostly point masses
- Weak field (i.e., Newtonian dynamics)
- General evolution is well understood, but we do not know the details mostly due to
 - Long range nature of the gravity
 - Poor understanding of the initial conditions
 - Complicated microphysics such as stellar evolution, effects of external fields, etc.

Time scales

• Dynamical time: time for a star to make a single trip across the entire system

$$t_{dyn} \approx rac{v}{R}$$

- Relaxation time: time for a star to lose its initial memory of orbit (or energy)
- If the system is self-gravitating (i.e., in virial equilibrium)

$$t_{\rm rel}\approx \frac{0.1N}{{\rm ln}N}t_{dyn}$$

 $\implies t_{rel} >> t_{dyn}$ if N becomes large (> 1000)

Relaxation Times of Globular Clusters

- During t << t_{rel}, stellar orbit is determined by the smooth potential of the system: collisionless
- In the long run, the stellar orbit will deviate from the original one: collisional
- Dynamical evolution takes place in relaxation time scales
- Most of the globular clusters have $t_{rel} < age of the universe$
 - Dyamical evolution has to be taken into account

$$t_{rh} = 0.138 \frac{N^{1/2} r_h^{3/2}}{m^{1/2} G^{1/2} \ln(\gamma N)}$$
 Hyung Mok Lee

Course of Evolution

- Self-gravitating systems undergo corecollapse via two-body relaxation
- The central part becomes very dense
- The time scale for this is ~10 t_{rh}

Based on the integration of Fokker-Planck equation

Example of Cluster Evolution with Black Holes

Dynamical Friction

- Black holes become the most massive component within ~10⁷ years in globular clusters
- In order to reach equipartition, massive component lose energy and settle into the central region (dynamical friction)
- Friction time scale is $\sim m*/m_{\rm BH}$ < 1/10 times relaxation time
 - Central parts are completely dominated by BHs.

Lee 2001

13

 $m_* = 0.7 M_{\odot}, \ m_{deg} = 10 M_{\odot}$

Formation Processes of Black Hole Binaries

- In extremely dense systems purely dynamical processes can lead to the formation of compact binaries
 - Three-body processes
 - Two-body capture

Formation Rates of BH Binaries

- Gravitational Wave Capture in parabolic approximation $\Sigma_{cap} \approx 17 \frac{G^2 m^2}{c^{10/7} v_{\infty}^{18/7}} \qquad \left(\frac{dn}{dt}\right)_{cap} = \frac{1}{2} < n^2 \Sigma_{cap} v_{rel} >$
- Three-body processes (Goodman & Hut 1983)

$$\left(rac{dn}{dt}
ight)_{3B} pprox C imes n^3 rac{(Gm)^5}{\sigma^9}, \ C \sim 0.2$$

Which is more efficient?

• Capture versus 3-body processes

$$\frac{(dn/dt)_{Cap}}{(dn/dt)_{3B}} \approx 10^7 \left(\frac{10^5 \text{pc}^{-3}}{n_B}\right) \left(\frac{\sigma}{100 \text{km/s}}\right)^{52/7}$$

- Globular clusters : $\sigma \sim$ 10 km/s, and black holes would have even smaller σ
 - Three-body processes are more efficient
- Galactic Nuclei: $\sigma \sim 100$ km/s
 - Direct capture is more efficient

Dynamical Evolution and Binary Formation

- Globular clusters are not static objects, but evolve in time
 - Core collapse followed by dynamical friction.
 - Black holes become the most massive component in short time (<few times 10⁷ years).
- Large fraction of the black holes form binaries through three-body processes

Orbits of Dynamical Binaries

- Captured Binaries:
 - Very eccentric: $1 e \sim 10 \left(\frac{\sigma}{c}\right)^{10}$
 - Semi-major axis: $a \sim 0.05 \frac{Gm}{\sigma^2}$
 - Merge very quickly
- Three-body binaries
 - Moderately eccentric $f(e) de \sim e de$
 - Semi-major axis: $a \sim 0.2 \frac{Gm}{\sigma^2}$
 - Merging times are very long

Hong & Lee 2015 Captured binaries

Fate of BH Binaries

- As the orbits become tighter, the "collision time" with surrounding stars increases while merger time scale decreases
- The recoil energy due to binary-single encounters also increases

$$K_B \sim \frac{2}{3} \times 0.4E_B = \frac{2}{15} \frac{Gm^2}{a}$$

- If $K_B > 1/2 m v_{esc}^2$, the binaries get ejected.
- At some point recoil energy exceeds the escape energy from the cluster

$$a \lesssim a_{crit} = \frac{Gm}{15v_{esc}^2}$$

• Depending on v_{esc} , ejection or merger take place first.

Hardness of Binaries

• It is useful to define hardness parameter *x*, as a binding energy of binaries normalized by the average kinetic energy of the background.

$$x \equiv \frac{Gm_1m_2/2a}{3m_*\sigma^2}, \quad m_*:$$
stellar mass

• The condition for ejection corresponds to

$$x_{crit} \sim 5\left(\frac{m}{m_*}\right) \left(\frac{v_{esc}^2}{\sigma^2}\right) \qquad \left(\frac{v_{esc}^2}{\sigma^2}\right) \sim 12$$

Therefore $x_{crit} \sim 60\left(\frac{m}{m_*}\right)$

Hyung Mok Lee

Schematic Evolution of Binary Parameters in *e-x* space

Numerical Simulation of BH Binary Formation and Evolution

- Direct N-body simulations
- Spherical, non-rotating models in static tidal field
- Composed of ordinary and degenerate stars
 - Ordinary stars: 0.7 M \circ (actual average mass could be lower)
 - 1.4 M \odot , representing NS
 - 10 ~ 40 M \odot , representing BH
 - Single component
 - Two component
 - Continuous mass spectrum
- N=5,000 ~ 50,000
- No Primordial binaries

Some Concerns of the Simulations

- N<< actual number of stars in GC
 - We try to look for properties that are independent of N
- No stellar evolution
 - Stellar evolution is important only in the very early phase of evolution ($\sim 10^7$
 - -10^8 years)
- No initial BH binaries
 - Soft binaries easily disrupted
 - Hard binaries behave same way as dynamical binaries, and therefore our results provide conservative lower limits
- No mass function for normal stars
- No direct capture is included
 - Ratio between three-body processes and direct capture depends strongly on N
 - Direct capture will be investigated separately with Fokker-Planck code

Properties of ejected binaries

- Ejection occurs as the binaries become very hard, consistent with the predictions
 - But actual distribution of *x* is broad
- The relative velocity to the cluster is $> v_e$.

How can we use these results?

- •The distribution of orbital separation depends only on the velocity dispersion
- •The eccentricity distribution is almost invariant of any parameters (i.e., thermal distribution)
- •Consequently 'merging fraction' depends on the central velocity dispersion

Bae, Kim & Lee 2014

Models with two-mass BH: 10 & 20 M_☉

- Higher mass BHs form binaries first and the lower mass ones follow
- Time gap between formation and ejection is a few t_{rh}, but it could be smaller for realistic systems

Park et al., (2017)

Hyung Mok Lee

Time gap between formation and ejection

As N grows, Δt becomes smaller.

• There is a long tail of large Δt

Those with large
∆t would merge
in the cluster,
rather than get
ejected.

IAP Colloquium, June 26-30, 2017

Long lived binaries are very hard ones

Orbital Evolution of the Long-Lived Binary

- Experipences many weak encounters
- Composed of lower mass BHs

Efficiency of Binary Formation with Mass

- Higher mass BHs form binaries more efficiently
- 'Mass function'
 obtained by GW
 observation would be
 skewed toward higher
 mass.

Park et al, (2017)

Continuous BH mass function

- BH mass function depends on metallicity
- Biased formation of higher mass BH binaries also seen here

Park et al., (2017)

BH mass function by Belczynski et al. (2016)

Galactic Globular Clusters


```
Median V_{esc} = 20 km/sec
```

Fraction of merger binaries within 36 Hubble Aptication, June 26-30, 2017

Estimation of merger rate

- Assume 0.45 % NS (but 10% of this remains) and 0.18% BH by number in GC
- 15% of these objects escape in the form of compact binaries
- We used 142 clusters in the catalogue by Harris (2010) with mass and velocity dispersion http://physwww.mcmaster.ca/~harris/ Databases.html
 - We computed the number of binaries whose merging time is shorter than Hubble time for each cluster and add them up
- Number density of globular clusters $n_{GC} = 8.7 h^3 Mpc^{-3}$ and h=0.72,
- Results
 - 0.1 1 yr⁻¹ within advanced detector range
 - ~ 10 yr⁻¹ Gpc⁻³ for BH-BH merger
 - Very small number of NS-BH binaries

Hyung Mok Lee

Uncertainties

- Initial Mass function could have been top heavy for in low metallicity environments
- Clusters with relatively large σ could have produced direct capture binaries
- Many GCs have been already disrupted due to
 - Galactic tidal field
 - Tidal Shocks
 - Dynamical friction

Planned Improvements

- More careful assessment of dependence on N
- Effects of the mass function of the ordinary stars
 - We assumed 0.7 Msun, but more realistic mean mass is much lower
- The rotation of the clusters could accelerate the dynamical
- Consideration of captured binaries.

Summary

- Black hole binaries can be formed by dynamical processes in globular clusters efficiently
- Most of them are formed by three-body processes.
- Some of them will merge in Hubble time after getting ejected
 - Mass ratios are likely to be less than 2
 - Massive BHs have higher chances in forming binaries
 - Merger rate is estimated to be $\sim 10 \text{ yr}^{-1} \text{ Gpc}$
 - Some binaries could have been merged within the cluster (<10%). They are mostly composed of lower mass BHs.
- Substantial uncertainties in the estimated rate exist, but actual rate could be higher